cellprofiler-library-nightly 5.0.0.dev328__py3-none-any.whl → 5.0.0.dev336__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
28
28
  commit_id: COMMIT_ID
29
29
  __commit_id__: COMMIT_ID
30
30
 
31
- __version__ = version = '5.0.0.dev328'
32
- __version_tuple__ = version_tuple = (5, 0, 0, 'dev328')
31
+ __version__ = version = '5.0.0.dev336'
32
+ __version_tuple__ = version_tuple = (5, 0, 0, 'dev336')
33
33
 
34
34
  __commit_id__ = commit_id = None
@@ -6,12 +6,17 @@ import centrosome.threshold
6
6
  import scipy
7
7
  import matplotlib
8
8
  import math
9
- from typing import Any, Optional, Tuple, Callable, Union, List
10
- from cellprofiler_library.types import ImageGrayscale, ImageGrayscaleMask, Image2DColor, Image2DGrayscale, ImageAny, ObjectSegmentation, Image2D, Image2DMask, StructuringElement
9
+ from numpy.typing import NDArray
10
+ import centrosome.filter
11
+ from typing import Any, Optional, Tuple, Callable, Union, List, TypeVar
12
+ from cellprofiler_library.types import ImageGrayscale, ImageGrayscaleMask, Image2DColor, Image2DGrayscale, ImageAny, ImageAnyMask, ObjectSegmentation, Image2D, Image2DMask, StructuringElement
11
13
  from cellprofiler_library.opts import threshold as Threshold
14
+ from cellprofiler_library.opts.enhanceorsuppressfeatures import SpeckleAccuracy, NeuriteMethod
12
15
  from cellprofiler_library.opts.crop import RemovalMethod
13
16
  from cellprofiler_library.opts.structuring_elements import StructuringElementShape2D, StructuringElementShape3D
14
17
 
18
+ T = TypeVar("T", bound=ImageAny)
19
+
15
20
  def rgb_to_greyscale(image):
16
21
  if image.shape[-1] == 4:
17
22
  output = skimage.color.rgba2rgb(image)
@@ -924,3 +929,202 @@ def erase_pixels(
924
929
  else:
925
930
  cropped_pixel_data[~crop] = 0
926
931
  return cropped_pixel_data
932
+
933
+
934
+ ###############################################################################
935
+ # EnhanceOrSuppressFeatures
936
+ ###############################################################################
937
+
938
+ def __mask(
939
+ pixel_data: T,
940
+ mask: ImageAnyMask,
941
+ ) -> T:
942
+ data = numpy.zeros_like(pixel_data)
943
+ data[mask] = pixel_data[mask]
944
+ return data
945
+
946
+ def __unmask(
947
+ data: T,
948
+ pixel_data: T,
949
+ mask: ImageAnyMask,
950
+ ) -> T:
951
+ data[~mask] = pixel_data[~mask]
952
+ return data
953
+
954
+ def __structuring_element(
955
+ radius,
956
+ volumetric
957
+ ) -> NDArray[numpy.uint8]:
958
+ if volumetric:
959
+ return skimage.morphology.ball(radius)
960
+
961
+ return skimage.morphology.disk(radius)
962
+
963
+
964
+ def enhance_speckles(
965
+ im_pixel_data: ImageGrayscale,
966
+ im_mask: ImageGrayscaleMask,
967
+ im_volumetric: bool,
968
+ radius: float,
969
+ accuracy: SpeckleAccuracy,
970
+ ) -> ImageGrayscale:
971
+ data = __mask(im_pixel_data, im_mask)
972
+ footprint = __structuring_element(radius, im_volumetric)
973
+
974
+ if accuracy == SpeckleAccuracy.SLOW or radius <= 3:
975
+ result = skimage.morphology.white_tophat(data, footprint=footprint)
976
+ else:
977
+ #
978
+ # white_tophat = img - opening
979
+ # = img - dilate(erode)
980
+ # = img - maximum_filter(minimum_filter)
981
+ #
982
+ minimum = scipy.ndimage.filters.minimum_filter(data, footprint=footprint)
983
+ maximum = scipy.ndimage.filters.maximum_filter(minimum, footprint=footprint)
984
+ result = data - maximum
985
+
986
+ return __unmask(result, im_pixel_data, im_mask)
987
+
988
+
989
+ def enhance_neurites(
990
+ im_pixel_data: ImageGrayscale,
991
+ im_mask: ImageGrayscaleMask,
992
+ im_volumetric: bool,
993
+ im_spacing: Tuple[float, ...],
994
+ smoothing_value: float,
995
+ radius: float,
996
+ method: NeuriteMethod,
997
+ neurite_rescale: bool,
998
+ ) -> ImageGrayscale:
999
+ data = __mask(im_pixel_data, im_mask)
1000
+
1001
+ if method == NeuriteMethod.GRADIENT:
1002
+ # desired effect = img + white_tophat - black_tophat
1003
+ footprint = __structuring_element(radius, im_volumetric)
1004
+ white = skimage.morphology.white_tophat(data, footprint=footprint)
1005
+ black = skimage.morphology.black_tophat(data, footprint=footprint)
1006
+ result = data + white - black
1007
+ result[result > 1] = 1
1008
+ result[result < 0] = 0
1009
+ else:
1010
+ sigma = smoothing_value
1011
+ smoothed = scipy.ndimage.gaussian_filter(data, numpy.divide(sigma, im_spacing))
1012
+
1013
+ if im_volumetric:
1014
+ result = numpy.zeros_like(smoothed)
1015
+ for index, plane in enumerate(smoothed):
1016
+ hessian = centrosome.filter.hessian(plane, return_hessian=False, return_eigenvectors=False)
1017
+ result[index] = (-hessian[:, :, 0] * (hessian[:, :, 0] < 0) * (sigma ** 2))
1018
+ else:
1019
+ hessian = centrosome.filter.hessian(smoothed, return_hessian=False, return_eigenvectors=False)
1020
+ #
1021
+ # The positive values are darker pixels with lighter
1022
+ # neighbors. The original ImageJ code scales the result
1023
+ # by sigma squared - I have a feeling this might be
1024
+ # a first-order correction for e**(-2*sigma), possibly
1025
+ # because the hessian is taken from one pixel away
1026
+ # and the gradient is less as sigma gets larger.
1027
+ #
1028
+ result = -hessian[:, :, 0] * (hessian[:, :, 0] < 0) * (sigma ** 2)
1029
+
1030
+ result = __unmask(result, im_pixel_data, im_mask)
1031
+ if neurite_rescale:
1032
+ result = skimage.exposure.rescale_intensity(result)
1033
+ return result
1034
+
1035
+
1036
+ def enhance_circles(
1037
+ im_pixel_data: ImageGrayscale,
1038
+ im_mask: ImageGrayscaleMask,
1039
+ im_volumetric: bool,
1040
+ radius: float,
1041
+ ) -> ImageGrayscale:
1042
+ data = __mask(im_pixel_data, im_mask)
1043
+ if im_volumetric:
1044
+ result = numpy.zeros_like(data)
1045
+ for index, plane in enumerate(data):
1046
+ result[index] = skimage.transform.hough_circle(plane, radius)[0]
1047
+ else:
1048
+ result = skimage.transform.hough_circle(data, radius)[0]
1049
+ return __unmask(result, im_pixel_data, im_mask)
1050
+
1051
+
1052
+ def enhance_texture(
1053
+ im_pixel_data: ImageGrayscale,
1054
+ im_mask: ImageGrayscaleMask,
1055
+ sigma: float,
1056
+ ) -> ImageGrayscale:
1057
+ mask = im_mask
1058
+ data = __mask(im_pixel_data, mask)
1059
+ gmask = skimage.filters.gaussian(mask.astype(float), sigma, mode="constant")
1060
+ img_mean = (skimage.filters.gaussian(data, sigma, mode="constant") / gmask)
1061
+ img_squared = (skimage.filters.gaussian(data ** 2, sigma, mode="constant")/ gmask)
1062
+ result = img_squared - img_mean ** 2
1063
+ return __unmask(result, im_pixel_data, mask)
1064
+
1065
+
1066
+ def enhance_dark_holes(
1067
+ im_pixel_data: ImageGrayscale,
1068
+ im_mask: ImageGrayscaleMask,
1069
+ im_volumetric: bool,
1070
+ dark_hole_radius_min: int,
1071
+ dark_hole_radius_max: int,
1072
+ min_radius: Optional[int] = None,
1073
+ max_radius: Optional[int] = None,
1074
+ ) -> ImageGrayscale:
1075
+ if min_radius is None:
1076
+ min_radius = max(1, int(dark_hole_radius_min / 2))
1077
+ if max_radius is None:
1078
+ max_radius = int((dark_hole_radius_max + 1) / 2)
1079
+
1080
+ pixel_data = im_pixel_data
1081
+ mask = im_mask
1082
+ se = __structuring_element(1, im_volumetric)
1083
+ inverted_image = pixel_data.max() - pixel_data
1084
+ previous_reconstructed_image = inverted_image
1085
+ eroded_image = inverted_image
1086
+ smoothed_image = numpy.zeros(pixel_data.shape)
1087
+
1088
+ for i in range(max_radius + 1):
1089
+ eroded_image = skimage.morphology.erosion(eroded_image, se)
1090
+ if mask is not None:
1091
+ eroded_image *= mask
1092
+ reconstructed_image = skimage.morphology.reconstruction(eroded_image, inverted_image, "dilation", se)
1093
+ output_image = previous_reconstructed_image - reconstructed_image
1094
+ if i >= min_radius:
1095
+ smoothed_image = numpy.maximum(smoothed_image, output_image)
1096
+ previous_reconstructed_image = reconstructed_image
1097
+ return smoothed_image
1098
+
1099
+
1100
+ def enhance_dic(
1101
+ im_pixel_data: ImageGrayscale,
1102
+ im_volumetric: bool,
1103
+ angle: float,
1104
+ decay: float,
1105
+ smoothing: float,
1106
+ ) -> ImageGrayscale:
1107
+ pixel_data = im_pixel_data
1108
+
1109
+ if im_volumetric:
1110
+ result = numpy.zeros_like(pixel_data).astype(numpy.float64)
1111
+ for index, plane in enumerate(pixel_data):
1112
+ result[index] = centrosome.filter.line_integration(plane, angle, decay, smoothing)
1113
+ return result
1114
+
1115
+ if smoothing == 0:
1116
+ smoothing = float(numpy.finfo(float).eps)
1117
+
1118
+ return centrosome.filter.line_integration(pixel_data, angle, decay, smoothing)
1119
+
1120
+
1121
+ def suppress(
1122
+ im_pixel_data: ImageGrayscale,
1123
+ im_mask: ImageGrayscaleMask,
1124
+ im_volumetric: bool,
1125
+ radius: float,
1126
+ ) -> ImageGrayscale:
1127
+ data = __mask(im_pixel_data, im_mask)
1128
+ footprint = __structuring_element(radius, im_volumetric)
1129
+ result = skimage.morphology.opening(data, footprint)
1130
+ return __unmask(result, im_pixel_data, im_mask)
@@ -3,12 +3,12 @@ import centrosome.cpmorphology
3
3
  import numpy
4
4
  import scipy.ndimage
5
5
  import skimage.morphology
6
+ import cellprofiler.utilities.morphology
6
7
  import mahotas
7
8
  import matplotlib.cm
8
9
  from numpy.typing import NDArray
9
10
  from typing import Optional, Literal, Tuple
10
- from cellprofiler_library.types import ObjectSegmentation, ImageAnyMask, ObjectLabel, ImageColor, ImageGrayscale, ImageBinary
11
-
11
+ from cellprofiler_library.types import ImageAnyMask, ObjectLabel, ImageColor, ImageGrayscale, ImageBinary, ObjectSegmentation, StructuringElement
12
12
 
13
13
  def shrink_to_point(labels, fill):
14
14
  """
@@ -532,3 +532,100 @@ def image_mode_uint16(
532
532
  alpha[mask] = 1
533
533
  return pixel_data, alpha
534
534
 
535
+
536
+ ################################################################################
537
+ # Morphological Operations Helpers
538
+ ################################################################################
539
+
540
+ def morphological_gradient(x_data: ObjectSegmentation, structuring_element: StructuringElement) -> ObjectSegmentation:
541
+ is_strel_2d = structuring_element.ndim == 2
542
+
543
+ is_img_2d = x_data.ndim == 2
544
+
545
+ if is_strel_2d and not is_img_2d:
546
+ y_data = numpy.zeros_like(x_data)
547
+
548
+ for index, plane in enumerate(x_data):
549
+ y_data[index] = scipy.ndimage.morphological_gradient(
550
+ plane, footprint=structuring_element
551
+ )
552
+
553
+ return y_data
554
+
555
+ if not is_strel_2d and is_img_2d:
556
+ raise NotImplementedError(
557
+ "A 3D structuring element cannot be applied to a 2D image."
558
+ )
559
+
560
+ y_data = scipy.ndimage.morphological_gradient(x_data, footprint=structuring_element)
561
+
562
+ return y_data
563
+
564
+
565
+ ################################################################################
566
+ # ErodeObjects
567
+ ################################################################################
568
+
569
+ def erode_objects_with_structuring_element(
570
+ labels: ObjectSegmentation,
571
+ structuring_element: StructuringElement,
572
+ preserve_midpoints: bool = True,
573
+ relabel_objects: bool = False
574
+ ) -> ObjectSegmentation:
575
+ """Erode objects based on the structuring element provided.
576
+
577
+ This function is similar to the "Shrink" function of ExpandOrShrinkObjects,
578
+ with two major distinctions:
579
+ 1. ErodeObjects supports 3D objects
580
+ 2. An object smaller than the structuring element will be removed entirely
581
+ unless preserve_midpoints is enabled.
582
+
583
+ Args:
584
+ labels: Input labeled objects array
585
+ structuring_element: Structuring element for erosion operation
586
+ preserve_midpoints: If True, preserve central pixels to prevent object removal
587
+ relabel_objects: If True, assign new label numbers to resulting objects
588
+
589
+ Returns:
590
+ Eroded objects array with same dimensions as input
591
+ """
592
+
593
+
594
+ # Calculate morphological gradient to identify object boundaries
595
+ contours = morphological_gradient(
596
+ labels, structuring_element
597
+ )
598
+
599
+ # Erode by removing pixels at object boundaries (where contours != 0)
600
+ y_data = labels * (contours == 0)
601
+
602
+ # Preserve midpoints if requested to prevent object removal
603
+ if preserve_midpoints:
604
+ missing_labels = numpy.setxor1d(labels, y_data)
605
+
606
+ # Check if structuring element is disk with size 1 (special case optimization)
607
+ # Check based on the actual array properties since we're dealing with numpy array
608
+ is_simple_disk = (
609
+ structuring_element.ndim == 2 and
610
+ structuring_element.shape == (3, 3) and
611
+ numpy.array_equal(structuring_element, skimage.morphology.disk(1))
612
+ )
613
+
614
+ if is_simple_disk:
615
+ # For simple disk,1 case, restore missing pixels directly
616
+ y_data += labels * numpy.isin(labels, missing_labels)
617
+ else:
618
+ # For other structuring elements, find and preserve the most central pixels
619
+ for label in missing_labels:
620
+ binary = labels == label
621
+ # Find pixels furthest from the object's edge using distance transform
622
+ midpoint = scipy.ndimage.morphology.distance_transform_edt(binary)
623
+ # Preserve pixels at maximum distance (most central)
624
+ y_data[midpoint == numpy.max(midpoint)] = label
625
+
626
+ # Relabel objects if requested
627
+ if relabel_objects:
628
+ y_data = skimage.morphology.label(y_data)
629
+
630
+ return y_data
631
+
@@ -0,0 +1,55 @@
1
+ from cellprofiler_library.functions.image_processing import enhance_speckles, enhance_neurites, enhance_circles, enhance_texture, enhance_dark_holes, enhance_dic, suppress
2
+ from pydantic import Field, ConfigDict, validate_call
3
+ from typing import Annotated
4
+ from cellprofiler_library.types import ImageGrayscale, ImageGrayscaleMask
5
+ from ..opts.enhanceorsuppressfeatures import OperationMethod, EnhanceMethod, SpeckleAccuracy, NeuriteMethod
6
+
7
+ @validate_call(config=ConfigDict(arbitrary_types_allowed=True))
8
+ def enhance_or_suppress_features(
9
+ im_pixel_data: Annotated[ImageGrayscale, Field(description="Image pixel data")],
10
+ im_mask: Annotated[ImageGrayscaleMask, Field(description="Image mask")],
11
+ im_volumetric: Annotated[bool, Field(description="Image is volumetric")] = False,
12
+ im_spacing: Annotated[tuple[float, ...], Field(description="Image spacing")] = (1.0, 1.0, 1.0),
13
+ radius: Annotated[float, Field(description="Feature size")] = 10,
14
+ method: Annotated[OperationMethod, Field(description="Operation method")] = OperationMethod.ENHANCE,
15
+ enhance_method: Annotated[EnhanceMethod, Field(description="Feature type")] = EnhanceMethod.SPECKLES,
16
+ speckle_accuracy: Annotated[SpeckleAccuracy, Field(description="Speed and accuracy")] = SpeckleAccuracy.FAST,
17
+ neurite_choice: Annotated[NeuriteMethod, Field(description="Neurite choice")] = NeuriteMethod.GRADIENT,
18
+ neurite_rescale: Annotated[bool, Field(description="Rescale result image")] = False,
19
+ dark_hole_radius_min: Annotated[int, Field(description="Dark hole radius min")] = 1,
20
+ dark_hole_radius_max: Annotated[int, Field(description="Dark hole radius max")] = 10,
21
+ smoothing_value: Annotated[float, Field(description="Smoothing value")] = 2.0,
22
+ dic_angle: Annotated[float, Field(description="Angle")] = 0.0,
23
+ dic_decay: Annotated[float, Field(description="Decay")] = 0.95,
24
+ ) -> ImageGrayscale:
25
+ if method == OperationMethod.ENHANCE:
26
+ if enhance_method == EnhanceMethod.SPECKLES:
27
+ result = enhance_speckles(im_pixel_data, im_mask, im_volumetric, radius, speckle_accuracy)
28
+
29
+ elif enhance_method == EnhanceMethod.NEURITES:
30
+ result = enhance_neurites(im_pixel_data, im_mask, im_volumetric, im_spacing, smoothing_value, radius, neurite_choice, neurite_rescale)
31
+
32
+ elif enhance_method == EnhanceMethod.DARK_HOLES:
33
+ result = enhance_dark_holes(im_pixel_data, im_mask, im_volumetric, dark_hole_radius_min, dark_hole_radius_max)
34
+
35
+ elif enhance_method == EnhanceMethod.CIRCLES:
36
+ result = enhance_circles(im_pixel_data, im_mask, im_volumetric, radius)
37
+
38
+ elif enhance_method == EnhanceMethod.TEXTURE:
39
+ result = enhance_texture(im_pixel_data, im_mask, smoothing_value)
40
+
41
+ elif enhance_method == EnhanceMethod.DIC:
42
+ result = enhance_dic(im_pixel_data, im_volumetric, dic_angle, dic_decay, smoothing_value)
43
+
44
+ else:
45
+ raise NotImplementedError("Unimplemented enhance method: %s" % enhance_method)
46
+
47
+ elif method == OperationMethod.SUPPRESS:
48
+ result = suppress(im_pixel_data, im_mask, im_volumetric, radius)
49
+
50
+ else:
51
+ raise ValueError("Unknown filtering method: %s" % method)
52
+
53
+ return result
54
+
55
+
@@ -0,0 +1,50 @@
1
+ # coding=utf-8
2
+
3
+ """
4
+ ErodeObjects module for the CellProfiler library.
5
+
6
+ This module contains the core algorithms for object erosion operations.
7
+ """
8
+
9
+ from pydantic import validate_call, ConfigDict, Field
10
+ from typing import Union, Tuple, Annotated
11
+ from cellprofiler_library.types import StructuringElement, ObjectSegmentation
12
+ from cellprofiler_library.functions.object_processing import erode_objects_with_structuring_element
13
+ from cellprofiler_library.functions.image_processing import get_structuring_element
14
+ from cellprofiler_library.opts.structuring_elements import StructuringElementShape2D, StructuringElementShape3D
15
+
16
+ StructuringElementSize = Annotated[int, Field(description="Size of structuring element", gt=0)]
17
+ StructuringElementParameters = Tuple[Union[StructuringElementShape2D, StructuringElementShape3D], StructuringElementSize]
18
+
19
+ @validate_call(config=ConfigDict(arbitrary_types_allowed=True))
20
+ def erode_objects(
21
+ labels: Annotated[ObjectSegmentation, Field(description="Input object segmentations")],
22
+ structuring_element: Annotated[Union[StructuringElement, StructuringElementParameters], Field(description="Structuring element for erosion operation as either an NDArray or a tuple of (StructuringElement[N]D, size)")],
23
+ preserve_midpoints: Annotated[bool, Field(description="If set to True, the central pixels for each object will not be eroded. This ensures that objects are not lost.")] = False,
24
+ relabel_objects: Annotated[bool, Field(description="Selecting True will assign new label numbers to resulting objects")] = False
25
+ ) -> ObjectSegmentation:
26
+ """Erode objects based on the structuring element provided.
27
+
28
+ This function is similar to the "Shrink" function of ExpandOrShrinkObjects,
29
+ with two major distinctions:
30
+ 1. ErodeObjects supports 3D objects, unlike ExpandOrShrinkObjects.
31
+ 2. An object smaller than the structuring element will be removed entirely
32
+ unless preserve_midpoints is enabled.
33
+
34
+ Args:
35
+ labels: Input labeled objects array
36
+ structuring_element: Structuring element for erosion operation
37
+ preserve_midpoints: If set to True, the central pixels for each object will not be eroded. This ensures that objects are not lost.
38
+ relabel_objects: If set to True, the resulting objects will be relabeled with new label numbers
39
+
40
+ Returns:
41
+ Eroded objects array with same dimensions as input
42
+ """
43
+ if isinstance(structuring_element, tuple):
44
+ structuring_element = get_structuring_element(structuring_element[0], structuring_element[1])
45
+ return erode_objects_with_structuring_element(
46
+ labels=labels,
47
+ structuring_element=structuring_element,
48
+ preserve_midpoints=preserve_midpoints,
49
+ relabel_objects=relabel_objects
50
+ )
@@ -0,0 +1,21 @@
1
+ from enum import Enum
2
+
3
+ class OperationMethod(str, Enum):
4
+ ENHANCE = "Enhance"
5
+ SUPPRESS = "Suppress"
6
+
7
+ class EnhanceMethod(str, Enum):
8
+ SPECKLES = "Speckles"
9
+ NEURITES = "Neurites"
10
+ DARK_HOLES = "Dark holes"
11
+ CIRCLES = "Circles"
12
+ TEXTURE = "Texture"
13
+ DIC = "DIC"
14
+
15
+ class SpeckleAccuracy(str, Enum):
16
+ SLOW = "Slow"
17
+ FAST = "Fast"
18
+
19
+ class NeuriteMethod(str, Enum):
20
+ GRADIENT = "Line structures"
21
+ TUBENESS = "Tubeness"
@@ -0,0 +1,15 @@
1
+ # coding=utf-8
2
+
3
+ """
4
+ Options and enums for ErodeObjects module
5
+ """
6
+
7
+ # Note: ErodeObjects is a simple morphological operation module that doesn't require
8
+ # complex enums. The main configuration is handled through the StructuringElement
9
+ # setting which is managed by the core framework. This file is created for
10
+ # consistency with the refactoring pattern but may be minimal.
11
+
12
+ # Currently no custom enums needed for ErodeObjects as it uses standard
13
+ # StructuringElement configuration from cellprofiler_core. For structuring element shapes,
14
+ # see cellprofiler_library.opts.structuring_elements
15
+
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: cellprofiler-library-nightly
3
- Version: 5.0.0.dev328
3
+ Version: 5.0.0.dev336
4
4
  Summary: cellprofiler-library implements CellProfiler's image processing and mathematical code, and is usable as a standalone library
5
5
  Author: Anne Carpenter, Thouis (Ray) Jones, Lee Kamentsky, Vebjorn Ljosa, David Logan, Mark Bray, Madison Swain-Bowden, Allen Goodman, Claire McQuinn, Alice Lucas, Callum Tromans-Coia
6
6
  Author-email: Beth Cimini <bcimini@broadinstitute.org>, David Stirling <dstirling@glencoesoftware.com>, Nodar Gogoberidze <ngogober@broadinstitute.org>
@@ -1,12 +1,12 @@
1
1
  cellprofiler_library/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- cellprofiler_library/_version.py,sha256=PsxcwOzzb9oolouEbYbSgdrb1UXw3VQZXFhGnok7G2U,721
2
+ cellprofiler_library/_version.py,sha256=vnxlYqRhiedLOL6RtUPR0CE0S0pD8ly0U9lQv_qIKec,721
3
3
  cellprofiler_library/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  cellprofiler_library/types.py,sha256=cU38AwLLsMiI3XCwfrmWmDNpGWgLfpCpsuwnijaT8vU,8559
5
5
  cellprofiler_library/functions/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
6
  cellprofiler_library/functions/file_processing.py,sha256=jumpdgxReyV5xzF4YXZWhkei9CQ9GtWD-VUCuFh-FZM,5168
7
- cellprofiler_library/functions/image_processing.py,sha256=AqOq2Sf6YykX7wv2o4i94QehaCkUpamNLigqSMtWJ4g,36077
7
+ cellprofiler_library/functions/image_processing.py,sha256=d9T0Ro2BaOS9Y9CrNgqUlOjUHTJVLnxOG696IWeLQeg,43556
8
8
  cellprofiler_library/functions/measurement.py,sha256=8pXcEb1fLgwOEDiTJho1_O-fFGTtIp-Qn1lStjQBjbo,29221
9
- cellprofiler_library/functions/object_processing.py,sha256=3cKNq5ewBf_HWz6rdX3XR4WUbd6SklbHZ_H40xt9ODM,19443
9
+ cellprofiler_library/functions/object_processing.py,sha256=5yHR_toKMH0KfWPAtEESQfK9JOdaD3L7WZskjGyoZ2o,23209
10
10
  cellprofiler_library/functions/segmentation.py,sha256=LNE22ByY0X7GepQaHqLdxkzlmIXjD3EglAYJjtT2dGo,25257
11
11
  cellprofiler_library/modules/__init__.py,sha256=Z4Wy42OTD9ujAON4g1oyLJ0oA6K7h3XQiV66JzHGkOw,789
12
12
  cellprofiler_library/modules/_closing.py,sha256=aIqIE0IcT2OcrOmTSWjFzu4iIQKk2yDC9qPHARqRIkc,204
@@ -18,7 +18,9 @@ cellprofiler_library/modules/_correctilluminationapply.py,sha256=8bZC3AnQv3vpUrN
18
18
  cellprofiler_library/modules/_crop.py,sha256=0T0sQsK7o5dHVXMZ4OqvAJkskkyez1MXcnPlU5yqsV4,2422
19
19
  cellprofiler_library/modules/_dilateimage.py,sha256=9mdB3Ft7muCkArTcEebs-Dz7_Ptg3YZsdL1qkr9K_0o,1812
20
20
  cellprofiler_library/modules/_enhanceedges.py,sha256=PaXZck8fPcxRf-IXCstu-OWmsvM_rDDPMMQ3cZFfVZc,2951
21
+ cellprofiler_library/modules/_enhanceorsuppressfeatures.py,sha256=UkcJ2qM32hmnB_68yyjKmdaus78OXcpWi7E5OwRz9R8,3469
21
22
  cellprofiler_library/modules/_erodeimage.py,sha256=nFHn4hdpjXJaPvnpSyfPAxWgd7UXi0fUUgPqEl26CCY,1802
23
+ cellprofiler_library/modules/_erodeobjects.py,sha256=ru0n0wdLeBevN4Y1LwO98KltPQO1X6kpfu0LMRUzxGE,2781
22
24
  cellprofiler_library/modules/_expandorshrinkobjects.py,sha256=A1oeW_O8C5NLJr-xU1R9pSulDau8XUeWaKiilpr-85g,856
23
25
  cellprofiler_library/modules/_fillobjects.py,sha256=1zvlZNJhG8kEzAnVyiSLGPNE338EB5wopD2eK0BVWrc,469
24
26
  cellprofiler_library/modules/_gaussianfilter.py,sha256=zVt562oviuoyy6l85Tgg_rjyQdOFCEnYLuykHYnYni8,174
@@ -40,13 +42,15 @@ cellprofiler_library/opts/convertobjectstoimage.py,sha256=U3jeVtKYFgfxbO7NYndanA
40
42
  cellprofiler_library/opts/correctilluminationapply.py,sha256=IkAqjMjaRdsoY2aXw5_dLI1iRYqCwvcNwCWEpWNZrN4,96
41
43
  cellprofiler_library/opts/crop.py,sha256=GaArWq3WZd_Ykunj1SSbFOYkqDQ6TXy2MDKxG4fA6ZE,879
42
44
  cellprofiler_library/opts/dilateimage.py,sha256=KsRf7gTKzFcTcylfIBrwue9csKBtJZdbVPFT5P_OjOM,588
45
+ cellprofiler_library/opts/enhanceorsuppressfeatures.py,sha256=8Ej5TFUX-EKTbUcV3AidcIaomwh_A9A5lNJVRu76pc4,449
43
46
  cellprofiler_library/opts/erodeimage.py,sha256=T3LCqu83rTqTDlc_7ebuPBKnr-FKomRHA8WD0uA9Y1g,584
47
+ cellprofiler_library/opts/erodeobjects.py,sha256=jOooDWqy01qdh17nAF0nbluU1lPToO2ZZqqsAzj2iNg,591
44
48
  cellprofiler_library/opts/measureimageoverlap.py,sha256=uopQCJTX1Uk-NNDAISsdYEOuOtiEBYOyCwu57ZT7X84,134
45
49
  cellprofiler_library/opts/objectsizeshapefeatures.py,sha256=3GIntOH3qXs7F16Tpjmtg7opHYAmmOjEdEwW6q3ht_Y,6306
46
50
  cellprofiler_library/opts/structuring_elements.py,sha256=Q4pBdCgDmjPx05t61Zqi40Iof8Nj3UR5k-F7brImLZY,263
47
51
  cellprofiler_library/opts/threshold.py,sha256=yg_i5to22Nd9hTakaRxo9UIQZRYWFpavJimjl5JONx4,938
48
- cellprofiler_library_nightly-5.0.0.dev328.dist-info/licenses/LICENSE,sha256=QLWaBS7kAioYx7PmJNXAMJaY8NODcFAag60YlUWuyz0,2276
49
- cellprofiler_library_nightly-5.0.0.dev328.dist-info/METADATA,sha256=13FKaSOrSkR-hnmCuPWJ6v2wW5AbcscIqxuN586eV2A,5534
50
- cellprofiler_library_nightly-5.0.0.dev328.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
51
- cellprofiler_library_nightly-5.0.0.dev328.dist-info/top_level.txt,sha256=LXq0ApDeDD4gotb6YFTySzdyScvHfS_pqoTg1QsNLBs,21
52
- cellprofiler_library_nightly-5.0.0.dev328.dist-info/RECORD,,
52
+ cellprofiler_library_nightly-5.0.0.dev336.dist-info/licenses/LICENSE,sha256=QLWaBS7kAioYx7PmJNXAMJaY8NODcFAag60YlUWuyz0,2276
53
+ cellprofiler_library_nightly-5.0.0.dev336.dist-info/METADATA,sha256=BQRHsQwGxyIEwjnINX6OLPJEzhsP2ZXEOlH-WGrBJbA,5534
54
+ cellprofiler_library_nightly-5.0.0.dev336.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
55
+ cellprofiler_library_nightly-5.0.0.dev336.dist-info/top_level.txt,sha256=LXq0ApDeDD4gotb6YFTySzdyScvHfS_pqoTg1QsNLBs,21
56
+ cellprofiler_library_nightly-5.0.0.dev336.dist-info/RECORD,,