chaine 2.0.1__cp310-cp310-win_amd64.whl → 3.13.1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of chaine might be problematic. Click here for more details.

chaine/_core/crf.pyx CHANGED
@@ -10,7 +10,7 @@ from libcpp.string cimport string
10
10
  import os
11
11
 
12
12
  from chaine.logging import Logger
13
- from chaine.typing import Filepath, Labels, Sequence, Union
13
+ from chaine.typing import Filepath, Labels, Sequence
14
14
 
15
15
  LOGGER = Logger(__name__)
16
16
 
@@ -110,7 +110,7 @@ cdef class Trainer:
110
110
 
111
111
  self._trainer.append(to_seq(sequence), labels, group)
112
112
 
113
- def translate_params(self, kwargs: dict[str, Union[str, int, float, bool]]):
113
+ def translate_params(self, kwargs: dict[str, str | int | float | bool]):
114
114
  return {
115
115
  self.kwarg2param.get(kwarg, kwarg): value
116
116
  for kwarg, value in kwargs.items()
@@ -124,11 +124,11 @@ cdef class Trainer:
124
124
  if not self._trainer.select(algorithm, "crf1d"):
125
125
  raise ValueError(f"{algorithm} is no available algorithm")
126
126
 
127
- def set_params(self, params: dict[str, Union[str, int, float, bool]]):
127
+ def set_params(self, params: dict[str, str | int | float | bool]):
128
128
  for param, value in params.items():
129
129
  self.set_param(param, value)
130
130
 
131
- def set_param(self, param: str, value: Union[str, int, float, bool]):
131
+ def set_param(self, param: str, value: str | int | float | bool):
132
132
  if isinstance(value, bool):
133
133
  value = int(value)
134
134
  self._trainer.set(param, str(value))
@@ -136,7 +136,7 @@ cdef class Trainer:
136
136
  def get_param(self, param: str):
137
137
  return self.cast_parameter(param, self._trainer.get(param))
138
138
 
139
- def cast_parameter(self, param: str, value: Union[str, int, float, bool]):
139
+ def cast_parameter(self, param: str, value: str | int | float | bool):
140
140
  if param in self._parameter_types:
141
141
  return self._parameter_types[param](value)
142
142
  return value
chaine/crf.py CHANGED
@@ -26,7 +26,7 @@ from chaine.optimization.spaces import (
26
26
  )
27
27
  from chaine.optimization.trial import OptimizationTrial
28
28
  from chaine.optimization.utils import cross_validation, downsample
29
- from chaine.typing import Filepath, Iterable, Labels, Optional, Sequence, Union
29
+ from chaine.typing import Filepath, Iterable, Labels, Sequence
30
30
  from chaine.validation import is_valid_sequence
31
31
 
32
32
  LOGGER = Logger(__name__)
@@ -203,12 +203,12 @@ class Trainer:
203
203
  self._trainer.train(model_filepath)
204
204
 
205
205
  @cached_property
206
- def params(self) -> dict[str, Union[str, int, float, bool]]:
206
+ def params(self) -> dict[str, str | int | float | bool]:
207
207
  """Set parameters of the trainer.
208
208
 
209
209
  Returns
210
210
  -------
211
- dict[str, Union[str, int, float, bool]]
211
+ dict[str, str | int | float | bool]
212
212
  Parameters of the trainer.
213
213
  """
214
214
  return {
@@ -221,7 +221,7 @@ class HyperparameterOptimizer:
221
221
  def __init__(
222
222
  self,
223
223
  trials: int = 10,
224
- seed: Optional[int] = None,
224
+ seed: int | None = None,
225
225
  metric: str = "f1",
226
226
  folds: int = 5,
227
227
  spaces: list[SearchSpace] = [
@@ -238,7 +238,7 @@ class HyperparameterOptimizer:
238
238
  ----------
239
239
  trials : int, optional
240
240
  Number of trials for an algorithm, by default 10.
241
- seed : Optional[int], optional
241
+ seed : int | None, optional
242
242
  Random seed, by default None.
243
243
  metric : str, optional
244
244
  Metric to sort the results by, by default "f1"..
@@ -261,7 +261,7 @@ class HyperparameterOptimizer:
261
261
  self,
262
262
  dataset: Iterable[Sequence],
263
263
  labels: Iterable[Labels],
264
- sample_size: Optional[int] = None,
264
+ sample_size: int | None = None,
265
265
  ) -> list[dict[str, dict]]:
266
266
  """Optimize hyperparameters on the given data set.
267
267
 
@@ -271,7 +271,7 @@ class HyperparameterOptimizer:
271
271
  Data set to train models on.
272
272
  labels : Iterable[Labels]
273
273
  Labels to train models on.
274
- sample_size : Optional[int]
274
+ sample_size : int | None
275
275
  Number of instances to sample from the data set.
276
276
 
277
277
  Returns
@@ -319,12 +319,12 @@ class HyperparameterOptimizer:
319
319
  return sorted(self.results, key=self._metric, reverse=True)
320
320
 
321
321
  @property
322
- def _best_baseline_score(self) -> Union[str, float]:
322
+ def _best_baseline_score(self) -> str | float:
323
323
  """Best evaluation score with default hyperparameters.
324
324
 
325
325
  Returns
326
326
  -------
327
- Union[str, float]
327
+ str | float
328
328
  Score (or 'n/a' of no results available).
329
329
  """
330
330
  if self.baselines:
@@ -334,12 +334,12 @@ class HyperparameterOptimizer:
334
334
  return "n/a"
335
335
 
336
336
  @property
337
- def _best_optimized_score(self) -> Union[str, float]:
337
+ def _best_optimized_score(self) -> str | float:
338
338
  """Best evaluation score with optimized hyperparameters.
339
339
 
340
340
  Returns
341
341
  -------
342
- Union[str, float]
342
+ str | float
343
343
  Score (or 'n/a' of no results available).
344
344
  """
345
345
  if self.results:
chaine/logging.py CHANGED
@@ -9,8 +9,6 @@ import logging
9
9
  import sys
10
10
  from logging import Formatter, StreamHandler
11
11
 
12
- from chaine.typing import Union
13
-
14
12
  DEBUG = 10
15
13
  INFO = 20
16
14
  WARNING = 30
@@ -42,7 +40,7 @@ class Logger:
42
40
  # set level of both the logger and the handler to INFO by default
43
41
  self.set_level("INFO")
44
42
 
45
- def set_level(self, level: Union[str, int]):
43
+ def set_level(self, level: str | int):
46
44
  # translate string to integer
47
45
  if isinstance(level, str):
48
46
  level = LEVELS[level.upper()]
@@ -93,7 +91,7 @@ class Logger:
93
91
  if self._logger.isEnabledFor(WARNING):
94
92
  self._logger._log(WARNING, message, ())
95
93
 
96
- def error(self, message: Union[str, Exception]):
94
+ def error(self, message: str | Exception):
97
95
  """Error log message
98
96
 
99
97
  Parameters
@@ -167,14 +165,14 @@ def logger_exists(name: str) -> bool:
167
165
  ndlers()
168
166
 
169
167
 
170
- def set_level(name: str, level: Union[int, str]):
168
+ def set_level(name: str, level: int | str):
171
169
  """Sets log level for the specified logger
172
170
 
173
171
  Parameters
174
172
  ----------
175
173
  name : str
176
174
  Name of the module
177
- level : Union[int, str]
175
+ level : int | str
178
176
  Level to set
179
177
  """
180
178
  logger = logging.getLogger(name)
@@ -9,7 +9,6 @@ import random
9
9
  from abc import ABC, abstractmethod
10
10
 
11
11
  from chaine.optimization.utils import NumberSeries
12
- from chaine.typing import Union
13
12
 
14
13
 
15
14
  class SearchSpace(ABC):
@@ -19,7 +18,7 @@ class SearchSpace(ABC):
19
18
  ...
20
19
 
21
20
  @abstractmethod
22
- def random_hyperparameters(self) -> dict[str, Union[int, float, bool, str]]:
21
+ def random_hyperparameters(self) -> dict[str, int | float | bool | str]:
23
22
  ...
24
23
 
25
24
 
@@ -92,12 +91,12 @@ class LBFGSSearchSpace(SearchSpace):
92
91
  def algorithm(self) -> str:
93
92
  return "lbfgs"
94
93
 
95
- def random_hyperparameters(self) -> dict[str, Union[int, float, bool, str]]:
94
+ def random_hyperparameters(self) -> dict[str, int | float | bool | str]:
96
95
  """Select random hyperparameters from the search space.
97
96
 
98
97
  Returns
99
98
  -------
100
- dict[str, Union[int, float, bool, str]]
99
+ dict[str, int | float | bool | str]
101
100
  Randomly selected hyperparameters.
102
101
  """
103
102
  return {
@@ -185,12 +184,12 @@ class L2SGDSearchSpace(SearchSpace):
185
184
  def algorithm(self) -> str:
186
185
  return "l2sgd"
187
186
 
188
- def random_hyperparameters(self) -> dict[str, Union[int, float, bool, str]]:
187
+ def random_hyperparameters(self) -> dict[str, int | float | bool | str]:
189
188
  """Select random hyperparameters from the search space.
190
189
 
191
190
  Returns
192
191
  -------
193
- dict[str, Union[int, float, bool, str]]
192
+ dict[str, int | float | bool | str]
194
193
  Randomly selected hyperparameters.
195
194
  """
196
195
  return {
@@ -243,12 +242,12 @@ class APSearchSpace(SearchSpace):
243
242
  def algorithm(self) -> str:
244
243
  return "ap"
245
244
 
246
- def random_hyperparameters(self) -> dict[str, Union[int, float, bool, str]]:
245
+ def random_hyperparameters(self) -> dict[str, int | float | bool | str]:
247
246
  """Select random hyperparameters from the search space.
248
247
 
249
248
  Returns
250
249
  -------
251
- dict[str, Union[int, float, bool, str]]
250
+ dict[str, int | float | bool | str]
252
251
  Randomly selected hyperparameters.
253
252
  """
254
253
  return {
@@ -311,12 +310,12 @@ class PASearchSpace(SearchSpace):
311
310
  def algorithm(self) -> str:
312
311
  return "pa"
313
312
 
314
- def random_hyperparameters(self) -> dict[str, Union[int, float, bool, str]]:
313
+ def random_hyperparameters(self) -> dict[str, int | float | bool | str]:
315
314
  """Select random hyperparameters from the search space.
316
315
 
317
316
  Returns
318
317
  -------
319
- dict[str, Union[int, float, bool, str]]
318
+ dict[str, int | float | bool | str]
320
319
  Randomly selected hyperparameters.
321
320
  """
322
321
  return {
@@ -376,12 +375,12 @@ class AROWSearchSpace(SearchSpace):
376
375
  def algorithm(self) -> str:
377
376
  return "arow"
378
377
 
379
- def random_hyperparameters(self) -> dict[str, Union[int, float, bool, str]]:
378
+ def random_hyperparameters(self) -> dict[str, int | float | bool | str]:
380
379
  """Select random hyperparameters from the search space.
381
380
 
382
381
  Returns
383
382
  -------
384
- dict[str, Union[int, float, bool, str]]
383
+ dict[str, int | float | bool | str]
385
384
  Randomly selected hyperparameters.
386
385
  """
387
386
  return {
@@ -9,19 +9,19 @@ import random
9
9
  from collections.abc import Iterable, Iterator
10
10
  from dataclasses import dataclass
11
11
 
12
- from chaine.typing import Labels, Optional, Sequence, Union
12
+ from chaine.typing import Labels, Sequence
13
13
 
14
14
 
15
15
  @dataclass
16
16
  class NumberSeries(Iterable):
17
17
  start: int
18
18
  stop: int
19
- step: Union[int, float]
19
+ step: int | float
20
20
 
21
21
  def __repr__(self) -> str:
22
22
  return f"<NumberSeries (start={self.start}, stop={self.stop}, step={self.step})>"
23
23
 
24
- def __iter__(self) -> Iterator[Union[int, float]]:
24
+ def __iter__(self) -> Iterator[int | float]:
25
25
  n = int(round((self.stop - self.start) / float(self.step)))
26
26
  if n > 1:
27
27
  yield from [self.start + self.step * i for i in range(n + 1)]
@@ -30,7 +30,7 @@ class NumberSeries(Iterable):
30
30
 
31
31
 
32
32
  def cross_validation(
33
- dataset: Iterable[Sequence], labels: Iterable[Labels], k: int, seed: Optional[int] = None
33
+ dataset: Iterable[Sequence], labels: Iterable[Labels], k: int, seed: int | None = None
34
34
  ) -> Iterator[tuple[tuple[Iterable[Sequence], Iterable[Labels]]]]:
35
35
  """K-fold cross validation.
36
36
 
@@ -77,7 +77,7 @@ def cross_validation(
77
77
 
78
78
 
79
79
  def downsample(
80
- dataset: Iterable[Sequence], labels: Iterable[Labels], n: int, seed: Optional[int] = None
80
+ dataset: Iterable[Sequence], labels: Iterable[Labels], n: int, seed: int | None = None
81
81
  ) -> tuple[Iterable[Sequence], Iterable[Labels]]:
82
82
  """Downsample the given data set to the specified size.
83
83
 
@@ -89,7 +89,7 @@ def downsample(
89
89
  Labels for the data set.
90
90
  n : int
91
91
  Number of samples to keep.
92
- seed : Optional[int], optional
92
+ seed : int | None, optional
93
93
  Random seed, by default None.
94
94
 
95
95
  Returns
chaine/training.py CHANGED
@@ -8,7 +8,7 @@ This module implements the high-level API to train a conditional random field.
8
8
 
9
9
  from chaine.crf import HyperparameterOptimizer, Model, Trainer
10
10
  from chaine.logging import Logger, set_verbosity
11
- from chaine.typing import Filepath, Iterable, Labels, Optional, Sequence
11
+ from chaine.typing import Filepath, Iterable, Labels, Sequence
12
12
 
13
13
  LOGGER = Logger(__name__)
14
14
 
@@ -19,7 +19,7 @@ def train(
19
19
  *,
20
20
  model_filepath: Filepath = "model.chaine",
21
21
  optimize_hyperparameters: bool = False,
22
- optimization_sample_size: Optional[int] = None,
22
+ optimization_sample_size: int | None = None,
23
23
  verbose: int = 1,
24
24
  **hyperparameters,
25
25
  ) -> Model:
@@ -35,7 +35,7 @@ def train(
35
35
  Path to model location.
36
36
  optimize_hyperparameters : bool
37
37
  If True, optimize hyperparameters first.
38
- optimization_sample_size : Optional[int]
38
+ optimization_sample_size : int | None
39
39
  Number of instances to sample from the data set for hyperparameter optimization.
40
40
  verbose : int
41
41
  Controls the verbosity: the higher, the more messages.
chaine/typing.py CHANGED
@@ -7,12 +7,12 @@ A collection of type hints.
7
7
 
8
8
  from os import PathLike
9
9
  from pathlib import Path
10
- from typing import Any, Iterable, Iterator, Optional, Union
10
+ from typing import Any, Iterable, Iterator
11
11
 
12
- Sequence = Iterable[dict[str, Union[str, int, float, bool]]]
12
+ Sequence = Iterable[dict[str, str | int | float | bool]]
13
13
  Labels = Iterable[str]
14
- Filepath = Union[Path, PathLike, str]
14
+ Filepath = Path | PathLike | str
15
15
  Sentence = list[str]
16
16
  Tags = list[str]
17
- Features = dict[str, Union[float, int, str, bool]]
17
+ Features = dict[str, float | int | str | bool]
18
18
  Dataset = dict[str, dict[str, Any]]
@@ -1,12 +1,15 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: chaine
3
- Version: 2.0.1
3
+ Version: 3.13.1
4
4
  Summary: Linear-chain conditional random fields for natural language processing
5
5
  Author: Severin Simmler
6
6
  Author-email: s.simmler@snapaddy.com
7
7
  Requires-Python: >=3.10,<4.0
8
8
  Classifier: Programming Language :: Python :: 3
9
9
  Classifier: Programming Language :: Python :: 3.10
10
+ Classifier: Programming Language :: Python :: 3.11
11
+ Classifier: Programming Language :: Python :: 3.12
12
+ Classifier: Programming Language :: Python :: 3.13
10
13
  Description-Content-Type: text/markdown
11
14
 
12
15
  # Chaine
@@ -15,7 +18,7 @@ Description-Content-Type: text/markdown
15
18
  [![downloads/month](https://static.pepy.tech/personalized-badge/chaine?period=month&units=abbreviation&left_color=black&right_color=black&left_text=downloads/month)](https://pepy.tech/project/chaine)
16
19
  [![downloads/week](https://static.pepy.tech/personalized-badge/chaine?period=week&units=abbreviation&left_color=black&right_color=black&left_text=downloads/week)](https://pepy.tech/project/chaine)
17
20
 
18
- Chaine is a modern, fast and lightweight Python library implementing **linear-chain conditional random fields (CRF)**. Use it for sequence labeling tasks like [named entity recognition](https://en.wikipedia.org/wiki/Named-entity_recognition) or [part-of-speech tagging](https://en.wikipedia.org/wiki/Part-of-speech_tagging).
21
+ Chaine is a modern, fast and lightweight Python library implementing **linear-chain conditional random fields**. Use it for sequence labeling tasks like [named entity recognition](https://en.wikipedia.org/wiki/Named-entity_recognition) or [part-of-speech tagging](https://en.wikipedia.org/wiki/Part-of-speech_tagging).
19
22
 
20
23
  The main goals of this project are:
21
24
 
@@ -53,7 +56,7 @@ You can train models using the following methods:
53
56
  - Passive Aggressive ([Crammer et al. 2006](https://jmlr.csail.mit.edu/papers/v7/crammer06a.html))
54
57
  - Adaptive Regularization of Weight Vectors ([Mejer et al. 2010](https://aclanthology.org/D10-1095.pdf))
55
58
 
56
- Please refer to the paper by [Lafferty et al.](https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers) for a general introduction to **conditional random fields**. Other helpful sources are [Chapter 8.5 of Jurafsky's and Martin's book "Speech and Language Processing"](https://web.stanford.edu/~jurafsky/slp3/8.pdf), this [blog post](https://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/) or this [video by ritvikmath](https://www.youtube.com/watch?v=rI3DQS0P2fk)
59
+ Please refer to the paper by [Lafferty et al.](https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers) for a general introduction to **conditional random fields** or the respective chapter in [Speech and Language Processing](https://web.stanford.edu/~jurafsky/slp3/8.pdf).
57
60
 
58
61
  ## Usage
59
62
 
@@ -0,0 +1,68 @@
1
+ chaine/__init__.py,sha256=praojWUCZA6AymuA7NP2ANXewNPGn-93MGg8ijpUtBA,99
2
+ chaine/_core/crf.cpp,sha256=RVQa67CyT5GIbFb0eT-da6ZJONHLolDMxifNHwoSrig,817473
3
+ chaine/_core/crf.pyx,sha256=LGk43UIZNMZPlaYPbYRmPNksBpToy_A83QnVmfJ-JFU,9364
4
+ chaine/_core/crfsuite/COPYING,sha256=xOzN3-NL9YsNIK2I7iz_1SUuFoPlmJjCs1OFg3jKM9o,1562
5
+ chaine/_core/crfsuite/include/crfsuite.h,sha256=digqo1geQE2NOl__ytJQ1UJIqUux4votDpUvNeYGx9M,39708
6
+ chaine/_core/crfsuite/include/crfsuite.hpp,sha256=n7QdCPf9DEf31Yk1AxSomUwqSKhxeDKgL2mMw8b7au8,19242
7
+ chaine/_core/crfsuite/include/crfsuite_api.hpp,sha256=Sd8ecEiPmTpEDraSPuY1_t8qiSEXnXjIS5iYarKKrls,14504
8
+ chaine/_core/crfsuite/include/os.h,sha256=Tcd_vFbusGHL6mhu4wubWl4dETmDFZQqTuWFI_x7YIQ,2303
9
+ chaine/_core/crfsuite/lib/cqdb/COPYING,sha256=KPnkAQj39st4tTJHIAxW2k3oGPHGc1j5Lctt3CKPe0I,1601
10
+ chaine/_core/crfsuite/lib/cqdb/include/cqdb.h,sha256=_kp0GV8loCTlYq10V_VF4yk_SiRXm3Yaiqa1egumRdo,19246
11
+ chaine/_core/crfsuite/lib/cqdb/src/cqdb.c,sha256=75tCcqlIFYYwE9IWIjuwBuKGWrHXB4hE2ZuWSGpoCkY,17907
12
+ chaine/_core/crfsuite/lib/cqdb/src/lookup3.c,sha256=hBcXrp2o84i6LadZcfYeiYQT7n5Wx73sGK6HJBCP-kQ,37835
13
+ chaine/_core/crfsuite/lib/cqdb/src/main.c,sha256=UF0DvwHmHY3vdV5lfuV9E_0dBfDbsrIVoGXkr3-xmQM,5166
14
+ chaine/_core/crfsuite/lib/crf/src/crf1d.h,sha256=4wbzD2aIBsPH49RewntxWn4lSKE9tDl_v1oQEV_Ktqw,11066
15
+ chaine/_core/crfsuite/lib/crf/src/crf1d_context.c,sha256=iveSxfvyurRcQzGsbnD1Nflx8dPs-UdJE0Bmc8kldZs,23406
16
+ chaine/_core/crfsuite/lib/crf/src/crf1d_encode.c,sha256=vNoISXXTRdG-D3NE2Gae0OruJV1eNSD9t51B0qCfgx4,30244
17
+ chaine/_core/crfsuite/lib/crf/src/crf1d_feature.c,sha256=1slcMRA-ea6_xJ0oyGVsD2k4omrAl4dZcRIfL27sk0Y,10971
18
+ chaine/_core/crfsuite/lib/crf/src/crf1d_model.c,sha256=OwmGcIciNZViA-obC-nnCEVGaMCSmlxMWQK0PkxWF1g,27779
19
+ chaine/_core/crfsuite/lib/crf/src/crf1d_tag.c,sha256=qFjiOxU528xxR160NUoTVtUjDiFjmGBau5-oKXH7bDM,17330
20
+ chaine/_core/crfsuite/lib/crf/src/crfsuite.c,sha256=LHAKm8mvwT6TkSIF1hPZPEEBLhk-ax2zjAG_sm-FSKk,14580
21
+ chaine/_core/crfsuite/lib/crf/src/crfsuite_internal.h,sha256=FqYsUh8wTtGKN8De77u9Oob2DexXe2oUCJ4tmlhG3rc,7780
22
+ chaine/_core/crfsuite/lib/crf/src/crfsuite_train.c,sha256=ep9MB7pQ6ZexZYC2dPq3J8WieTxtnXLavTEu69CLNrM,8851
23
+ chaine/_core/crfsuite/lib/crf/src/dataset.c,sha256=BnRCaz29BoVWQiQQjGaHiEbRNmDfBwjFtj9sfOAILd8,3369
24
+ chaine/_core/crfsuite/lib/crf/src/dictionary.c,sha256=-oULrp0uvm5O6OLsYs1EF3-xz-5DdeeW5JQbblfnP6w,4005
25
+ chaine/_core/crfsuite/lib/crf/src/holdout.c,sha256=hcz95JwgqA2EKk1H-xA9WT4yZtTdSEOtypnS76oMdMA,2948
26
+ chaine/_core/crfsuite/lib/crf/src/json.c,sha256=h9NELZ81362s44QFHm54RF_s6nBbPDPKiqBuynPJgag,30708
27
+ chaine/_core/crfsuite/lib/crf/src/json.h,sha256=A2Lmku3s1JiOmR4tu_tjXDWFwDuj-3jn5V4K0zeQ5Ew,3509
28
+ chaine/_core/crfsuite/lib/crf/src/logging.c,sha256=W7NqaxViJZ6l_wdWC_iK2adicyrpjdamz7SPJfbddzc,2725
29
+ chaine/_core/crfsuite/lib/crf/src/logging.h,sha256=ZDTzx5zyI6lwY4MHatXVpd13_X9vDfv3QtXp6JQcC1I,2112
30
+ chaine/_core/crfsuite/lib/crf/src/params.c,sha256=YLbFTENh9g4HSGqB0MzQAL--gNEKXDEE7WApat2AH9k,10389
31
+ chaine/_core/crfsuite/lib/crf/src/params.h,sha256=gsrdmVASEEUBoM4Q08Svq10GMpA0o2XfemUP_UTzQpU,3838
32
+ chaine/_core/crfsuite/lib/crf/src/quark.c,sha256=7z4TxGB4tAP3GbrdkWdUYOeZR0dhP1icLfCVmBFu7fI,5022
33
+ chaine/_core/crfsuite/lib/crf/src/quark.h,sha256=5ZL9CiG1SxBI3Y5N2QAX8ljZQHhKJF6L1apuPRtoBG4,2029
34
+ chaine/_core/crfsuite/lib/crf/src/rumavl.c,sha256=zZGd7P7N7f9ZRL9rbVUAN3dyZZ9tOnH2DEWeeTd9u4s,35165
35
+ chaine/_core/crfsuite/lib/crf/src/rumavl.h,sha256=0aPHOkVKXWC8XYM4nI7QDZ8Yi-B7-Frxpg4PR2azqcc,5680
36
+ chaine/_core/crfsuite/lib/crf/src/train_arow.c,sha256=MoWOZ3BQYTu5uKGo97bPcXjUplWPlbXKt4AIjV9OVik,11267
37
+ chaine/_core/crfsuite/lib/crf/src/train_averaged_perceptron.c,sha256=Dpto7l_ZX_c8UiqcBTdXCqo-ZXcZkt_dPvh0vMU1bxM,6941
38
+ chaine/_core/crfsuite/lib/crf/src/train_l2sgd.c,sha256=8Alj5pmfi1cOB2vl8mTrPhimztq9nkble32Ee4jcTbg,14438
39
+ chaine/_core/crfsuite/lib/crf/src/train_lbfgs.c,sha256=ulyaoHrqcJSwB0gW3TQ9FpddcQrTK6-XqUV5vg8c3fI,9770
40
+ chaine/_core/crfsuite/lib/crf/src/train_passive_aggressive.c,sha256=He3D2aHwHfq0RU8nYWoK5AG6Qg5dO1Pun6UfSiKmHN8,12007
41
+ chaine/_core/crfsuite/lib/crf/src/vecmath.h,sha256=lCfACC_8o6z6uQAzCrlKr174DsKEjp3ZWB4Myeb21CE,10273
42
+ chaine/_core/crfsuite/README,sha256=CK_5nD0Ft6c7fwUy5gBHhXKUEch5_AQ2TW4qVt2HFwQ,8156
43
+ chaine/_core/crfsuite/swig/crfsuite.cpp,sha256=Vr2lT_9LxZiqxqMIAuK17XRQr_FOCehbjvFvq7aijU4,25
44
+ chaine/_core/crfsuite_api.pxd,sha256=SeMyuNOIutdwHQigwhFwdlEnP1XI3z2MBA_R_Ypii5k,2070
45
+ chaine/_core/liblbfgs/COPYING,sha256=YsjQgGvpZa_aekoPiagchCVC-RFF7XqSVDKhGDUK27Q,1135
46
+ chaine/_core/liblbfgs/include/lbfgs.h,sha256=Z0BXu6_C7MWbQ_quhec1tfH60zxckiUmHg5ZfAARgBE,33591
47
+ chaine/_core/liblbfgs/lib/arithmetic_ansi.h,sha256=kLO2_urPV72Xpy6Np52z-nY3fXiY5h0b-Jds-o0xOzs,3569
48
+ chaine/_core/liblbfgs/lib/arithmetic_sse_double.h,sha256=0dlVh3SCp94jrUEzSb8xK6wSfE-9mGSHJ9URCJX-oog,14108
49
+ chaine/_core/liblbfgs/lib/arithmetic_sse_float.h,sha256=6noD9IB-VoY6WyFBo1-1Xnot0fe4qwESk6ywZK9c2sY,13668
50
+ chaine/_core/liblbfgs/lib/lbfgs.c,sha256=mi_d0-FyscJ-jqI0BeONQy0-4A7ERqo4b2k6lUxenpI,45236
51
+ chaine/_core/liblbfgs/README,sha256=Ky2xZJsHXMfnwqJQVra0Zf9Qjnod22h8qbJf76WGoWc,2716
52
+ chaine/_core/tagger_wrapper.hpp,sha256=uxWQBtRWkpytCEGPGAVwfR1H8DiMMVuHuROuFixaY_M,1370
53
+ chaine/_core/trainer_wrapper.cpp,sha256=3vKu9HR0XxnGfTG2aMqtKHBalW1o1JPuz1mE6LYS6Lg,777
54
+ chaine/_core/trainer_wrapper.hpp,sha256=va2L1yiYcdkoX6wJZb1LCJsKZlhg9yH9_w8JuA7Eeo0,599
55
+ chaine/crf.py,sha256=xHf6TxH7QHVnY9mdKuRVBvnBvtptrChNaUyEbBvHUVE,18508
56
+ chaine/logging.py,sha256=65xG2ct2AyxQn5jAemTOwLNSI3S3Evvg_7g_ZEBdahU,5470
57
+ chaine/optimization/__init__.py,sha256=YZno8Nl--OPm0IOA3EB_kHwCl6eSu-MYWejCpriCLeo,267
58
+ chaine/optimization/metrics.py,sha256=v3KWtlCs-o3LxxwPm1Nq79R6TvMiyprR1LBfVBt_cYs,3845
59
+ chaine/optimization/spaces.py,sha256=9JQFrfiYonxuvj4odb_op3FYBCVvHjJ-s0iJjJvf91M,18191
60
+ chaine/optimization/trial.py,sha256=IIZsGZMWEjl5IpkVh_y6_dd79J-A6Ad3RxPJ4YnxbZ8,3669
61
+ chaine/optimization/utils.py,sha256=BDoNbBvJ4wA5B3ULbGu8NIzeh6mtpxM8q3UVYCJ7tP0,3416
62
+ chaine/training.py,sha256=KJQGR1GUAWwyRGWhKkBD4CnFe3_CVPd0bn04mFL7E0c,8585
63
+ chaine/typing.py,sha256=Ng17IeltbamOf2K-0CMZsrRNRUriCylyDPWy3DUnq_k,411
64
+ chaine/validation.py,sha256=lvcTQauH7laY102PUC2NACJXRA-DdtKeUfrXvor0XcY,1038
65
+ chaine/_core/crf.cp310-win_amd64.pyd,sha256=os2PgZPa4KNwKm1aNS_K_o1lnCHIIwVzB5NXE0E_zHs,277504
66
+ chaine-3.13.1.dist-info/METADATA,sha256=ZJlOLAhb2T6kJLFhOAS1RD1Wizf0NB-249R9BVPyo18,12465
67
+ chaine-3.13.1.dist-info/WHEEL,sha256=m3IvSLcO9dr-GyYVTyaKikpz8RWQ7IicWuXKArHYOZE,98
68
+ chaine-3.13.1.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry 1.0.8
2
+ Generator: poetry-core 1.9.1
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp310-cp310-win_amd64
@@ -1,132 +0,0 @@
1
- chaine/__init__.py,sha256=praojWUCZA6AymuA7NP2ANXewNPGn-93MGg8ijpUtBA,99
2
- chaine/_core/crf.cpp,sha256=HMOSys7FM3irM-znq--J5gPcFHvePCHXJmZbrmve8ts,537386
3
- chaine/_core/crf.pyx,sha256=6k1jvVAZJ7q2yCQ80vTO735HxneAi47HDS9wydpLuM0,9387
4
- chaine/_core/crfsuite/COPYING,sha256=xOzN3-NL9YsNIK2I7iz_1SUuFoPlmJjCs1OFg3jKM9o,1562
5
- chaine/_core/crfsuite/include/crfsuite.h,sha256=digqo1geQE2NOl__ytJQ1UJIqUux4votDpUvNeYGx9M,39708
6
- chaine/_core/crfsuite/include/crfsuite.hpp,sha256=n7QdCPf9DEf31Yk1AxSomUwqSKhxeDKgL2mMw8b7au8,19242
7
- chaine/_core/crfsuite/include/crfsuite_api.hpp,sha256=Sd8ecEiPmTpEDraSPuY1_t8qiSEXnXjIS5iYarKKrls,14504
8
- chaine/_core/crfsuite/include/os.h,sha256=Tcd_vFbusGHL6mhu4wubWl4dETmDFZQqTuWFI_x7YIQ,2303
9
- chaine/_core/crfsuite/lib/cqdb/COPYING,sha256=KPnkAQj39st4tTJHIAxW2k3oGPHGc1j5Lctt3CKPe0I,1601
10
- chaine/_core/crfsuite/lib/cqdb/include/cqdb.h,sha256=_kp0GV8loCTlYq10V_VF4yk_SiRXm3Yaiqa1egumRdo,19246
11
- chaine/_core/crfsuite/lib/cqdb/src/cqdb.c,sha256=75tCcqlIFYYwE9IWIjuwBuKGWrHXB4hE2ZuWSGpoCkY,17907
12
- chaine/_core/crfsuite/lib/cqdb/src/lookup3.c,sha256=hBcXrp2o84i6LadZcfYeiYQT7n5Wx73sGK6HJBCP-kQ,37835
13
- chaine/_core/crfsuite/lib/cqdb/src/main.c,sha256=UF0DvwHmHY3vdV5lfuV9E_0dBfDbsrIVoGXkr3-xmQM,5166
14
- chaine/_core/crfsuite/lib/crf/src/crf1d.h,sha256=4wbzD2aIBsPH49RewntxWn4lSKE9tDl_v1oQEV_Ktqw,11066
15
- chaine/_core/crfsuite/lib/crf/src/crf1d_context.c,sha256=iveSxfvyurRcQzGsbnD1Nflx8dPs-UdJE0Bmc8kldZs,23406
16
- chaine/_core/crfsuite/lib/crf/src/crf1d_encode.c,sha256=vNoISXXTRdG-D3NE2Gae0OruJV1eNSD9t51B0qCfgx4,30244
17
- chaine/_core/crfsuite/lib/crf/src/crf1d_feature.c,sha256=1slcMRA-ea6_xJ0oyGVsD2k4omrAl4dZcRIfL27sk0Y,10971
18
- chaine/_core/crfsuite/lib/crf/src/crf1d_model.c,sha256=OwmGcIciNZViA-obC-nnCEVGaMCSmlxMWQK0PkxWF1g,27779
19
- chaine/_core/crfsuite/lib/crf/src/crf1d_tag.c,sha256=qFjiOxU528xxR160NUoTVtUjDiFjmGBau5-oKXH7bDM,17330
20
- chaine/_core/crfsuite/lib/crf/src/crfsuite.c,sha256=LHAKm8mvwT6TkSIF1hPZPEEBLhk-ax2zjAG_sm-FSKk,14580
21
- chaine/_core/crfsuite/lib/crf/src/crfsuite_internal.h,sha256=FqYsUh8wTtGKN8De77u9Oob2DexXe2oUCJ4tmlhG3rc,7780
22
- chaine/_core/crfsuite/lib/crf/src/crfsuite_train.c,sha256=ep9MB7pQ6ZexZYC2dPq3J8WieTxtnXLavTEu69CLNrM,8851
23
- chaine/_core/crfsuite/lib/crf/src/dataset.c,sha256=BnRCaz29BoVWQiQQjGaHiEbRNmDfBwjFtj9sfOAILd8,3369
24
- chaine/_core/crfsuite/lib/crf/src/dictionary.c,sha256=-oULrp0uvm5O6OLsYs1EF3-xz-5DdeeW5JQbblfnP6w,4005
25
- chaine/_core/crfsuite/lib/crf/src/holdout.c,sha256=hcz95JwgqA2EKk1H-xA9WT4yZtTdSEOtypnS76oMdMA,2948
26
- chaine/_core/crfsuite/lib/crf/src/json.c,sha256=h9NELZ81362s44QFHm54RF_s6nBbPDPKiqBuynPJgag,30708
27
- chaine/_core/crfsuite/lib/crf/src/json.h,sha256=A2Lmku3s1JiOmR4tu_tjXDWFwDuj-3jn5V4K0zeQ5Ew,3509
28
- chaine/_core/crfsuite/lib/crf/src/logging.c,sha256=W7NqaxViJZ6l_wdWC_iK2adicyrpjdamz7SPJfbddzc,2725
29
- chaine/_core/crfsuite/lib/crf/src/logging.h,sha256=ZDTzx5zyI6lwY4MHatXVpd13_X9vDfv3QtXp6JQcC1I,2112
30
- chaine/_core/crfsuite/lib/crf/src/params.c,sha256=YLbFTENh9g4HSGqB0MzQAL--gNEKXDEE7WApat2AH9k,10389
31
- chaine/_core/crfsuite/lib/crf/src/params.h,sha256=gsrdmVASEEUBoM4Q08Svq10GMpA0o2XfemUP_UTzQpU,3838
32
- chaine/_core/crfsuite/lib/crf/src/quark.c,sha256=7z4TxGB4tAP3GbrdkWdUYOeZR0dhP1icLfCVmBFu7fI,5022
33
- chaine/_core/crfsuite/lib/crf/src/quark.h,sha256=5ZL9CiG1SxBI3Y5N2QAX8ljZQHhKJF6L1apuPRtoBG4,2029
34
- chaine/_core/crfsuite/lib/crf/src/rumavl.c,sha256=zZGd7P7N7f9ZRL9rbVUAN3dyZZ9tOnH2DEWeeTd9u4s,35165
35
- chaine/_core/crfsuite/lib/crf/src/rumavl.h,sha256=0aPHOkVKXWC8XYM4nI7QDZ8Yi-B7-Frxpg4PR2azqcc,5680
36
- chaine/_core/crfsuite/lib/crf/src/train_arow.c,sha256=MoWOZ3BQYTu5uKGo97bPcXjUplWPlbXKt4AIjV9OVik,11267
37
- chaine/_core/crfsuite/lib/crf/src/train_averaged_perceptron.c,sha256=Dpto7l_ZX_c8UiqcBTdXCqo-ZXcZkt_dPvh0vMU1bxM,6941
38
- chaine/_core/crfsuite/lib/crf/src/train_l2sgd.c,sha256=8Alj5pmfi1cOB2vl8mTrPhimztq9nkble32Ee4jcTbg,14438
39
- chaine/_core/crfsuite/lib/crf/src/train_lbfgs.c,sha256=ulyaoHrqcJSwB0gW3TQ9FpddcQrTK6-XqUV5vg8c3fI,9770
40
- chaine/_core/crfsuite/lib/crf/src/train_passive_aggressive.c,sha256=He3D2aHwHfq0RU8nYWoK5AG6Qg5dO1Pun6UfSiKmHN8,12007
41
- chaine/_core/crfsuite/lib/crf/src/vecmath.h,sha256=lCfACC_8o6z6uQAzCrlKr174DsKEjp3ZWB4Myeb21CE,10273
42
- chaine/_core/crfsuite/README,sha256=CK_5nD0Ft6c7fwUy5gBHhXKUEch5_AQ2TW4qVt2HFwQ,8156
43
- chaine/_core/crfsuite/swig/crfsuite.cpp,sha256=Vr2lT_9LxZiqxqMIAuK17XRQr_FOCehbjvFvq7aijU4,25
44
- chaine/_core/crfsuite_api.pxd,sha256=SeMyuNOIutdwHQigwhFwdlEnP1XI3z2MBA_R_Ypii5k,2070
45
- chaine/_core/liblbfgs/COPYING,sha256=YsjQgGvpZa_aekoPiagchCVC-RFF7XqSVDKhGDUK27Q,1135
46
- chaine/_core/liblbfgs/include/lbfgs.h,sha256=Z0BXu6_C7MWbQ_quhec1tfH60zxckiUmHg5ZfAARgBE,33591
47
- chaine/_core/liblbfgs/lib/arithmetic_ansi.h,sha256=kLO2_urPV72Xpy6Np52z-nY3fXiY5h0b-Jds-o0xOzs,3569
48
- chaine/_core/liblbfgs/lib/arithmetic_sse_double.h,sha256=0dlVh3SCp94jrUEzSb8xK6wSfE-9mGSHJ9URCJX-oog,14108
49
- chaine/_core/liblbfgs/lib/arithmetic_sse_float.h,sha256=6noD9IB-VoY6WyFBo1-1Xnot0fe4qwESk6ywZK9c2sY,13668
50
- chaine/_core/liblbfgs/lib/lbfgs.c,sha256=mi_d0-FyscJ-jqI0BeONQy0-4A7ERqo4b2k6lUxenpI,45236
51
- chaine/_core/liblbfgs/README,sha256=Ky2xZJsHXMfnwqJQVra0Zf9Qjnod22h8qbJf76WGoWc,2716
52
- chaine/_core/tagger_wrapper.hpp,sha256=uxWQBtRWkpytCEGPGAVwfR1H8DiMMVuHuROuFixaY_M,1370
53
- chaine/_core/trainer_wrapper.cpp,sha256=3vKu9HR0XxnGfTG2aMqtKHBalW1o1JPuz1mE6LYS6Lg,777
54
- chaine/_core/trainer_wrapper.hpp,sha256=va2L1yiYcdkoX6wJZb1LCJsKZlhg9yH9_w8JuA7Eeo0,599
55
- chaine/crf.py,sha256=inqMyvw6-PYpJ3_8_EVFj9fGHkfTgUgtKXvgLDEbRBU,18569
56
- chaine/logging.py,sha256=xAXeGs85vPIfDQgBBcb-LrfLpx7CTKkEFMtaXpUweI0,5529
57
- chaine/optimization/__init__.py,sha256=YZno8Nl--OPm0IOA3EB_kHwCl6eSu-MYWejCpriCLeo,267
58
- chaine/optimization/metrics.py,sha256=v3KWtlCs-o3LxxwPm1Nq79R6TvMiyprR1LBfVBt_cYs,3845
59
- chaine/optimization/spaces.py,sha256=SgaC11O3zq6hlkYKCrxJOZU-nXMRpZvf_13KCpwn1wA,18268
60
- chaine/optimization/trial.py,sha256=IIZsGZMWEjl5IpkVh_y6_dd79J-A6Ad3RxPJ4YnxbZ8,3669
61
- chaine/optimization/utils.py,sha256=pp5lWXSJwYUMUNIJ_rQBKzQY3WYCvIhJokxlz_kGQxU,3454
62
- chaine/training.py,sha256=57pCQo1tid__TYUQUN56Y6_VGbcnBQFUW42Rc5_Vpeo,8601
63
- chaine/typing.py,sha256=gnr8xA4C86W9me7lopN4AlEIgzfKcALs25TrLOBsYMk,441
64
- chaine/validation.py,sha256=lvcTQauH7laY102PUC2NACJXRA-DdtKeUfrXvor0XcY,1038
65
- chaine/crf.py,sha256=inqMyvw6-PYpJ3_8_EVFj9fGHkfTgUgtKXvgLDEbRBU,18569
66
- chaine/logging.py,sha256=xAXeGs85vPIfDQgBBcb-LrfLpx7CTKkEFMtaXpUweI0,5529
67
- chaine/training.py,sha256=57pCQo1tid__TYUQUN56Y6_VGbcnBQFUW42Rc5_Vpeo,8601
68
- chaine/typing.py,sha256=gnr8xA4C86W9me7lopN4AlEIgzfKcALs25TrLOBsYMk,441
69
- chaine/validation.py,sha256=lvcTQauH7laY102PUC2NACJXRA-DdtKeUfrXvor0XcY,1038
70
- chaine/__init__.py,sha256=praojWUCZA6AymuA7NP2ANXewNPGn-93MGg8ijpUtBA,99
71
- chaine/optimization/metrics.py,sha256=v3KWtlCs-o3LxxwPm1Nq79R6TvMiyprR1LBfVBt_cYs,3845
72
- chaine/optimization/spaces.py,sha256=SgaC11O3zq6hlkYKCrxJOZU-nXMRpZvf_13KCpwn1wA,18268
73
- chaine/optimization/trial.py,sha256=IIZsGZMWEjl5IpkVh_y6_dd79J-A6Ad3RxPJ4YnxbZ8,3669
74
- chaine/optimization/utils.py,sha256=pp5lWXSJwYUMUNIJ_rQBKzQY3WYCvIhJokxlz_kGQxU,3454
75
- chaine/optimization/__init__.py,sha256=YZno8Nl--OPm0IOA3EB_kHwCl6eSu-MYWejCpriCLeo,267
76
- chaine/_core/crf.cp310-win_amd64.pyd,sha256=dfG9rxybUNmmlxEHCfSnQX7QhZK6zyBPazryo9p6-dw,238080
77
- chaine/_core/crf.cpp,sha256=HMOSys7FM3irM-znq--J5gPcFHvePCHXJmZbrmve8ts,537386
78
- chaine/_core/crf.pyx,sha256=6k1jvVAZJ7q2yCQ80vTO735HxneAi47HDS9wydpLuM0,9387
79
- chaine/_core/crfsuite_api.pxd,sha256=SeMyuNOIutdwHQigwhFwdlEnP1XI3z2MBA_R_Ypii5k,2070
80
- chaine/_core/tagger_wrapper.hpp,sha256=uxWQBtRWkpytCEGPGAVwfR1H8DiMMVuHuROuFixaY_M,1370
81
- chaine/_core/trainer_wrapper.cpp,sha256=3vKu9HR0XxnGfTG2aMqtKHBalW1o1JPuz1mE6LYS6Lg,777
82
- chaine/_core/trainer_wrapper.hpp,sha256=va2L1yiYcdkoX6wJZb1LCJsKZlhg9yH9_w8JuA7Eeo0,599
83
- chaine/_core/crfsuite/COPYING,sha256=xOzN3-NL9YsNIK2I7iz_1SUuFoPlmJjCs1OFg3jKM9o,1562
84
- chaine/_core/crfsuite/README,sha256=CK_5nD0Ft6c7fwUy5gBHhXKUEch5_AQ2TW4qVt2HFwQ,8156
85
- chaine/_core/crfsuite/include/crfsuite.h,sha256=digqo1geQE2NOl__ytJQ1UJIqUux4votDpUvNeYGx9M,39708
86
- chaine/_core/crfsuite/include/crfsuite.hpp,sha256=n7QdCPf9DEf31Yk1AxSomUwqSKhxeDKgL2mMw8b7au8,19242
87
- chaine/_core/crfsuite/include/crfsuite_api.hpp,sha256=Sd8ecEiPmTpEDraSPuY1_t8qiSEXnXjIS5iYarKKrls,14504
88
- chaine/_core/crfsuite/include/os.h,sha256=Tcd_vFbusGHL6mhu4wubWl4dETmDFZQqTuWFI_x7YIQ,2303
89
- chaine/_core/crfsuite/lib/cqdb/COPYING,sha256=KPnkAQj39st4tTJHIAxW2k3oGPHGc1j5Lctt3CKPe0I,1601
90
- chaine/_core/crfsuite/lib/cqdb/include/cqdb.h,sha256=_kp0GV8loCTlYq10V_VF4yk_SiRXm3Yaiqa1egumRdo,19246
91
- chaine/_core/crfsuite/lib/cqdb/src/cqdb.c,sha256=75tCcqlIFYYwE9IWIjuwBuKGWrHXB4hE2ZuWSGpoCkY,17907
92
- chaine/_core/crfsuite/lib/cqdb/src/lookup3.c,sha256=hBcXrp2o84i6LadZcfYeiYQT7n5Wx73sGK6HJBCP-kQ,37835
93
- chaine/_core/crfsuite/lib/cqdb/src/main.c,sha256=UF0DvwHmHY3vdV5lfuV9E_0dBfDbsrIVoGXkr3-xmQM,5166
94
- chaine/_core/crfsuite/lib/crf/src/crf1d.h,sha256=4wbzD2aIBsPH49RewntxWn4lSKE9tDl_v1oQEV_Ktqw,11066
95
- chaine/_core/crfsuite/lib/crf/src/crf1d_context.c,sha256=iveSxfvyurRcQzGsbnD1Nflx8dPs-UdJE0Bmc8kldZs,23406
96
- chaine/_core/crfsuite/lib/crf/src/crf1d_encode.c,sha256=vNoISXXTRdG-D3NE2Gae0OruJV1eNSD9t51B0qCfgx4,30244
97
- chaine/_core/crfsuite/lib/crf/src/crf1d_feature.c,sha256=1slcMRA-ea6_xJ0oyGVsD2k4omrAl4dZcRIfL27sk0Y,10971
98
- chaine/_core/crfsuite/lib/crf/src/crf1d_model.c,sha256=OwmGcIciNZViA-obC-nnCEVGaMCSmlxMWQK0PkxWF1g,27779
99
- chaine/_core/crfsuite/lib/crf/src/crf1d_tag.c,sha256=qFjiOxU528xxR160NUoTVtUjDiFjmGBau5-oKXH7bDM,17330
100
- chaine/_core/crfsuite/lib/crf/src/crfsuite.c,sha256=LHAKm8mvwT6TkSIF1hPZPEEBLhk-ax2zjAG_sm-FSKk,14580
101
- chaine/_core/crfsuite/lib/crf/src/crfsuite_internal.h,sha256=FqYsUh8wTtGKN8De77u9Oob2DexXe2oUCJ4tmlhG3rc,7780
102
- chaine/_core/crfsuite/lib/crf/src/crfsuite_train.c,sha256=ep9MB7pQ6ZexZYC2dPq3J8WieTxtnXLavTEu69CLNrM,8851
103
- chaine/_core/crfsuite/lib/crf/src/dataset.c,sha256=BnRCaz29BoVWQiQQjGaHiEbRNmDfBwjFtj9sfOAILd8,3369
104
- chaine/_core/crfsuite/lib/crf/src/dictionary.c,sha256=-oULrp0uvm5O6OLsYs1EF3-xz-5DdeeW5JQbblfnP6w,4005
105
- chaine/_core/crfsuite/lib/crf/src/holdout.c,sha256=hcz95JwgqA2EKk1H-xA9WT4yZtTdSEOtypnS76oMdMA,2948
106
- chaine/_core/crfsuite/lib/crf/src/json.c,sha256=h9NELZ81362s44QFHm54RF_s6nBbPDPKiqBuynPJgag,30708
107
- chaine/_core/crfsuite/lib/crf/src/json.h,sha256=A2Lmku3s1JiOmR4tu_tjXDWFwDuj-3jn5V4K0zeQ5Ew,3509
108
- chaine/_core/crfsuite/lib/crf/src/logging.c,sha256=W7NqaxViJZ6l_wdWC_iK2adicyrpjdamz7SPJfbddzc,2725
109
- chaine/_core/crfsuite/lib/crf/src/logging.h,sha256=ZDTzx5zyI6lwY4MHatXVpd13_X9vDfv3QtXp6JQcC1I,2112
110
- chaine/_core/crfsuite/lib/crf/src/params.c,sha256=YLbFTENh9g4HSGqB0MzQAL--gNEKXDEE7WApat2AH9k,10389
111
- chaine/_core/crfsuite/lib/crf/src/params.h,sha256=gsrdmVASEEUBoM4Q08Svq10GMpA0o2XfemUP_UTzQpU,3838
112
- chaine/_core/crfsuite/lib/crf/src/quark.c,sha256=7z4TxGB4tAP3GbrdkWdUYOeZR0dhP1icLfCVmBFu7fI,5022
113
- chaine/_core/crfsuite/lib/crf/src/quark.h,sha256=5ZL9CiG1SxBI3Y5N2QAX8ljZQHhKJF6L1apuPRtoBG4,2029
114
- chaine/_core/crfsuite/lib/crf/src/rumavl.c,sha256=zZGd7P7N7f9ZRL9rbVUAN3dyZZ9tOnH2DEWeeTd9u4s,35165
115
- chaine/_core/crfsuite/lib/crf/src/rumavl.h,sha256=0aPHOkVKXWC8XYM4nI7QDZ8Yi-B7-Frxpg4PR2azqcc,5680
116
- chaine/_core/crfsuite/lib/crf/src/train_arow.c,sha256=MoWOZ3BQYTu5uKGo97bPcXjUplWPlbXKt4AIjV9OVik,11267
117
- chaine/_core/crfsuite/lib/crf/src/train_averaged_perceptron.c,sha256=Dpto7l_ZX_c8UiqcBTdXCqo-ZXcZkt_dPvh0vMU1bxM,6941
118
- chaine/_core/crfsuite/lib/crf/src/train_l2sgd.c,sha256=8Alj5pmfi1cOB2vl8mTrPhimztq9nkble32Ee4jcTbg,14438
119
- chaine/_core/crfsuite/lib/crf/src/train_lbfgs.c,sha256=ulyaoHrqcJSwB0gW3TQ9FpddcQrTK6-XqUV5vg8c3fI,9770
120
- chaine/_core/crfsuite/lib/crf/src/train_passive_aggressive.c,sha256=He3D2aHwHfq0RU8nYWoK5AG6Qg5dO1Pun6UfSiKmHN8,12007
121
- chaine/_core/crfsuite/lib/crf/src/vecmath.h,sha256=lCfACC_8o6z6uQAzCrlKr174DsKEjp3ZWB4Myeb21CE,10273
122
- chaine/_core/crfsuite/swig/crfsuite.cpp,sha256=Vr2lT_9LxZiqxqMIAuK17XRQr_FOCehbjvFvq7aijU4,25
123
- chaine/_core/liblbfgs/COPYING,sha256=YsjQgGvpZa_aekoPiagchCVC-RFF7XqSVDKhGDUK27Q,1135
124
- chaine/_core/liblbfgs/README,sha256=Ky2xZJsHXMfnwqJQVra0Zf9Qjnod22h8qbJf76WGoWc,2716
125
- chaine/_core/liblbfgs/include/lbfgs.h,sha256=Z0BXu6_C7MWbQ_quhec1tfH60zxckiUmHg5ZfAARgBE,33591
126
- chaine/_core/liblbfgs/lib/arithmetic_ansi.h,sha256=kLO2_urPV72Xpy6Np52z-nY3fXiY5h0b-Jds-o0xOzs,3569
127
- chaine/_core/liblbfgs/lib/arithmetic_sse_double.h,sha256=0dlVh3SCp94jrUEzSb8xK6wSfE-9mGSHJ9URCJX-oog,14108
128
- chaine/_core/liblbfgs/lib/arithmetic_sse_float.h,sha256=6noD9IB-VoY6WyFBo1-1Xnot0fe4qwESk6ywZK9c2sY,13668
129
- chaine/_core/liblbfgs/lib/lbfgs.c,sha256=mi_d0-FyscJ-jqI0BeONQy0-4A7ERqo4b2k6lUxenpI,45236
130
- chaine-2.0.1.dist-info/WHEEL,sha256=SKycNE-2WoAlD0atUo_ISOvRszGFaKYylfZhQH7OOXY,93
131
- chaine-2.0.1.dist-info/METADATA,sha256=P0GUtAEz9NYXpguzJSuENb3IMR-NiEerTfBoFWiYj6g,12530
132
- chaine-2.0.1.dist-info/RECORD,,