cellfinder 1.4.0a0__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cellfinder/core/classify/classify.py +2 -1
- cellfinder/core/detect/filters/volume/ball_filter.py +4 -5
- cellfinder/napari/detect/detect.py +1 -1
- {cellfinder-1.4.0a0.dist-info → cellfinder-1.4.1.dist-info}/METADATA +3 -3
- {cellfinder-1.4.0a0.dist-info → cellfinder-1.4.1.dist-info}/RECORD +9 -9
- {cellfinder-1.4.0a0.dist-info → cellfinder-1.4.1.dist-info}/WHEEL +1 -1
- {cellfinder-1.4.0a0.dist-info → cellfinder-1.4.1.dist-info}/LICENSE +0 -0
- {cellfinder-1.4.0a0.dist-info → cellfinder-1.4.1.dist-info}/entry_points.txt +0 -0
- {cellfinder-1.4.0a0.dist-info → cellfinder-1.4.1.dist-info}/top_level.txt +0 -0
|
@@ -1,5 +1,6 @@
|
|
|
1
1
|
import os
|
|
2
2
|
from datetime import datetime
|
|
3
|
+
from pathlib import Path
|
|
3
4
|
from typing import Any, Callable, Dict, List, Optional, Tuple
|
|
4
5
|
|
|
5
6
|
import keras
|
|
@@ -68,7 +69,7 @@ def main(
|
|
|
68
69
|
workers=workers,
|
|
69
70
|
)
|
|
70
71
|
|
|
71
|
-
if trained_model and trained_model.suffix == ".h5":
|
|
72
|
+
if trained_model and Path(trained_model).suffix == ".h5":
|
|
72
73
|
print(
|
|
73
74
|
"Weights provided in place of the model, "
|
|
74
75
|
"loading weights into default model."
|
|
@@ -266,22 +266,21 @@ class BallFilter:
|
|
|
266
266
|
"""
|
|
267
267
|
if self.volume.shape[0]:
|
|
268
268
|
if self.volume.shape[0] < self.kernel_z_size:
|
|
269
|
-
num_remaining_with_padding = 0
|
|
269
|
+
num_remaining_with_padding = self.volume.shape[0]
|
|
270
270
|
else:
|
|
271
271
|
num_remaining = self.kernel_z_size - (self.middle_z_idx + 1)
|
|
272
272
|
num_remaining_with_padding = num_remaining + self.middle_z_idx
|
|
273
|
+
remaining_start = self.volume.shape[0] - num_remaining_with_padding
|
|
273
274
|
|
|
274
275
|
self.volume = torch.cat(
|
|
275
|
-
[self.volume[
|
|
276
|
+
[self.volume[remaining_start:, :, :], planes],
|
|
276
277
|
dim=0,
|
|
277
278
|
)
|
|
278
279
|
|
|
279
280
|
if self.inside_brain_tiles is not None:
|
|
280
281
|
self.inside_brain_tiles = torch.cat(
|
|
281
282
|
[
|
|
282
|
-
self.inside_brain_tiles[
|
|
283
|
-
-num_remaining_with_padding:, :, :
|
|
284
|
-
],
|
|
283
|
+
self.inside_brain_tiles[remaining_start:, :, :],
|
|
285
284
|
masks,
|
|
286
285
|
],
|
|
287
286
|
dim=0,
|
|
@@ -38,7 +38,7 @@ MIN_PLANES_ANALYSE = 0
|
|
|
38
38
|
|
|
39
39
|
|
|
40
40
|
def get_heavy_widgets(
|
|
41
|
-
options: Dict[str, Any]
|
|
41
|
+
options: Dict[str, Any],
|
|
42
42
|
) -> Tuple[Callable, Callable, Callable]:
|
|
43
43
|
# signal and other input are separated out from the main magicgui
|
|
44
44
|
# parameter selections and are inserted as widget children in their own
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.2
|
|
2
2
|
Name: cellfinder
|
|
3
|
-
Version: 1.4.
|
|
3
|
+
Version: 1.4.1
|
|
4
4
|
Summary: Automated 3D cell detection in large microscopy images
|
|
5
5
|
Author-email: "Adam Tyson, Christian Niedworok, Charly Rousseau" <code@adamltyson.com>
|
|
6
6
|
License: BSD-3-Clause
|
|
@@ -32,7 +32,7 @@ Requires-Dist: numba
|
|
|
32
32
|
Requires-Dist: numpy
|
|
33
33
|
Requires-Dist: scikit-image
|
|
34
34
|
Requires-Dist: scikit-learn
|
|
35
|
-
Requires-Dist: keras
|
|
35
|
+
Requires-Dist: keras>=3.7.0
|
|
36
36
|
Requires-Dist: torch!=2.4,>=2.1.0
|
|
37
37
|
Requires-Dist: tifffile
|
|
38
38
|
Requires-Dist: tqdm
|
|
@@ -5,7 +5,7 @@ cellfinder/core/main.py,sha256=QiLo8qtK6hRT_cu-xSP9k93EE-dZjmb2xxocsY-hTwU,3836
|
|
|
5
5
|
cellfinder/core/types.py,sha256=lTqWE4v0SMM0qLAZJdyAzqV1nLgDtobEpglNJcXt160,106
|
|
6
6
|
cellfinder/core/classify/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
7
7
|
cellfinder/core/classify/augment.py,sha256=8dMbM7KhimM6NMgdMC53oHoCfYj1CIB-h3Yk8CZAxPw,6321
|
|
8
|
-
cellfinder/core/classify/classify.py,sha256=
|
|
8
|
+
cellfinder/core/classify/classify.py,sha256=p3TvpnTVCVa9xCSgHm7QsgHeYeNZaoSbvf9fgZ3uF0c,3560
|
|
9
9
|
cellfinder/core/classify/cube_generator.py,sha256=jC5aogTVy213PHouViSR9CgKkuOks3yk6csQC5kRoOE,17125
|
|
10
10
|
cellfinder/core/classify/resnet.py,sha256=vGa85y_NcQnOXwAt5EtatLx5mrO8IoShCcNKtJ5-EFg,10034
|
|
11
11
|
cellfinder/core/classify/tools.py,sha256=s5PEKAsZVbVuoferZ_nqMUM0f2bV_8WEKsdKe3SXEuE,2560
|
|
@@ -20,7 +20,7 @@ cellfinder/core/detect/filters/plane/classical_filter.py,sha256=X5k266tbl9EHRVY5
|
|
|
20
20
|
cellfinder/core/detect/filters/plane/plane_filter.py,sha256=6FbAjxgt39_RdGDXC_pQ9ndtZtknuHJeTWtbR8cReEA,6102
|
|
21
21
|
cellfinder/core/detect/filters/plane/tile_walker.py,sha256=IiQibvWKnYlgl9h414fRklV7C2xZ0vXNmJ9t89DhYuI,4863
|
|
22
22
|
cellfinder/core/detect/filters/volume/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
23
|
-
cellfinder/core/detect/filters/volume/ball_filter.py,sha256=
|
|
23
|
+
cellfinder/core/detect/filters/volume/ball_filter.py,sha256=aarEBD6z3ejhNMFdKqKEHi9zLPkopqA3HkzV9RGd7BA,14461
|
|
24
24
|
cellfinder/core/detect/filters/volume/structure_detection.py,sha256=AIHq-5u5VFpKBBLEsE1Py-MlndbL8T0zXu0Bq2CI16Y,12916
|
|
25
25
|
cellfinder/core/detect/filters/volume/structure_splitting.py,sha256=0LGE8cQ6EJIsKqWWmd087Q3At8m-PUDmmPjCZKV1TdY,10138
|
|
26
26
|
cellfinder/core/detect/filters/volume/volume_filter.py,sha256=o9_4IsITedhqkhfwRsIhE53_zLNcFjgQzXbMMddH_q4,20544
|
|
@@ -47,15 +47,15 @@ cellfinder/napari/napari.yaml,sha256=WMR1CIAmYIVyQngbdbomTRZLvlDbb6LxsXsvTRClQnE
|
|
|
47
47
|
cellfinder/napari/sample_data.py,sha256=oUST23q09MM8dxHbUCmO0AjtXG6OlR_32LLqP0EU2UA,732
|
|
48
48
|
cellfinder/napari/utils.py,sha256=AwTs76M9azutHhHj2yuaKErDEQ5F6pFbIIakBfzen6M,3824
|
|
49
49
|
cellfinder/napari/detect/__init__.py,sha256=BD9Bg9NTAr6yRTq2A_p58U6j4w5wbY0sdXwhPJ3MSMY,34
|
|
50
|
-
cellfinder/napari/detect/detect.py,sha256=
|
|
50
|
+
cellfinder/napari/detect/detect.py,sha256=EC71KN0AEr49hMjvS8yzvGvfRctqKqn_lNERyx9UAPc,13810
|
|
51
51
|
cellfinder/napari/detect/detect_containers.py,sha256=j9NTsIyyDNrhlI2dc7hvc7QlxvI1NRHlCe137v7fsPg,5467
|
|
52
52
|
cellfinder/napari/detect/thread_worker.py,sha256=PWM3OE-FpK-dpdhaE_Gi-2lD3u8sL-SJ13mp0pMhTyI,3078
|
|
53
53
|
cellfinder/napari/train/__init__.py,sha256=xo4CK-DvSecInGEc2ohcTgQYlH3iylFnGvKTCoq2WkI,35
|
|
54
54
|
cellfinder/napari/train/train.py,sha256=zJY7zKcLqDTDtD76thmbwViEU4tTFCmXZze-zHsTpoo,5941
|
|
55
55
|
cellfinder/napari/train/train_containers.py,sha256=1wZ_GPe7B5XsLYs5XIx4m8GMw5KeVhg6SchhPtXu4V8,4386
|
|
56
|
-
cellfinder-1.4.
|
|
57
|
-
cellfinder-1.4.
|
|
58
|
-
cellfinder-1.4.
|
|
59
|
-
cellfinder-1.4.
|
|
60
|
-
cellfinder-1.4.
|
|
61
|
-
cellfinder-1.4.
|
|
56
|
+
cellfinder-1.4.1.dist-info/LICENSE,sha256=Tw8iMytIDXLSmcIUsbQmRWojstl9yOWsPCx6ZT6dZLY,1564
|
|
57
|
+
cellfinder-1.4.1.dist-info/METADATA,sha256=kszA8Y0GjA2Wql5E472WeQQXBfQprG-JVvkx6KNGc3E,7120
|
|
58
|
+
cellfinder-1.4.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
|
59
|
+
cellfinder-1.4.1.dist-info/entry_points.txt,sha256=cKKjU8GPiN-TRelG2sT2JCKAcB9XDCjP6g9atE9pSoY,247
|
|
60
|
+
cellfinder-1.4.1.dist-info/top_level.txt,sha256=jyTQzX-tDjbsMr6s-E71Oy0IKQzmHTXSk4ZhpG5EDSE,11
|
|
61
|
+
cellfinder-1.4.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|