chaine 2.0.1__cp310-cp310-win_amd64.whl → 3.13.1__cp310-cp310-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of chaine might be problematic. Click here for more details.
- chaine/_core/crf.cp310-win_amd64.pyd +0 -0
- chaine/_core/crf.cpp +19854 -13217
- chaine/_core/crf.pyx +5 -5
- chaine/crf.py +11 -11
- chaine/logging.py +4 -6
- chaine/optimization/spaces.py +11 -12
- chaine/optimization/utils.py +6 -6
- chaine/training.py +3 -3
- chaine/typing.py +4 -4
- {chaine-2.0.1.dist-info → chaine-3.13.1.dist-info}/METADATA +6 -3
- chaine-3.13.1.dist-info/RECORD +68 -0
- {chaine-2.0.1.dist-info → chaine-3.13.1.dist-info}/WHEEL +1 -1
- chaine-2.0.1.dist-info/RECORD +0 -132
chaine/_core/crf.pyx
CHANGED
|
@@ -10,7 +10,7 @@ from libcpp.string cimport string
|
|
|
10
10
|
import os
|
|
11
11
|
|
|
12
12
|
from chaine.logging import Logger
|
|
13
|
-
from chaine.typing import Filepath, Labels, Sequence
|
|
13
|
+
from chaine.typing import Filepath, Labels, Sequence
|
|
14
14
|
|
|
15
15
|
LOGGER = Logger(__name__)
|
|
16
16
|
|
|
@@ -110,7 +110,7 @@ cdef class Trainer:
|
|
|
110
110
|
|
|
111
111
|
self._trainer.append(to_seq(sequence), labels, group)
|
|
112
112
|
|
|
113
|
-
def translate_params(self, kwargs: dict[str,
|
|
113
|
+
def translate_params(self, kwargs: dict[str, str | int | float | bool]):
|
|
114
114
|
return {
|
|
115
115
|
self.kwarg2param.get(kwarg, kwarg): value
|
|
116
116
|
for kwarg, value in kwargs.items()
|
|
@@ -124,11 +124,11 @@ cdef class Trainer:
|
|
|
124
124
|
if not self._trainer.select(algorithm, "crf1d"):
|
|
125
125
|
raise ValueError(f"{algorithm} is no available algorithm")
|
|
126
126
|
|
|
127
|
-
def set_params(self, params: dict[str,
|
|
127
|
+
def set_params(self, params: dict[str, str | int | float | bool]):
|
|
128
128
|
for param, value in params.items():
|
|
129
129
|
self.set_param(param, value)
|
|
130
130
|
|
|
131
|
-
def set_param(self, param: str, value:
|
|
131
|
+
def set_param(self, param: str, value: str | int | float | bool):
|
|
132
132
|
if isinstance(value, bool):
|
|
133
133
|
value = int(value)
|
|
134
134
|
self._trainer.set(param, str(value))
|
|
@@ -136,7 +136,7 @@ cdef class Trainer:
|
|
|
136
136
|
def get_param(self, param: str):
|
|
137
137
|
return self.cast_parameter(param, self._trainer.get(param))
|
|
138
138
|
|
|
139
|
-
def cast_parameter(self, param: str, value:
|
|
139
|
+
def cast_parameter(self, param: str, value: str | int | float | bool):
|
|
140
140
|
if param in self._parameter_types:
|
|
141
141
|
return self._parameter_types[param](value)
|
|
142
142
|
return value
|
chaine/crf.py
CHANGED
|
@@ -26,7 +26,7 @@ from chaine.optimization.spaces import (
|
|
|
26
26
|
)
|
|
27
27
|
from chaine.optimization.trial import OptimizationTrial
|
|
28
28
|
from chaine.optimization.utils import cross_validation, downsample
|
|
29
|
-
from chaine.typing import Filepath, Iterable, Labels,
|
|
29
|
+
from chaine.typing import Filepath, Iterable, Labels, Sequence
|
|
30
30
|
from chaine.validation import is_valid_sequence
|
|
31
31
|
|
|
32
32
|
LOGGER = Logger(__name__)
|
|
@@ -203,12 +203,12 @@ class Trainer:
|
|
|
203
203
|
self._trainer.train(model_filepath)
|
|
204
204
|
|
|
205
205
|
@cached_property
|
|
206
|
-
def params(self) -> dict[str,
|
|
206
|
+
def params(self) -> dict[str, str | int | float | bool]:
|
|
207
207
|
"""Set parameters of the trainer.
|
|
208
208
|
|
|
209
209
|
Returns
|
|
210
210
|
-------
|
|
211
|
-
dict[str,
|
|
211
|
+
dict[str, str | int | float | bool]
|
|
212
212
|
Parameters of the trainer.
|
|
213
213
|
"""
|
|
214
214
|
return {
|
|
@@ -221,7 +221,7 @@ class HyperparameterOptimizer:
|
|
|
221
221
|
def __init__(
|
|
222
222
|
self,
|
|
223
223
|
trials: int = 10,
|
|
224
|
-
seed:
|
|
224
|
+
seed: int | None = None,
|
|
225
225
|
metric: str = "f1",
|
|
226
226
|
folds: int = 5,
|
|
227
227
|
spaces: list[SearchSpace] = [
|
|
@@ -238,7 +238,7 @@ class HyperparameterOptimizer:
|
|
|
238
238
|
----------
|
|
239
239
|
trials : int, optional
|
|
240
240
|
Number of trials for an algorithm, by default 10.
|
|
241
|
-
seed :
|
|
241
|
+
seed : int | None, optional
|
|
242
242
|
Random seed, by default None.
|
|
243
243
|
metric : str, optional
|
|
244
244
|
Metric to sort the results by, by default "f1"..
|
|
@@ -261,7 +261,7 @@ class HyperparameterOptimizer:
|
|
|
261
261
|
self,
|
|
262
262
|
dataset: Iterable[Sequence],
|
|
263
263
|
labels: Iterable[Labels],
|
|
264
|
-
sample_size:
|
|
264
|
+
sample_size: int | None = None,
|
|
265
265
|
) -> list[dict[str, dict]]:
|
|
266
266
|
"""Optimize hyperparameters on the given data set.
|
|
267
267
|
|
|
@@ -271,7 +271,7 @@ class HyperparameterOptimizer:
|
|
|
271
271
|
Data set to train models on.
|
|
272
272
|
labels : Iterable[Labels]
|
|
273
273
|
Labels to train models on.
|
|
274
|
-
sample_size :
|
|
274
|
+
sample_size : int | None
|
|
275
275
|
Number of instances to sample from the data set.
|
|
276
276
|
|
|
277
277
|
Returns
|
|
@@ -319,12 +319,12 @@ class HyperparameterOptimizer:
|
|
|
319
319
|
return sorted(self.results, key=self._metric, reverse=True)
|
|
320
320
|
|
|
321
321
|
@property
|
|
322
|
-
def _best_baseline_score(self) ->
|
|
322
|
+
def _best_baseline_score(self) -> str | float:
|
|
323
323
|
"""Best evaluation score with default hyperparameters.
|
|
324
324
|
|
|
325
325
|
Returns
|
|
326
326
|
-------
|
|
327
|
-
|
|
327
|
+
str | float
|
|
328
328
|
Score (or 'n/a' of no results available).
|
|
329
329
|
"""
|
|
330
330
|
if self.baselines:
|
|
@@ -334,12 +334,12 @@ class HyperparameterOptimizer:
|
|
|
334
334
|
return "n/a"
|
|
335
335
|
|
|
336
336
|
@property
|
|
337
|
-
def _best_optimized_score(self) ->
|
|
337
|
+
def _best_optimized_score(self) -> str | float:
|
|
338
338
|
"""Best evaluation score with optimized hyperparameters.
|
|
339
339
|
|
|
340
340
|
Returns
|
|
341
341
|
-------
|
|
342
|
-
|
|
342
|
+
str | float
|
|
343
343
|
Score (or 'n/a' of no results available).
|
|
344
344
|
"""
|
|
345
345
|
if self.results:
|
chaine/logging.py
CHANGED
|
@@ -9,8 +9,6 @@ import logging
|
|
|
9
9
|
import sys
|
|
10
10
|
from logging import Formatter, StreamHandler
|
|
11
11
|
|
|
12
|
-
from chaine.typing import Union
|
|
13
|
-
|
|
14
12
|
DEBUG = 10
|
|
15
13
|
INFO = 20
|
|
16
14
|
WARNING = 30
|
|
@@ -42,7 +40,7 @@ class Logger:
|
|
|
42
40
|
# set level of both the logger and the handler to INFO by default
|
|
43
41
|
self.set_level("INFO")
|
|
44
42
|
|
|
45
|
-
def set_level(self, level:
|
|
43
|
+
def set_level(self, level: str | int):
|
|
46
44
|
# translate string to integer
|
|
47
45
|
if isinstance(level, str):
|
|
48
46
|
level = LEVELS[level.upper()]
|
|
@@ -93,7 +91,7 @@ class Logger:
|
|
|
93
91
|
if self._logger.isEnabledFor(WARNING):
|
|
94
92
|
self._logger._log(WARNING, message, ())
|
|
95
93
|
|
|
96
|
-
def error(self, message:
|
|
94
|
+
def error(self, message: str | Exception):
|
|
97
95
|
"""Error log message
|
|
98
96
|
|
|
99
97
|
Parameters
|
|
@@ -167,14 +165,14 @@ def logger_exists(name: str) -> bool:
|
|
|
167
165
|
ndlers()
|
|
168
166
|
|
|
169
167
|
|
|
170
|
-
def set_level(name: str, level:
|
|
168
|
+
def set_level(name: str, level: int | str):
|
|
171
169
|
"""Sets log level for the specified logger
|
|
172
170
|
|
|
173
171
|
Parameters
|
|
174
172
|
----------
|
|
175
173
|
name : str
|
|
176
174
|
Name of the module
|
|
177
|
-
level :
|
|
175
|
+
level : int | str
|
|
178
176
|
Level to set
|
|
179
177
|
"""
|
|
180
178
|
logger = logging.getLogger(name)
|
chaine/optimization/spaces.py
CHANGED
|
@@ -9,7 +9,6 @@ import random
|
|
|
9
9
|
from abc import ABC, abstractmethod
|
|
10
10
|
|
|
11
11
|
from chaine.optimization.utils import NumberSeries
|
|
12
|
-
from chaine.typing import Union
|
|
13
12
|
|
|
14
13
|
|
|
15
14
|
class SearchSpace(ABC):
|
|
@@ -19,7 +18,7 @@ class SearchSpace(ABC):
|
|
|
19
18
|
...
|
|
20
19
|
|
|
21
20
|
@abstractmethod
|
|
22
|
-
def random_hyperparameters(self) -> dict[str,
|
|
21
|
+
def random_hyperparameters(self) -> dict[str, int | float | bool | str]:
|
|
23
22
|
...
|
|
24
23
|
|
|
25
24
|
|
|
@@ -92,12 +91,12 @@ class LBFGSSearchSpace(SearchSpace):
|
|
|
92
91
|
def algorithm(self) -> str:
|
|
93
92
|
return "lbfgs"
|
|
94
93
|
|
|
95
|
-
def random_hyperparameters(self) -> dict[str,
|
|
94
|
+
def random_hyperparameters(self) -> dict[str, int | float | bool | str]:
|
|
96
95
|
"""Select random hyperparameters from the search space.
|
|
97
96
|
|
|
98
97
|
Returns
|
|
99
98
|
-------
|
|
100
|
-
dict[str,
|
|
99
|
+
dict[str, int | float | bool | str]
|
|
101
100
|
Randomly selected hyperparameters.
|
|
102
101
|
"""
|
|
103
102
|
return {
|
|
@@ -185,12 +184,12 @@ class L2SGDSearchSpace(SearchSpace):
|
|
|
185
184
|
def algorithm(self) -> str:
|
|
186
185
|
return "l2sgd"
|
|
187
186
|
|
|
188
|
-
def random_hyperparameters(self) -> dict[str,
|
|
187
|
+
def random_hyperparameters(self) -> dict[str, int | float | bool | str]:
|
|
189
188
|
"""Select random hyperparameters from the search space.
|
|
190
189
|
|
|
191
190
|
Returns
|
|
192
191
|
-------
|
|
193
|
-
dict[str,
|
|
192
|
+
dict[str, int | float | bool | str]
|
|
194
193
|
Randomly selected hyperparameters.
|
|
195
194
|
"""
|
|
196
195
|
return {
|
|
@@ -243,12 +242,12 @@ class APSearchSpace(SearchSpace):
|
|
|
243
242
|
def algorithm(self) -> str:
|
|
244
243
|
return "ap"
|
|
245
244
|
|
|
246
|
-
def random_hyperparameters(self) -> dict[str,
|
|
245
|
+
def random_hyperparameters(self) -> dict[str, int | float | bool | str]:
|
|
247
246
|
"""Select random hyperparameters from the search space.
|
|
248
247
|
|
|
249
248
|
Returns
|
|
250
249
|
-------
|
|
251
|
-
dict[str,
|
|
250
|
+
dict[str, int | float | bool | str]
|
|
252
251
|
Randomly selected hyperparameters.
|
|
253
252
|
"""
|
|
254
253
|
return {
|
|
@@ -311,12 +310,12 @@ class PASearchSpace(SearchSpace):
|
|
|
311
310
|
def algorithm(self) -> str:
|
|
312
311
|
return "pa"
|
|
313
312
|
|
|
314
|
-
def random_hyperparameters(self) -> dict[str,
|
|
313
|
+
def random_hyperparameters(self) -> dict[str, int | float | bool | str]:
|
|
315
314
|
"""Select random hyperparameters from the search space.
|
|
316
315
|
|
|
317
316
|
Returns
|
|
318
317
|
-------
|
|
319
|
-
dict[str,
|
|
318
|
+
dict[str, int | float | bool | str]
|
|
320
319
|
Randomly selected hyperparameters.
|
|
321
320
|
"""
|
|
322
321
|
return {
|
|
@@ -376,12 +375,12 @@ class AROWSearchSpace(SearchSpace):
|
|
|
376
375
|
def algorithm(self) -> str:
|
|
377
376
|
return "arow"
|
|
378
377
|
|
|
379
|
-
def random_hyperparameters(self) -> dict[str,
|
|
378
|
+
def random_hyperparameters(self) -> dict[str, int | float | bool | str]:
|
|
380
379
|
"""Select random hyperparameters from the search space.
|
|
381
380
|
|
|
382
381
|
Returns
|
|
383
382
|
-------
|
|
384
|
-
dict[str,
|
|
383
|
+
dict[str, int | float | bool | str]
|
|
385
384
|
Randomly selected hyperparameters.
|
|
386
385
|
"""
|
|
387
386
|
return {
|
chaine/optimization/utils.py
CHANGED
|
@@ -9,19 +9,19 @@ import random
|
|
|
9
9
|
from collections.abc import Iterable, Iterator
|
|
10
10
|
from dataclasses import dataclass
|
|
11
11
|
|
|
12
|
-
from chaine.typing import Labels,
|
|
12
|
+
from chaine.typing import Labels, Sequence
|
|
13
13
|
|
|
14
14
|
|
|
15
15
|
@dataclass
|
|
16
16
|
class NumberSeries(Iterable):
|
|
17
17
|
start: int
|
|
18
18
|
stop: int
|
|
19
|
-
step:
|
|
19
|
+
step: int | float
|
|
20
20
|
|
|
21
21
|
def __repr__(self) -> str:
|
|
22
22
|
return f"<NumberSeries (start={self.start}, stop={self.stop}, step={self.step})>"
|
|
23
23
|
|
|
24
|
-
def __iter__(self) -> Iterator[
|
|
24
|
+
def __iter__(self) -> Iterator[int | float]:
|
|
25
25
|
n = int(round((self.stop - self.start) / float(self.step)))
|
|
26
26
|
if n > 1:
|
|
27
27
|
yield from [self.start + self.step * i for i in range(n + 1)]
|
|
@@ -30,7 +30,7 @@ class NumberSeries(Iterable):
|
|
|
30
30
|
|
|
31
31
|
|
|
32
32
|
def cross_validation(
|
|
33
|
-
dataset: Iterable[Sequence], labels: Iterable[Labels], k: int, seed:
|
|
33
|
+
dataset: Iterable[Sequence], labels: Iterable[Labels], k: int, seed: int | None = None
|
|
34
34
|
) -> Iterator[tuple[tuple[Iterable[Sequence], Iterable[Labels]]]]:
|
|
35
35
|
"""K-fold cross validation.
|
|
36
36
|
|
|
@@ -77,7 +77,7 @@ def cross_validation(
|
|
|
77
77
|
|
|
78
78
|
|
|
79
79
|
def downsample(
|
|
80
|
-
dataset: Iterable[Sequence], labels: Iterable[Labels], n: int, seed:
|
|
80
|
+
dataset: Iterable[Sequence], labels: Iterable[Labels], n: int, seed: int | None = None
|
|
81
81
|
) -> tuple[Iterable[Sequence], Iterable[Labels]]:
|
|
82
82
|
"""Downsample the given data set to the specified size.
|
|
83
83
|
|
|
@@ -89,7 +89,7 @@ def downsample(
|
|
|
89
89
|
Labels for the data set.
|
|
90
90
|
n : int
|
|
91
91
|
Number of samples to keep.
|
|
92
|
-
seed :
|
|
92
|
+
seed : int | None, optional
|
|
93
93
|
Random seed, by default None.
|
|
94
94
|
|
|
95
95
|
Returns
|
chaine/training.py
CHANGED
|
@@ -8,7 +8,7 @@ This module implements the high-level API to train a conditional random field.
|
|
|
8
8
|
|
|
9
9
|
from chaine.crf import HyperparameterOptimizer, Model, Trainer
|
|
10
10
|
from chaine.logging import Logger, set_verbosity
|
|
11
|
-
from chaine.typing import Filepath, Iterable, Labels,
|
|
11
|
+
from chaine.typing import Filepath, Iterable, Labels, Sequence
|
|
12
12
|
|
|
13
13
|
LOGGER = Logger(__name__)
|
|
14
14
|
|
|
@@ -19,7 +19,7 @@ def train(
|
|
|
19
19
|
*,
|
|
20
20
|
model_filepath: Filepath = "model.chaine",
|
|
21
21
|
optimize_hyperparameters: bool = False,
|
|
22
|
-
optimization_sample_size:
|
|
22
|
+
optimization_sample_size: int | None = None,
|
|
23
23
|
verbose: int = 1,
|
|
24
24
|
**hyperparameters,
|
|
25
25
|
) -> Model:
|
|
@@ -35,7 +35,7 @@ def train(
|
|
|
35
35
|
Path to model location.
|
|
36
36
|
optimize_hyperparameters : bool
|
|
37
37
|
If True, optimize hyperparameters first.
|
|
38
|
-
optimization_sample_size :
|
|
38
|
+
optimization_sample_size : int | None
|
|
39
39
|
Number of instances to sample from the data set for hyperparameter optimization.
|
|
40
40
|
verbose : int
|
|
41
41
|
Controls the verbosity: the higher, the more messages.
|
chaine/typing.py
CHANGED
|
@@ -7,12 +7,12 @@ A collection of type hints.
|
|
|
7
7
|
|
|
8
8
|
from os import PathLike
|
|
9
9
|
from pathlib import Path
|
|
10
|
-
from typing import Any, Iterable, Iterator
|
|
10
|
+
from typing import Any, Iterable, Iterator
|
|
11
11
|
|
|
12
|
-
Sequence = Iterable[dict[str,
|
|
12
|
+
Sequence = Iterable[dict[str, str | int | float | bool]]
|
|
13
13
|
Labels = Iterable[str]
|
|
14
|
-
Filepath =
|
|
14
|
+
Filepath = Path | PathLike | str
|
|
15
15
|
Sentence = list[str]
|
|
16
16
|
Tags = list[str]
|
|
17
|
-
Features = dict[str,
|
|
17
|
+
Features = dict[str, float | int | str | bool]
|
|
18
18
|
Dataset = dict[str, dict[str, Any]]
|
|
@@ -1,12 +1,15 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: chaine
|
|
3
|
-
Version:
|
|
3
|
+
Version: 3.13.1
|
|
4
4
|
Summary: Linear-chain conditional random fields for natural language processing
|
|
5
5
|
Author: Severin Simmler
|
|
6
6
|
Author-email: s.simmler@snapaddy.com
|
|
7
7
|
Requires-Python: >=3.10,<4.0
|
|
8
8
|
Classifier: Programming Language :: Python :: 3
|
|
9
9
|
Classifier: Programming Language :: Python :: 3.10
|
|
10
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
11
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
12
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
10
13
|
Description-Content-Type: text/markdown
|
|
11
14
|
|
|
12
15
|
# Chaine
|
|
@@ -15,7 +18,7 @@ Description-Content-Type: text/markdown
|
|
|
15
18
|
[](https://pepy.tech/project/chaine)
|
|
16
19
|
[](https://pepy.tech/project/chaine)
|
|
17
20
|
|
|
18
|
-
Chaine is a modern, fast and lightweight Python library implementing **linear-chain conditional random fields
|
|
21
|
+
Chaine is a modern, fast and lightweight Python library implementing **linear-chain conditional random fields**. Use it for sequence labeling tasks like [named entity recognition](https://en.wikipedia.org/wiki/Named-entity_recognition) or [part-of-speech tagging](https://en.wikipedia.org/wiki/Part-of-speech_tagging).
|
|
19
22
|
|
|
20
23
|
The main goals of this project are:
|
|
21
24
|
|
|
@@ -53,7 +56,7 @@ You can train models using the following methods:
|
|
|
53
56
|
- Passive Aggressive ([Crammer et al. 2006](https://jmlr.csail.mit.edu/papers/v7/crammer06a.html))
|
|
54
57
|
- Adaptive Regularization of Weight Vectors ([Mejer et al. 2010](https://aclanthology.org/D10-1095.pdf))
|
|
55
58
|
|
|
56
|
-
Please refer to the paper by [Lafferty et al.](https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers) for a general introduction to **conditional random fields
|
|
59
|
+
Please refer to the paper by [Lafferty et al.](https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers) for a general introduction to **conditional random fields** or the respective chapter in [Speech and Language Processing](https://web.stanford.edu/~jurafsky/slp3/8.pdf).
|
|
57
60
|
|
|
58
61
|
## Usage
|
|
59
62
|
|
|
@@ -0,0 +1,68 @@
|
|
|
1
|
+
chaine/__init__.py,sha256=praojWUCZA6AymuA7NP2ANXewNPGn-93MGg8ijpUtBA,99
|
|
2
|
+
chaine/_core/crf.cpp,sha256=RVQa67CyT5GIbFb0eT-da6ZJONHLolDMxifNHwoSrig,817473
|
|
3
|
+
chaine/_core/crf.pyx,sha256=LGk43UIZNMZPlaYPbYRmPNksBpToy_A83QnVmfJ-JFU,9364
|
|
4
|
+
chaine/_core/crfsuite/COPYING,sha256=xOzN3-NL9YsNIK2I7iz_1SUuFoPlmJjCs1OFg3jKM9o,1562
|
|
5
|
+
chaine/_core/crfsuite/include/crfsuite.h,sha256=digqo1geQE2NOl__ytJQ1UJIqUux4votDpUvNeYGx9M,39708
|
|
6
|
+
chaine/_core/crfsuite/include/crfsuite.hpp,sha256=n7QdCPf9DEf31Yk1AxSomUwqSKhxeDKgL2mMw8b7au8,19242
|
|
7
|
+
chaine/_core/crfsuite/include/crfsuite_api.hpp,sha256=Sd8ecEiPmTpEDraSPuY1_t8qiSEXnXjIS5iYarKKrls,14504
|
|
8
|
+
chaine/_core/crfsuite/include/os.h,sha256=Tcd_vFbusGHL6mhu4wubWl4dETmDFZQqTuWFI_x7YIQ,2303
|
|
9
|
+
chaine/_core/crfsuite/lib/cqdb/COPYING,sha256=KPnkAQj39st4tTJHIAxW2k3oGPHGc1j5Lctt3CKPe0I,1601
|
|
10
|
+
chaine/_core/crfsuite/lib/cqdb/include/cqdb.h,sha256=_kp0GV8loCTlYq10V_VF4yk_SiRXm3Yaiqa1egumRdo,19246
|
|
11
|
+
chaine/_core/crfsuite/lib/cqdb/src/cqdb.c,sha256=75tCcqlIFYYwE9IWIjuwBuKGWrHXB4hE2ZuWSGpoCkY,17907
|
|
12
|
+
chaine/_core/crfsuite/lib/cqdb/src/lookup3.c,sha256=hBcXrp2o84i6LadZcfYeiYQT7n5Wx73sGK6HJBCP-kQ,37835
|
|
13
|
+
chaine/_core/crfsuite/lib/cqdb/src/main.c,sha256=UF0DvwHmHY3vdV5lfuV9E_0dBfDbsrIVoGXkr3-xmQM,5166
|
|
14
|
+
chaine/_core/crfsuite/lib/crf/src/crf1d.h,sha256=4wbzD2aIBsPH49RewntxWn4lSKE9tDl_v1oQEV_Ktqw,11066
|
|
15
|
+
chaine/_core/crfsuite/lib/crf/src/crf1d_context.c,sha256=iveSxfvyurRcQzGsbnD1Nflx8dPs-UdJE0Bmc8kldZs,23406
|
|
16
|
+
chaine/_core/crfsuite/lib/crf/src/crf1d_encode.c,sha256=vNoISXXTRdG-D3NE2Gae0OruJV1eNSD9t51B0qCfgx4,30244
|
|
17
|
+
chaine/_core/crfsuite/lib/crf/src/crf1d_feature.c,sha256=1slcMRA-ea6_xJ0oyGVsD2k4omrAl4dZcRIfL27sk0Y,10971
|
|
18
|
+
chaine/_core/crfsuite/lib/crf/src/crf1d_model.c,sha256=OwmGcIciNZViA-obC-nnCEVGaMCSmlxMWQK0PkxWF1g,27779
|
|
19
|
+
chaine/_core/crfsuite/lib/crf/src/crf1d_tag.c,sha256=qFjiOxU528xxR160NUoTVtUjDiFjmGBau5-oKXH7bDM,17330
|
|
20
|
+
chaine/_core/crfsuite/lib/crf/src/crfsuite.c,sha256=LHAKm8mvwT6TkSIF1hPZPEEBLhk-ax2zjAG_sm-FSKk,14580
|
|
21
|
+
chaine/_core/crfsuite/lib/crf/src/crfsuite_internal.h,sha256=FqYsUh8wTtGKN8De77u9Oob2DexXe2oUCJ4tmlhG3rc,7780
|
|
22
|
+
chaine/_core/crfsuite/lib/crf/src/crfsuite_train.c,sha256=ep9MB7pQ6ZexZYC2dPq3J8WieTxtnXLavTEu69CLNrM,8851
|
|
23
|
+
chaine/_core/crfsuite/lib/crf/src/dataset.c,sha256=BnRCaz29BoVWQiQQjGaHiEbRNmDfBwjFtj9sfOAILd8,3369
|
|
24
|
+
chaine/_core/crfsuite/lib/crf/src/dictionary.c,sha256=-oULrp0uvm5O6OLsYs1EF3-xz-5DdeeW5JQbblfnP6w,4005
|
|
25
|
+
chaine/_core/crfsuite/lib/crf/src/holdout.c,sha256=hcz95JwgqA2EKk1H-xA9WT4yZtTdSEOtypnS76oMdMA,2948
|
|
26
|
+
chaine/_core/crfsuite/lib/crf/src/json.c,sha256=h9NELZ81362s44QFHm54RF_s6nBbPDPKiqBuynPJgag,30708
|
|
27
|
+
chaine/_core/crfsuite/lib/crf/src/json.h,sha256=A2Lmku3s1JiOmR4tu_tjXDWFwDuj-3jn5V4K0zeQ5Ew,3509
|
|
28
|
+
chaine/_core/crfsuite/lib/crf/src/logging.c,sha256=W7NqaxViJZ6l_wdWC_iK2adicyrpjdamz7SPJfbddzc,2725
|
|
29
|
+
chaine/_core/crfsuite/lib/crf/src/logging.h,sha256=ZDTzx5zyI6lwY4MHatXVpd13_X9vDfv3QtXp6JQcC1I,2112
|
|
30
|
+
chaine/_core/crfsuite/lib/crf/src/params.c,sha256=YLbFTENh9g4HSGqB0MzQAL--gNEKXDEE7WApat2AH9k,10389
|
|
31
|
+
chaine/_core/crfsuite/lib/crf/src/params.h,sha256=gsrdmVASEEUBoM4Q08Svq10GMpA0o2XfemUP_UTzQpU,3838
|
|
32
|
+
chaine/_core/crfsuite/lib/crf/src/quark.c,sha256=7z4TxGB4tAP3GbrdkWdUYOeZR0dhP1icLfCVmBFu7fI,5022
|
|
33
|
+
chaine/_core/crfsuite/lib/crf/src/quark.h,sha256=5ZL9CiG1SxBI3Y5N2QAX8ljZQHhKJF6L1apuPRtoBG4,2029
|
|
34
|
+
chaine/_core/crfsuite/lib/crf/src/rumavl.c,sha256=zZGd7P7N7f9ZRL9rbVUAN3dyZZ9tOnH2DEWeeTd9u4s,35165
|
|
35
|
+
chaine/_core/crfsuite/lib/crf/src/rumavl.h,sha256=0aPHOkVKXWC8XYM4nI7QDZ8Yi-B7-Frxpg4PR2azqcc,5680
|
|
36
|
+
chaine/_core/crfsuite/lib/crf/src/train_arow.c,sha256=MoWOZ3BQYTu5uKGo97bPcXjUplWPlbXKt4AIjV9OVik,11267
|
|
37
|
+
chaine/_core/crfsuite/lib/crf/src/train_averaged_perceptron.c,sha256=Dpto7l_ZX_c8UiqcBTdXCqo-ZXcZkt_dPvh0vMU1bxM,6941
|
|
38
|
+
chaine/_core/crfsuite/lib/crf/src/train_l2sgd.c,sha256=8Alj5pmfi1cOB2vl8mTrPhimztq9nkble32Ee4jcTbg,14438
|
|
39
|
+
chaine/_core/crfsuite/lib/crf/src/train_lbfgs.c,sha256=ulyaoHrqcJSwB0gW3TQ9FpddcQrTK6-XqUV5vg8c3fI,9770
|
|
40
|
+
chaine/_core/crfsuite/lib/crf/src/train_passive_aggressive.c,sha256=He3D2aHwHfq0RU8nYWoK5AG6Qg5dO1Pun6UfSiKmHN8,12007
|
|
41
|
+
chaine/_core/crfsuite/lib/crf/src/vecmath.h,sha256=lCfACC_8o6z6uQAzCrlKr174DsKEjp3ZWB4Myeb21CE,10273
|
|
42
|
+
chaine/_core/crfsuite/README,sha256=CK_5nD0Ft6c7fwUy5gBHhXKUEch5_AQ2TW4qVt2HFwQ,8156
|
|
43
|
+
chaine/_core/crfsuite/swig/crfsuite.cpp,sha256=Vr2lT_9LxZiqxqMIAuK17XRQr_FOCehbjvFvq7aijU4,25
|
|
44
|
+
chaine/_core/crfsuite_api.pxd,sha256=SeMyuNOIutdwHQigwhFwdlEnP1XI3z2MBA_R_Ypii5k,2070
|
|
45
|
+
chaine/_core/liblbfgs/COPYING,sha256=YsjQgGvpZa_aekoPiagchCVC-RFF7XqSVDKhGDUK27Q,1135
|
|
46
|
+
chaine/_core/liblbfgs/include/lbfgs.h,sha256=Z0BXu6_C7MWbQ_quhec1tfH60zxckiUmHg5ZfAARgBE,33591
|
|
47
|
+
chaine/_core/liblbfgs/lib/arithmetic_ansi.h,sha256=kLO2_urPV72Xpy6Np52z-nY3fXiY5h0b-Jds-o0xOzs,3569
|
|
48
|
+
chaine/_core/liblbfgs/lib/arithmetic_sse_double.h,sha256=0dlVh3SCp94jrUEzSb8xK6wSfE-9mGSHJ9URCJX-oog,14108
|
|
49
|
+
chaine/_core/liblbfgs/lib/arithmetic_sse_float.h,sha256=6noD9IB-VoY6WyFBo1-1Xnot0fe4qwESk6ywZK9c2sY,13668
|
|
50
|
+
chaine/_core/liblbfgs/lib/lbfgs.c,sha256=mi_d0-FyscJ-jqI0BeONQy0-4A7ERqo4b2k6lUxenpI,45236
|
|
51
|
+
chaine/_core/liblbfgs/README,sha256=Ky2xZJsHXMfnwqJQVra0Zf9Qjnod22h8qbJf76WGoWc,2716
|
|
52
|
+
chaine/_core/tagger_wrapper.hpp,sha256=uxWQBtRWkpytCEGPGAVwfR1H8DiMMVuHuROuFixaY_M,1370
|
|
53
|
+
chaine/_core/trainer_wrapper.cpp,sha256=3vKu9HR0XxnGfTG2aMqtKHBalW1o1JPuz1mE6LYS6Lg,777
|
|
54
|
+
chaine/_core/trainer_wrapper.hpp,sha256=va2L1yiYcdkoX6wJZb1LCJsKZlhg9yH9_w8JuA7Eeo0,599
|
|
55
|
+
chaine/crf.py,sha256=xHf6TxH7QHVnY9mdKuRVBvnBvtptrChNaUyEbBvHUVE,18508
|
|
56
|
+
chaine/logging.py,sha256=65xG2ct2AyxQn5jAemTOwLNSI3S3Evvg_7g_ZEBdahU,5470
|
|
57
|
+
chaine/optimization/__init__.py,sha256=YZno8Nl--OPm0IOA3EB_kHwCl6eSu-MYWejCpriCLeo,267
|
|
58
|
+
chaine/optimization/metrics.py,sha256=v3KWtlCs-o3LxxwPm1Nq79R6TvMiyprR1LBfVBt_cYs,3845
|
|
59
|
+
chaine/optimization/spaces.py,sha256=9JQFrfiYonxuvj4odb_op3FYBCVvHjJ-s0iJjJvf91M,18191
|
|
60
|
+
chaine/optimization/trial.py,sha256=IIZsGZMWEjl5IpkVh_y6_dd79J-A6Ad3RxPJ4YnxbZ8,3669
|
|
61
|
+
chaine/optimization/utils.py,sha256=BDoNbBvJ4wA5B3ULbGu8NIzeh6mtpxM8q3UVYCJ7tP0,3416
|
|
62
|
+
chaine/training.py,sha256=KJQGR1GUAWwyRGWhKkBD4CnFe3_CVPd0bn04mFL7E0c,8585
|
|
63
|
+
chaine/typing.py,sha256=Ng17IeltbamOf2K-0CMZsrRNRUriCylyDPWy3DUnq_k,411
|
|
64
|
+
chaine/validation.py,sha256=lvcTQauH7laY102PUC2NACJXRA-DdtKeUfrXvor0XcY,1038
|
|
65
|
+
chaine/_core/crf.cp310-win_amd64.pyd,sha256=os2PgZPa4KNwKm1aNS_K_o1lnCHIIwVzB5NXE0E_zHs,277504
|
|
66
|
+
chaine-3.13.1.dist-info/METADATA,sha256=ZJlOLAhb2T6kJLFhOAS1RD1Wizf0NB-249R9BVPyo18,12465
|
|
67
|
+
chaine-3.13.1.dist-info/WHEEL,sha256=m3IvSLcO9dr-GyYVTyaKikpz8RWQ7IicWuXKArHYOZE,98
|
|
68
|
+
chaine-3.13.1.dist-info/RECORD,,
|
chaine-2.0.1.dist-info/RECORD
DELETED
|
@@ -1,132 +0,0 @@
|
|
|
1
|
-
chaine/__init__.py,sha256=praojWUCZA6AymuA7NP2ANXewNPGn-93MGg8ijpUtBA,99
|
|
2
|
-
chaine/_core/crf.cpp,sha256=HMOSys7FM3irM-znq--J5gPcFHvePCHXJmZbrmve8ts,537386
|
|
3
|
-
chaine/_core/crf.pyx,sha256=6k1jvVAZJ7q2yCQ80vTO735HxneAi47HDS9wydpLuM0,9387
|
|
4
|
-
chaine/_core/crfsuite/COPYING,sha256=xOzN3-NL9YsNIK2I7iz_1SUuFoPlmJjCs1OFg3jKM9o,1562
|
|
5
|
-
chaine/_core/crfsuite/include/crfsuite.h,sha256=digqo1geQE2NOl__ytJQ1UJIqUux4votDpUvNeYGx9M,39708
|
|
6
|
-
chaine/_core/crfsuite/include/crfsuite.hpp,sha256=n7QdCPf9DEf31Yk1AxSomUwqSKhxeDKgL2mMw8b7au8,19242
|
|
7
|
-
chaine/_core/crfsuite/include/crfsuite_api.hpp,sha256=Sd8ecEiPmTpEDraSPuY1_t8qiSEXnXjIS5iYarKKrls,14504
|
|
8
|
-
chaine/_core/crfsuite/include/os.h,sha256=Tcd_vFbusGHL6mhu4wubWl4dETmDFZQqTuWFI_x7YIQ,2303
|
|
9
|
-
chaine/_core/crfsuite/lib/cqdb/COPYING,sha256=KPnkAQj39st4tTJHIAxW2k3oGPHGc1j5Lctt3CKPe0I,1601
|
|
10
|
-
chaine/_core/crfsuite/lib/cqdb/include/cqdb.h,sha256=_kp0GV8loCTlYq10V_VF4yk_SiRXm3Yaiqa1egumRdo,19246
|
|
11
|
-
chaine/_core/crfsuite/lib/cqdb/src/cqdb.c,sha256=75tCcqlIFYYwE9IWIjuwBuKGWrHXB4hE2ZuWSGpoCkY,17907
|
|
12
|
-
chaine/_core/crfsuite/lib/cqdb/src/lookup3.c,sha256=hBcXrp2o84i6LadZcfYeiYQT7n5Wx73sGK6HJBCP-kQ,37835
|
|
13
|
-
chaine/_core/crfsuite/lib/cqdb/src/main.c,sha256=UF0DvwHmHY3vdV5lfuV9E_0dBfDbsrIVoGXkr3-xmQM,5166
|
|
14
|
-
chaine/_core/crfsuite/lib/crf/src/crf1d.h,sha256=4wbzD2aIBsPH49RewntxWn4lSKE9tDl_v1oQEV_Ktqw,11066
|
|
15
|
-
chaine/_core/crfsuite/lib/crf/src/crf1d_context.c,sha256=iveSxfvyurRcQzGsbnD1Nflx8dPs-UdJE0Bmc8kldZs,23406
|
|
16
|
-
chaine/_core/crfsuite/lib/crf/src/crf1d_encode.c,sha256=vNoISXXTRdG-D3NE2Gae0OruJV1eNSD9t51B0qCfgx4,30244
|
|
17
|
-
chaine/_core/crfsuite/lib/crf/src/crf1d_feature.c,sha256=1slcMRA-ea6_xJ0oyGVsD2k4omrAl4dZcRIfL27sk0Y,10971
|
|
18
|
-
chaine/_core/crfsuite/lib/crf/src/crf1d_model.c,sha256=OwmGcIciNZViA-obC-nnCEVGaMCSmlxMWQK0PkxWF1g,27779
|
|
19
|
-
chaine/_core/crfsuite/lib/crf/src/crf1d_tag.c,sha256=qFjiOxU528xxR160NUoTVtUjDiFjmGBau5-oKXH7bDM,17330
|
|
20
|
-
chaine/_core/crfsuite/lib/crf/src/crfsuite.c,sha256=LHAKm8mvwT6TkSIF1hPZPEEBLhk-ax2zjAG_sm-FSKk,14580
|
|
21
|
-
chaine/_core/crfsuite/lib/crf/src/crfsuite_internal.h,sha256=FqYsUh8wTtGKN8De77u9Oob2DexXe2oUCJ4tmlhG3rc,7780
|
|
22
|
-
chaine/_core/crfsuite/lib/crf/src/crfsuite_train.c,sha256=ep9MB7pQ6ZexZYC2dPq3J8WieTxtnXLavTEu69CLNrM,8851
|
|
23
|
-
chaine/_core/crfsuite/lib/crf/src/dataset.c,sha256=BnRCaz29BoVWQiQQjGaHiEbRNmDfBwjFtj9sfOAILd8,3369
|
|
24
|
-
chaine/_core/crfsuite/lib/crf/src/dictionary.c,sha256=-oULrp0uvm5O6OLsYs1EF3-xz-5DdeeW5JQbblfnP6w,4005
|
|
25
|
-
chaine/_core/crfsuite/lib/crf/src/holdout.c,sha256=hcz95JwgqA2EKk1H-xA9WT4yZtTdSEOtypnS76oMdMA,2948
|
|
26
|
-
chaine/_core/crfsuite/lib/crf/src/json.c,sha256=h9NELZ81362s44QFHm54RF_s6nBbPDPKiqBuynPJgag,30708
|
|
27
|
-
chaine/_core/crfsuite/lib/crf/src/json.h,sha256=A2Lmku3s1JiOmR4tu_tjXDWFwDuj-3jn5V4K0zeQ5Ew,3509
|
|
28
|
-
chaine/_core/crfsuite/lib/crf/src/logging.c,sha256=W7NqaxViJZ6l_wdWC_iK2adicyrpjdamz7SPJfbddzc,2725
|
|
29
|
-
chaine/_core/crfsuite/lib/crf/src/logging.h,sha256=ZDTzx5zyI6lwY4MHatXVpd13_X9vDfv3QtXp6JQcC1I,2112
|
|
30
|
-
chaine/_core/crfsuite/lib/crf/src/params.c,sha256=YLbFTENh9g4HSGqB0MzQAL--gNEKXDEE7WApat2AH9k,10389
|
|
31
|
-
chaine/_core/crfsuite/lib/crf/src/params.h,sha256=gsrdmVASEEUBoM4Q08Svq10GMpA0o2XfemUP_UTzQpU,3838
|
|
32
|
-
chaine/_core/crfsuite/lib/crf/src/quark.c,sha256=7z4TxGB4tAP3GbrdkWdUYOeZR0dhP1icLfCVmBFu7fI,5022
|
|
33
|
-
chaine/_core/crfsuite/lib/crf/src/quark.h,sha256=5ZL9CiG1SxBI3Y5N2QAX8ljZQHhKJF6L1apuPRtoBG4,2029
|
|
34
|
-
chaine/_core/crfsuite/lib/crf/src/rumavl.c,sha256=zZGd7P7N7f9ZRL9rbVUAN3dyZZ9tOnH2DEWeeTd9u4s,35165
|
|
35
|
-
chaine/_core/crfsuite/lib/crf/src/rumavl.h,sha256=0aPHOkVKXWC8XYM4nI7QDZ8Yi-B7-Frxpg4PR2azqcc,5680
|
|
36
|
-
chaine/_core/crfsuite/lib/crf/src/train_arow.c,sha256=MoWOZ3BQYTu5uKGo97bPcXjUplWPlbXKt4AIjV9OVik,11267
|
|
37
|
-
chaine/_core/crfsuite/lib/crf/src/train_averaged_perceptron.c,sha256=Dpto7l_ZX_c8UiqcBTdXCqo-ZXcZkt_dPvh0vMU1bxM,6941
|
|
38
|
-
chaine/_core/crfsuite/lib/crf/src/train_l2sgd.c,sha256=8Alj5pmfi1cOB2vl8mTrPhimztq9nkble32Ee4jcTbg,14438
|
|
39
|
-
chaine/_core/crfsuite/lib/crf/src/train_lbfgs.c,sha256=ulyaoHrqcJSwB0gW3TQ9FpddcQrTK6-XqUV5vg8c3fI,9770
|
|
40
|
-
chaine/_core/crfsuite/lib/crf/src/train_passive_aggressive.c,sha256=He3D2aHwHfq0RU8nYWoK5AG6Qg5dO1Pun6UfSiKmHN8,12007
|
|
41
|
-
chaine/_core/crfsuite/lib/crf/src/vecmath.h,sha256=lCfACC_8o6z6uQAzCrlKr174DsKEjp3ZWB4Myeb21CE,10273
|
|
42
|
-
chaine/_core/crfsuite/README,sha256=CK_5nD0Ft6c7fwUy5gBHhXKUEch5_AQ2TW4qVt2HFwQ,8156
|
|
43
|
-
chaine/_core/crfsuite/swig/crfsuite.cpp,sha256=Vr2lT_9LxZiqxqMIAuK17XRQr_FOCehbjvFvq7aijU4,25
|
|
44
|
-
chaine/_core/crfsuite_api.pxd,sha256=SeMyuNOIutdwHQigwhFwdlEnP1XI3z2MBA_R_Ypii5k,2070
|
|
45
|
-
chaine/_core/liblbfgs/COPYING,sha256=YsjQgGvpZa_aekoPiagchCVC-RFF7XqSVDKhGDUK27Q,1135
|
|
46
|
-
chaine/_core/liblbfgs/include/lbfgs.h,sha256=Z0BXu6_C7MWbQ_quhec1tfH60zxckiUmHg5ZfAARgBE,33591
|
|
47
|
-
chaine/_core/liblbfgs/lib/arithmetic_ansi.h,sha256=kLO2_urPV72Xpy6Np52z-nY3fXiY5h0b-Jds-o0xOzs,3569
|
|
48
|
-
chaine/_core/liblbfgs/lib/arithmetic_sse_double.h,sha256=0dlVh3SCp94jrUEzSb8xK6wSfE-9mGSHJ9URCJX-oog,14108
|
|
49
|
-
chaine/_core/liblbfgs/lib/arithmetic_sse_float.h,sha256=6noD9IB-VoY6WyFBo1-1Xnot0fe4qwESk6ywZK9c2sY,13668
|
|
50
|
-
chaine/_core/liblbfgs/lib/lbfgs.c,sha256=mi_d0-FyscJ-jqI0BeONQy0-4A7ERqo4b2k6lUxenpI,45236
|
|
51
|
-
chaine/_core/liblbfgs/README,sha256=Ky2xZJsHXMfnwqJQVra0Zf9Qjnod22h8qbJf76WGoWc,2716
|
|
52
|
-
chaine/_core/tagger_wrapper.hpp,sha256=uxWQBtRWkpytCEGPGAVwfR1H8DiMMVuHuROuFixaY_M,1370
|
|
53
|
-
chaine/_core/trainer_wrapper.cpp,sha256=3vKu9HR0XxnGfTG2aMqtKHBalW1o1JPuz1mE6LYS6Lg,777
|
|
54
|
-
chaine/_core/trainer_wrapper.hpp,sha256=va2L1yiYcdkoX6wJZb1LCJsKZlhg9yH9_w8JuA7Eeo0,599
|
|
55
|
-
chaine/crf.py,sha256=inqMyvw6-PYpJ3_8_EVFj9fGHkfTgUgtKXvgLDEbRBU,18569
|
|
56
|
-
chaine/logging.py,sha256=xAXeGs85vPIfDQgBBcb-LrfLpx7CTKkEFMtaXpUweI0,5529
|
|
57
|
-
chaine/optimization/__init__.py,sha256=YZno8Nl--OPm0IOA3EB_kHwCl6eSu-MYWejCpriCLeo,267
|
|
58
|
-
chaine/optimization/metrics.py,sha256=v3KWtlCs-o3LxxwPm1Nq79R6TvMiyprR1LBfVBt_cYs,3845
|
|
59
|
-
chaine/optimization/spaces.py,sha256=SgaC11O3zq6hlkYKCrxJOZU-nXMRpZvf_13KCpwn1wA,18268
|
|
60
|
-
chaine/optimization/trial.py,sha256=IIZsGZMWEjl5IpkVh_y6_dd79J-A6Ad3RxPJ4YnxbZ8,3669
|
|
61
|
-
chaine/optimization/utils.py,sha256=pp5lWXSJwYUMUNIJ_rQBKzQY3WYCvIhJokxlz_kGQxU,3454
|
|
62
|
-
chaine/training.py,sha256=57pCQo1tid__TYUQUN56Y6_VGbcnBQFUW42Rc5_Vpeo,8601
|
|
63
|
-
chaine/typing.py,sha256=gnr8xA4C86W9me7lopN4AlEIgzfKcALs25TrLOBsYMk,441
|
|
64
|
-
chaine/validation.py,sha256=lvcTQauH7laY102PUC2NACJXRA-DdtKeUfrXvor0XcY,1038
|
|
65
|
-
chaine/crf.py,sha256=inqMyvw6-PYpJ3_8_EVFj9fGHkfTgUgtKXvgLDEbRBU,18569
|
|
66
|
-
chaine/logging.py,sha256=xAXeGs85vPIfDQgBBcb-LrfLpx7CTKkEFMtaXpUweI0,5529
|
|
67
|
-
chaine/training.py,sha256=57pCQo1tid__TYUQUN56Y6_VGbcnBQFUW42Rc5_Vpeo,8601
|
|
68
|
-
chaine/typing.py,sha256=gnr8xA4C86W9me7lopN4AlEIgzfKcALs25TrLOBsYMk,441
|
|
69
|
-
chaine/validation.py,sha256=lvcTQauH7laY102PUC2NACJXRA-DdtKeUfrXvor0XcY,1038
|
|
70
|
-
chaine/__init__.py,sha256=praojWUCZA6AymuA7NP2ANXewNPGn-93MGg8ijpUtBA,99
|
|
71
|
-
chaine/optimization/metrics.py,sha256=v3KWtlCs-o3LxxwPm1Nq79R6TvMiyprR1LBfVBt_cYs,3845
|
|
72
|
-
chaine/optimization/spaces.py,sha256=SgaC11O3zq6hlkYKCrxJOZU-nXMRpZvf_13KCpwn1wA,18268
|
|
73
|
-
chaine/optimization/trial.py,sha256=IIZsGZMWEjl5IpkVh_y6_dd79J-A6Ad3RxPJ4YnxbZ8,3669
|
|
74
|
-
chaine/optimization/utils.py,sha256=pp5lWXSJwYUMUNIJ_rQBKzQY3WYCvIhJokxlz_kGQxU,3454
|
|
75
|
-
chaine/optimization/__init__.py,sha256=YZno8Nl--OPm0IOA3EB_kHwCl6eSu-MYWejCpriCLeo,267
|
|
76
|
-
chaine/_core/crf.cp310-win_amd64.pyd,sha256=dfG9rxybUNmmlxEHCfSnQX7QhZK6zyBPazryo9p6-dw,238080
|
|
77
|
-
chaine/_core/crf.cpp,sha256=HMOSys7FM3irM-znq--J5gPcFHvePCHXJmZbrmve8ts,537386
|
|
78
|
-
chaine/_core/crf.pyx,sha256=6k1jvVAZJ7q2yCQ80vTO735HxneAi47HDS9wydpLuM0,9387
|
|
79
|
-
chaine/_core/crfsuite_api.pxd,sha256=SeMyuNOIutdwHQigwhFwdlEnP1XI3z2MBA_R_Ypii5k,2070
|
|
80
|
-
chaine/_core/tagger_wrapper.hpp,sha256=uxWQBtRWkpytCEGPGAVwfR1H8DiMMVuHuROuFixaY_M,1370
|
|
81
|
-
chaine/_core/trainer_wrapper.cpp,sha256=3vKu9HR0XxnGfTG2aMqtKHBalW1o1JPuz1mE6LYS6Lg,777
|
|
82
|
-
chaine/_core/trainer_wrapper.hpp,sha256=va2L1yiYcdkoX6wJZb1LCJsKZlhg9yH9_w8JuA7Eeo0,599
|
|
83
|
-
chaine/_core/crfsuite/COPYING,sha256=xOzN3-NL9YsNIK2I7iz_1SUuFoPlmJjCs1OFg3jKM9o,1562
|
|
84
|
-
chaine/_core/crfsuite/README,sha256=CK_5nD0Ft6c7fwUy5gBHhXKUEch5_AQ2TW4qVt2HFwQ,8156
|
|
85
|
-
chaine/_core/crfsuite/include/crfsuite.h,sha256=digqo1geQE2NOl__ytJQ1UJIqUux4votDpUvNeYGx9M,39708
|
|
86
|
-
chaine/_core/crfsuite/include/crfsuite.hpp,sha256=n7QdCPf9DEf31Yk1AxSomUwqSKhxeDKgL2mMw8b7au8,19242
|
|
87
|
-
chaine/_core/crfsuite/include/crfsuite_api.hpp,sha256=Sd8ecEiPmTpEDraSPuY1_t8qiSEXnXjIS5iYarKKrls,14504
|
|
88
|
-
chaine/_core/crfsuite/include/os.h,sha256=Tcd_vFbusGHL6mhu4wubWl4dETmDFZQqTuWFI_x7YIQ,2303
|
|
89
|
-
chaine/_core/crfsuite/lib/cqdb/COPYING,sha256=KPnkAQj39st4tTJHIAxW2k3oGPHGc1j5Lctt3CKPe0I,1601
|
|
90
|
-
chaine/_core/crfsuite/lib/cqdb/include/cqdb.h,sha256=_kp0GV8loCTlYq10V_VF4yk_SiRXm3Yaiqa1egumRdo,19246
|
|
91
|
-
chaine/_core/crfsuite/lib/cqdb/src/cqdb.c,sha256=75tCcqlIFYYwE9IWIjuwBuKGWrHXB4hE2ZuWSGpoCkY,17907
|
|
92
|
-
chaine/_core/crfsuite/lib/cqdb/src/lookup3.c,sha256=hBcXrp2o84i6LadZcfYeiYQT7n5Wx73sGK6HJBCP-kQ,37835
|
|
93
|
-
chaine/_core/crfsuite/lib/cqdb/src/main.c,sha256=UF0DvwHmHY3vdV5lfuV9E_0dBfDbsrIVoGXkr3-xmQM,5166
|
|
94
|
-
chaine/_core/crfsuite/lib/crf/src/crf1d.h,sha256=4wbzD2aIBsPH49RewntxWn4lSKE9tDl_v1oQEV_Ktqw,11066
|
|
95
|
-
chaine/_core/crfsuite/lib/crf/src/crf1d_context.c,sha256=iveSxfvyurRcQzGsbnD1Nflx8dPs-UdJE0Bmc8kldZs,23406
|
|
96
|
-
chaine/_core/crfsuite/lib/crf/src/crf1d_encode.c,sha256=vNoISXXTRdG-D3NE2Gae0OruJV1eNSD9t51B0qCfgx4,30244
|
|
97
|
-
chaine/_core/crfsuite/lib/crf/src/crf1d_feature.c,sha256=1slcMRA-ea6_xJ0oyGVsD2k4omrAl4dZcRIfL27sk0Y,10971
|
|
98
|
-
chaine/_core/crfsuite/lib/crf/src/crf1d_model.c,sha256=OwmGcIciNZViA-obC-nnCEVGaMCSmlxMWQK0PkxWF1g,27779
|
|
99
|
-
chaine/_core/crfsuite/lib/crf/src/crf1d_tag.c,sha256=qFjiOxU528xxR160NUoTVtUjDiFjmGBau5-oKXH7bDM,17330
|
|
100
|
-
chaine/_core/crfsuite/lib/crf/src/crfsuite.c,sha256=LHAKm8mvwT6TkSIF1hPZPEEBLhk-ax2zjAG_sm-FSKk,14580
|
|
101
|
-
chaine/_core/crfsuite/lib/crf/src/crfsuite_internal.h,sha256=FqYsUh8wTtGKN8De77u9Oob2DexXe2oUCJ4tmlhG3rc,7780
|
|
102
|
-
chaine/_core/crfsuite/lib/crf/src/crfsuite_train.c,sha256=ep9MB7pQ6ZexZYC2dPq3J8WieTxtnXLavTEu69CLNrM,8851
|
|
103
|
-
chaine/_core/crfsuite/lib/crf/src/dataset.c,sha256=BnRCaz29BoVWQiQQjGaHiEbRNmDfBwjFtj9sfOAILd8,3369
|
|
104
|
-
chaine/_core/crfsuite/lib/crf/src/dictionary.c,sha256=-oULrp0uvm5O6OLsYs1EF3-xz-5DdeeW5JQbblfnP6w,4005
|
|
105
|
-
chaine/_core/crfsuite/lib/crf/src/holdout.c,sha256=hcz95JwgqA2EKk1H-xA9WT4yZtTdSEOtypnS76oMdMA,2948
|
|
106
|
-
chaine/_core/crfsuite/lib/crf/src/json.c,sha256=h9NELZ81362s44QFHm54RF_s6nBbPDPKiqBuynPJgag,30708
|
|
107
|
-
chaine/_core/crfsuite/lib/crf/src/json.h,sha256=A2Lmku3s1JiOmR4tu_tjXDWFwDuj-3jn5V4K0zeQ5Ew,3509
|
|
108
|
-
chaine/_core/crfsuite/lib/crf/src/logging.c,sha256=W7NqaxViJZ6l_wdWC_iK2adicyrpjdamz7SPJfbddzc,2725
|
|
109
|
-
chaine/_core/crfsuite/lib/crf/src/logging.h,sha256=ZDTzx5zyI6lwY4MHatXVpd13_X9vDfv3QtXp6JQcC1I,2112
|
|
110
|
-
chaine/_core/crfsuite/lib/crf/src/params.c,sha256=YLbFTENh9g4HSGqB0MzQAL--gNEKXDEE7WApat2AH9k,10389
|
|
111
|
-
chaine/_core/crfsuite/lib/crf/src/params.h,sha256=gsrdmVASEEUBoM4Q08Svq10GMpA0o2XfemUP_UTzQpU,3838
|
|
112
|
-
chaine/_core/crfsuite/lib/crf/src/quark.c,sha256=7z4TxGB4tAP3GbrdkWdUYOeZR0dhP1icLfCVmBFu7fI,5022
|
|
113
|
-
chaine/_core/crfsuite/lib/crf/src/quark.h,sha256=5ZL9CiG1SxBI3Y5N2QAX8ljZQHhKJF6L1apuPRtoBG4,2029
|
|
114
|
-
chaine/_core/crfsuite/lib/crf/src/rumavl.c,sha256=zZGd7P7N7f9ZRL9rbVUAN3dyZZ9tOnH2DEWeeTd9u4s,35165
|
|
115
|
-
chaine/_core/crfsuite/lib/crf/src/rumavl.h,sha256=0aPHOkVKXWC8XYM4nI7QDZ8Yi-B7-Frxpg4PR2azqcc,5680
|
|
116
|
-
chaine/_core/crfsuite/lib/crf/src/train_arow.c,sha256=MoWOZ3BQYTu5uKGo97bPcXjUplWPlbXKt4AIjV9OVik,11267
|
|
117
|
-
chaine/_core/crfsuite/lib/crf/src/train_averaged_perceptron.c,sha256=Dpto7l_ZX_c8UiqcBTdXCqo-ZXcZkt_dPvh0vMU1bxM,6941
|
|
118
|
-
chaine/_core/crfsuite/lib/crf/src/train_l2sgd.c,sha256=8Alj5pmfi1cOB2vl8mTrPhimztq9nkble32Ee4jcTbg,14438
|
|
119
|
-
chaine/_core/crfsuite/lib/crf/src/train_lbfgs.c,sha256=ulyaoHrqcJSwB0gW3TQ9FpddcQrTK6-XqUV5vg8c3fI,9770
|
|
120
|
-
chaine/_core/crfsuite/lib/crf/src/train_passive_aggressive.c,sha256=He3D2aHwHfq0RU8nYWoK5AG6Qg5dO1Pun6UfSiKmHN8,12007
|
|
121
|
-
chaine/_core/crfsuite/lib/crf/src/vecmath.h,sha256=lCfACC_8o6z6uQAzCrlKr174DsKEjp3ZWB4Myeb21CE,10273
|
|
122
|
-
chaine/_core/crfsuite/swig/crfsuite.cpp,sha256=Vr2lT_9LxZiqxqMIAuK17XRQr_FOCehbjvFvq7aijU4,25
|
|
123
|
-
chaine/_core/liblbfgs/COPYING,sha256=YsjQgGvpZa_aekoPiagchCVC-RFF7XqSVDKhGDUK27Q,1135
|
|
124
|
-
chaine/_core/liblbfgs/README,sha256=Ky2xZJsHXMfnwqJQVra0Zf9Qjnod22h8qbJf76WGoWc,2716
|
|
125
|
-
chaine/_core/liblbfgs/include/lbfgs.h,sha256=Z0BXu6_C7MWbQ_quhec1tfH60zxckiUmHg5ZfAARgBE,33591
|
|
126
|
-
chaine/_core/liblbfgs/lib/arithmetic_ansi.h,sha256=kLO2_urPV72Xpy6Np52z-nY3fXiY5h0b-Jds-o0xOzs,3569
|
|
127
|
-
chaine/_core/liblbfgs/lib/arithmetic_sse_double.h,sha256=0dlVh3SCp94jrUEzSb8xK6wSfE-9mGSHJ9URCJX-oog,14108
|
|
128
|
-
chaine/_core/liblbfgs/lib/arithmetic_sse_float.h,sha256=6noD9IB-VoY6WyFBo1-1Xnot0fe4qwESk6ywZK9c2sY,13668
|
|
129
|
-
chaine/_core/liblbfgs/lib/lbfgs.c,sha256=mi_d0-FyscJ-jqI0BeONQy0-4A7ERqo4b2k6lUxenpI,45236
|
|
130
|
-
chaine-2.0.1.dist-info/WHEEL,sha256=SKycNE-2WoAlD0atUo_ISOvRszGFaKYylfZhQH7OOXY,93
|
|
131
|
-
chaine-2.0.1.dist-info/METADATA,sha256=P0GUtAEz9NYXpguzJSuENb3IMR-NiEerTfBoFWiYj6g,12530
|
|
132
|
-
chaine-2.0.1.dist-info/RECORD,,
|