cesnet-datazoo 0.1.2__py3-none-any.whl → 0.1.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -8,8 +8,8 @@ from cesnet_datazoo.utils.class_info import ClassInfo
8
8
 
9
9
  def better_classification_report(y_true: np.ndarray, y_pred: np.ndarray, cm: np.ndarray, labels: list[int], class_info: ClassInfo, digits: int = 2, zero_division: int = 0) -> tuple[str, dict[str, float]]:
10
10
  p, r, f1, s = precision_recall_fscore_support(y_true, y_pred,
11
- labels=labels,
12
- zero_division=zero_division)
11
+ labels=labels,
12
+ zero_division=zero_division)
13
13
  sc_p, sc_r, sc_f1 = per_app_provider_metrics(cm, class_info=class_info)
14
14
  predicted_unknown = cm[:, -1]
15
15
  with np.errstate(divide="ignore", invalid="ignore"):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: cesnet-datazoo
3
- Version: 0.1.2
3
+ Version: 0.1.3
4
4
  Summary: A toolkit for large network traffic datasets
5
5
  Author-email: Jan Luxemburk <luxemburk@cesnet.cz>, Karel Hynek <hynekkar@cesnet.cz>
6
6
  Maintainer-email: Jan Luxemburk <luxemburk@cesnet.cz>, Karel Hynek <hynekkar@cesnet.cz>
@@ -43,7 +43,7 @@ Requires-Dist: twine ; extra == 'dev'
43
43
  </p>
44
44
 
45
45
  [![](https://img.shields.io/badge/license-BSD-blue.svg)](https://github.com/CESNET/cesnet-datazoo/blob/main/LICENCE)
46
- [![](https://img.shields.io/badge/docs-mkdocs_material-blue.svg)](https://cesnet.github.io/cesnet-datazoo/)
46
+ [![](https://img.shields.io/badge/docs-cesnet--datazoo-blue.svg)](https://cesnet.github.io/cesnet-datazoo/)
47
47
  [![](https://img.shields.io/badge/python->=3.10-blue.svg)](https://pypi.org/project/cesnet-datazoo/)
48
48
  [![](https://img.shields.io/pypi/v/cesnet-datazoo)](https://pypi.org/project/cesnet-datazoo/)
49
49
 
@@ -58,9 +58,12 @@ The goal of this project is to provide tools for working with large network traf
58
58
  - Built on suitable data structures for experiments with large datasets. There are several caching mechanisms to make repeated runs faster, for example, when searching for the best model configuration.
59
59
  - Datasets are offered in multiple sizes to give users an option to start the experiments at a smaller scale (also faster dataset download, disk space, etc.). The default is the `S` size containing 25 million samples.
60
60
 
61
- ## Datasets
61
+ :brain: :brain: See a related project [CESNET Models](https://github.com/CESNET/cesnet-models) providing pre-trained neural networks for traffic classification. :brain: :brain:
62
+
63
+ :notebook: :notebook: Example Jupyter notebooks are included in a separate [CESNET Traffic Classification Examples](https://github.com/CESNET/cesnet-tcexamples) repo. :notebook: :notebook:
62
64
 
63
- The package is able to handle the following datasets:
65
+ ## Datasets
66
+ The following datasets are available in the `cesnet-datazoo` package:
64
67
 
65
68
  | Name | CESNET-TLS22 | CESNET-QUIC22 | CESNET-TLS-Year22 |
66
69
  | ---------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
@@ -120,6 +123,6 @@ See more examples in the [documentation](https://cesnet.github.io/cesnet-datazoo
120
123
  Jan Luxemburk and Karel Hynek <br>
121
124
  CoNEXT Workshop on Explainable and Safety Bounded, Fidelitous, Machine Learning for Networking (SAFE), 2023
122
125
 
123
- ### Acknowledgements
126
+ ## Acknowledgments
124
127
 
125
- This project was supported by the Ministry of the Interior of the Czech Republic, grant No. VJ02010024: Flow-Based Encrypted Traffic Analysis.
128
+ This project was supported by the Ministry of the Interior of the Czech Republic, grant No. VJ02010024: Flow-Based Encrypted Traffic Analysis.
@@ -11,7 +11,7 @@ cesnet_datazoo/datasets/metadata/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRk
11
11
  cesnet_datazoo/datasets/metadata/dataset_metadata.py,sha256=Ntlp8mHUSr7g-ZTvtBVh238TswZHwGAudMuE52-OA-c,1608
12
12
  cesnet_datazoo/datasets/metadata/metadata.csv,sha256=lG1Wz7Rr66pG2hWnMqoERIN_oX53DpAmlRZLw3T2p34,2175
13
13
  cesnet_datazoo/metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
- cesnet_datazoo/metrics/classification_report.py,sha256=0JgKWyB281m3EHxI8miMKTjKg3mzyV1WTQndXg_B7i0,4040
14
+ cesnet_datazoo/metrics/classification_report.py,sha256=stAWGWXbx24jkmgivXk3LvWycHBBAVo_osPsKUzhhwM,4038
15
15
  cesnet_datazoo/metrics/provider_metrics.py,sha256=sRg2bdRTzLLTmiVjacBtGez4LEIfr35hSvMBwW-W73U,1303
16
16
  cesnet_datazoo/pytables_data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
17
  cesnet_datazoo/pytables_data/apps_split.py,sha256=RjLFomrlBCmnBn08FDw1IzL3PuQf4914yJQzwhiXH_E,1411
@@ -23,8 +23,8 @@ cesnet_datazoo/utils/class_info.py,sha256=H5UgyRqXIepBJmkLQ1gAIXV4owKSoIllguRiqF
23
23
  cesnet_datazoo/utils/download.py,sha256=hG5V1ZYZGtqCzlVV76NMgOZkSKOywdOFiq9Lagkgego,1441
24
24
  cesnet_datazoo/utils/fileutils.py,sha256=XA_VWDuTiCXnoOgHPUzsmbnLFgrlxOo5cvUY_OBJUR8,642
25
25
  cesnet_datazoo/utils/random.py,sha256=Dqgm_T25ljbew-OJozK90PsiXKnd4Kw6lcUexxF6vIc,575
26
- cesnet_datazoo-0.1.2.dist-info/LICENCE,sha256=69Wc69APiM1YKrFOIipG7jjU2lk89WQuO_U0AXKU8KE,1541
27
- cesnet_datazoo-0.1.2.dist-info/METADATA,sha256=cc9Bq7xrG-snrPJtjPr_LSh5-VU218321T_bzK7e5IU,12584
28
- cesnet_datazoo-0.1.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
29
- cesnet_datazoo-0.1.2.dist-info/top_level.txt,sha256=bu1Z8zaI_1Id_ZaYyvJnxIBa87OSrdlZ8J2OBMggK5o,15
30
- cesnet_datazoo-0.1.2.dist-info/RECORD,,
26
+ cesnet_datazoo-0.1.3.dist-info/LICENCE,sha256=69Wc69APiM1YKrFOIipG7jjU2lk89WQuO_U0AXKU8KE,1541
27
+ cesnet_datazoo-0.1.3.dist-info/METADATA,sha256=IFl4-ePbSMAjWXbC05jBbVCruylejK9g8x9rTB6LIGs,12964
28
+ cesnet_datazoo-0.1.3.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
29
+ cesnet_datazoo-0.1.3.dist-info/top_level.txt,sha256=bu1Z8zaI_1Id_ZaYyvJnxIBa87OSrdlZ8J2OBMggK5o,15
30
+ cesnet_datazoo-0.1.3.dist-info/RECORD,,