cellfinder 1.2.0__py3-none-any.whl → 1.3.0rc1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
cellfinder/__init__.py CHANGED
@@ -1,27 +1,32 @@
1
+ import os
1
2
  from importlib.metadata import PackageNotFoundError, version
2
3
  from pathlib import Path
3
4
 
5
+ # Check cellfinder is installed
4
6
  try:
5
7
  __version__ = version("cellfinder")
6
8
  except PackageNotFoundError as e:
7
9
  raise PackageNotFoundError("cellfinder package not installed") from e
8
10
 
9
- # If tensorflow is not present, tools cannot be used.
11
+ # If Keras is not present, tools cannot be used.
10
12
  # Throw an error in this case to prevent invocation of functions.
11
13
  try:
12
- TF_VERSION = version("tensorflow")
14
+ KERAS_VERSION = version("keras")
13
15
  except PackageNotFoundError as e:
14
- try:
15
- TF_VERSION = version("tensorflow-macos")
16
- except PackageNotFoundError as e:
17
- raise PackageNotFoundError(
18
- f"cellfinder tools cannot be invoked without tensorflow. "
19
- f"Please install tensorflow into your environment to use cellfinder tools. "
20
- f"For more information, please see "
21
- f"https://github.com/brainglobe/brainglobe-meta#readme."
22
- ) from e
16
+ raise PackageNotFoundError(
17
+ f"cellfinder tools cannot be invoked without Keras. "
18
+ f"Please install Keras with a backend into your environment "
19
+ f"to use cellfinder tools. "
20
+ f"For more information on Keras backends, please see "
21
+ f"https://keras.io/getting_started/#installing-keras-3."
22
+ f"For more information on brainglobe, please see "
23
+ f"https://github.com/brainglobe/brainglobe-meta#readme."
24
+ ) from e
25
+
26
+
27
+ # Set the Keras backend to torch
28
+ os.environ["KERAS_BACKEND"] = "torch"
23
29
 
24
- __author__ = "Adam Tyson, Christian Niedworok, Charly Rousseau"
25
30
  __license__ = "BSD-3-Clause"
26
31
 
27
32
  DEFAULT_CELLFINDER_DIRECTORY = Path.home() / ".brainglobe" / "cellfinder"
@@ -1,10 +1,10 @@
1
1
  import os
2
2
  from typing import Any, Callable, Dict, List, Optional, Tuple
3
3
 
4
+ import keras
4
5
  import numpy as np
5
6
  from brainglobe_utils.cells.cells import Cell
6
7
  from brainglobe_utils.general.system import get_num_processes
7
- from tensorflow import keras
8
8
 
9
9
  from cellfinder.core import logger, types
10
10
  from cellfinder.core.classify.cube_generator import CubeGeneratorFromFile
@@ -48,9 +48,7 @@ def main(
48
48
  callbacks = None
49
49
 
50
50
  # Too many workers doesn't increase speed, and uses huge amounts of RAM
51
- workers = get_num_processes(
52
- min_free_cpu_cores=n_free_cpus, n_max_processes=max_workers
53
- )
51
+ workers = get_num_processes(min_free_cpu_cores=n_free_cpus)
54
52
 
55
53
  logger.debug("Initialising cube generator")
56
54
  inference_generator = CubeGeneratorFromFile(
@@ -63,6 +61,8 @@ def main(
63
61
  cube_width=cube_width,
64
62
  cube_height=cube_height,
65
63
  cube_depth=cube_depth,
64
+ use_multiprocessing=False,
65
+ workers=workers,
66
66
  )
67
67
 
68
68
  model = get_model(
@@ -73,10 +73,9 @@ def main(
73
73
  )
74
74
 
75
75
  logger.info("Running inference")
76
+ # in Keras 3.0 multiprocessing params are specified in the generator
76
77
  predictions = model.predict(
77
78
  inference_generator,
78
- use_multiprocessing=True,
79
- workers=workers,
80
79
  verbose=True,
81
80
  callbacks=callbacks,
82
81
  )
@@ -2,13 +2,13 @@ from pathlib import Path
2
2
  from random import shuffle
3
3
  from typing import Dict, List, Optional, Tuple, Union
4
4
 
5
+ import keras
5
6
  import numpy as np
6
- import tensorflow as tf
7
7
  from brainglobe_utils.cells.cells import Cell, group_cells_by_z
8
8
  from brainglobe_utils.general.numerical import is_even
9
+ from keras.utils import Sequence
9
10
  from scipy.ndimage import zoom
10
11
  from skimage.io import imread
11
- from tensorflow.keras.utils import Sequence
12
12
 
13
13
  from cellfinder.core import types
14
14
  from cellfinder.core.classify.augment import AugmentationParameters, augment
@@ -56,7 +56,14 @@ class CubeGeneratorFromFile(Sequence):
56
56
  translate: Tuple[float, float, float] = (0.05, 0.05, 0.05),
57
57
  shuffle: bool = False,
58
58
  interpolation_order: int = 2,
59
+ *args,
60
+ **kwargs,
59
61
  ):
62
+ # pass any additional arguments not specified in signature to the
63
+ # constructor of the superclass (e.g.: `use_multiprocessing` or
64
+ # `workers`)
65
+ super().__init__(*args, **kwargs)
66
+
60
67
  self.points = points
61
68
  self.signal_array = signal_array
62
69
  self.background_array = background_array
@@ -218,10 +225,10 @@ class CubeGeneratorFromFile(Sequence):
218
225
 
219
226
  if self.train:
220
227
  batch_labels = [cell.type - 1 for cell in cell_batch]
221
- batch_labels = tf.keras.utils.to_categorical(
228
+ batch_labels = keras.utils.to_categorical(
222
229
  batch_labels, num_classes=self.classes
223
230
  )
224
- return images, batch_labels
231
+ return images, batch_labels.astype(np.float32)
225
232
  elif self.extract:
226
233
  batch_info = self.__get_batch_dict(cell_batch)
227
234
  return images, batch_info
@@ -252,7 +259,8 @@ class CubeGeneratorFromFile(Sequence):
252
259
  (number_images,)
253
260
  + (self.cube_height, self.cube_width, self.cube_depth)
254
261
  + (self.channels,)
255
- )
262
+ ),
263
+ dtype=np.float32,
256
264
  )
257
265
 
258
266
  for idx, cell in enumerate(cell_batch):
@@ -350,7 +358,14 @@ class CubeGeneratorFromDisk(Sequence):
350
358
  translate: Tuple[float, float, float] = (0.2, 0.2, 0.2),
351
359
  train: bool = False, # also return labels
352
360
  interpolation_order: int = 2,
361
+ *args,
362
+ **kwargs,
353
363
  ):
364
+ # pass any additional arguments not specified in signature to the
365
+ # constructor of the superclass (e.g.: `use_multiprocessing` or
366
+ # `workers`)
367
+ super().__init__(*args, **kwargs)
368
+
354
369
  self.im_shape = shape
355
370
  self.batch_size = batch_size
356
371
  self.labels = labels
@@ -410,10 +425,10 @@ class CubeGeneratorFromDisk(Sequence):
410
425
 
411
426
  if self.train and self.labels is not None:
412
427
  batch_labels = [self.labels[k] for k in indexes]
413
- batch_labels = tf.keras.utils.to_categorical(
428
+ batch_labels = keras.utils.to_categorical(
414
429
  batch_labels, num_classes=self.classes
415
430
  )
416
- return images, batch_labels
431
+ return images, batch_labels.astype(np.float32)
417
432
  else:
418
433
  return images
419
434
 
@@ -424,7 +439,8 @@ class CubeGeneratorFromDisk(Sequence):
424
439
  ) -> np.ndarray:
425
440
  number_images = len(list_signal_tmp)
426
441
  images = np.empty(
427
- ((number_images,) + self.im_shape + (self.channels,))
442
+ ((number_images,) + self.im_shape + (self.channels,)),
443
+ dtype=np.float32,
428
444
  )
429
445
 
430
446
  for idx, signal_im in enumerate(list_signal_tmp):
@@ -433,7 +449,7 @@ class CubeGeneratorFromDisk(Sequence):
433
449
  images, idx, signal_im, background_im
434
450
  )
435
451
 
436
- return images.astype(np.float16)
452
+ return images
437
453
 
438
454
  def __populate_array_with_cubes(
439
455
  self,
@@ -1,9 +1,11 @@
1
1
  from typing import Callable, Dict, List, Literal, Optional, Tuple, Union
2
2
 
3
- from tensorflow import Tensor
4
- from tensorflow.keras import Model
5
- from tensorflow.keras.initializers import Initializer
6
- from tensorflow.keras.layers import (
3
+ from keras import (
4
+ KerasTensor as Tensor,
5
+ )
6
+ from keras import Model
7
+ from keras.initializers import Initializer
8
+ from keras.layers import (
7
9
  Activation,
8
10
  Add,
9
11
  BatchNormalization,
@@ -14,7 +16,7 @@ from tensorflow.keras.layers import (
14
16
  MaxPooling3D,
15
17
  ZeroPadding3D,
16
18
  )
17
- from tensorflow.keras.optimizers import Adam, Optimizer
19
+ from keras.optimizers import Adam, Optimizer
18
20
 
19
21
  #####################################################################
20
22
  # Define the types of ResNet
@@ -113,7 +115,7 @@ def non_residual_block(
113
115
  activation: str = "relu",
114
116
  use_bias: bool = False,
115
117
  bn_epsilon: float = 1e-5,
116
- pooling_padding: str = "same",
118
+ pooling_padding: str = "valid",
117
119
  axis: int = 3,
118
120
  ) -> Tensor:
119
121
  """
@@ -131,6 +133,7 @@ def non_residual_block(
131
133
  )(x)
132
134
  x = BatchNormalization(axis=axis, epsilon=bn_epsilon, name="conv1_bn")(x)
133
135
  x = Activation(activation, name="conv1_activation")(x)
136
+
134
137
  x = MaxPooling3D(
135
138
  max_pool_size,
136
139
  strides=strides,
@@ -1,9 +1,10 @@
1
1
  import os
2
- from typing import List, Optional, Sequence, Tuple, Union
2
+ from collections.abc import Sequence
3
+ from typing import List, Optional, Tuple, Union
3
4
 
5
+ import keras
4
6
  import numpy as np
5
- import tensorflow as tf
6
- from tensorflow.keras import Model
7
+ from keras import Model
7
8
 
8
9
  from cellfinder.core import logger
9
10
  from cellfinder.core.classify.resnet import build_model, layer_type
@@ -17,8 +18,7 @@ def get_model(
17
18
  inference: bool = False,
18
19
  continue_training: bool = False,
19
20
  ) -> Model:
20
- """
21
- Returns the correct model based on the arguments passed
21
+ """Returns the correct model based on the arguments passed
22
22
  :param existing_model: An existing, trained model. This is returned if it
23
23
  exists
24
24
  :param model_weights: This file is used to set the model weights if it
@@ -30,29 +30,31 @@ def get_model(
30
30
  by using the default one
31
31
  :param continue_training: If True, will ensure that a trained model
32
32
  exists. E.g. by using the default one
33
- :return: A tf.keras model
33
+ :return: A keras model
34
34
 
35
35
  """
36
36
  if existing_model is not None or network_depth is None:
37
37
  logger.debug(f"Loading model: {existing_model}")
38
- return tf.keras.models.load_model(existing_model)
38
+ return keras.models.load_model(existing_model)
39
39
  else:
40
40
  logger.debug(f"Creating a new instance of model: {network_depth}")
41
41
  model = build_model(
42
- network_depth=network_depth, learning_rate=learning_rate
42
+ network_depth=network_depth,
43
+ learning_rate=learning_rate,
43
44
  )
44
45
  if inference or continue_training:
45
46
  logger.debug(
46
- f"Setting model weights according to: {model_weights}"
47
+ f"Setting model weights according to: {model_weights}",
47
48
  )
48
49
  if model_weights is None:
49
- raise IOError("`model_weights` must be provided")
50
+ raise OSError("`model_weights` must be provided")
50
51
  model.load_weights(model_weights)
51
52
  return model
52
53
 
53
54
 
54
55
  def make_lists(
55
- tiff_files: Sequence, train: bool = True
56
+ tiff_files: Sequence,
57
+ train: bool = True,
56
58
  ) -> Union[Tuple[List, List], Tuple[List, List, np.ndarray]]:
57
59
  signal_list = []
58
60
  background_list = []
cellfinder/core/main.py CHANGED
@@ -1,23 +1,13 @@
1
- """
2
- N.B imports are within functions to prevent tensorflow being imported before
3
- it's warnings are silenced
4
- """
5
-
6
1
  import os
7
2
  from typing import Callable, List, Optional, Tuple
8
3
 
9
4
  import numpy as np
10
5
  from brainglobe_utils.cells.cells import Cell
11
- from brainglobe_utils.general.logging import suppress_specific_logs
12
6
 
13
7
  from cellfinder.core import logger
14
8
  from cellfinder.core.download.download import model_type
15
9
  from cellfinder.core.train.train_yml import depth_type
16
10
 
17
- tf_suppress_log_messages = [
18
- "multiprocessing can interact badly with TensorFlow"
19
- ]
20
-
21
11
 
22
12
  def main(
23
13
  signal_array: np.ndarray,
@@ -58,13 +48,11 @@ def main(
58
48
  Called every time a plane has finished being processed during the
59
49
  detection stage. Called with the plane number that has finished.
60
50
  classify_callback : Callable[int], optional
61
- Called every time tensorflow has finished classifying a point.
51
+ Called every time a point has finished being classified.
62
52
  Called with the batch number that has just finished.
63
53
  detect_finished_callback : Callable[list], optional
64
54
  Called after detection is finished with the list of detected points.
65
55
  """
66
- suppress_tf_logging(tf_suppress_log_messages)
67
-
68
56
  from cellfinder.core.classify import classify
69
57
  from cellfinder.core.detect import detect
70
58
  from cellfinder.core.tools import prep
@@ -98,7 +86,7 @@ def main(
98
86
  if not skip_classification:
99
87
  install_path = None
100
88
  model_weights = prep.prep_model_weights(
101
- model_weights, install_path, model, n_free_cpus
89
+ model_weights, install_path, model
102
90
  )
103
91
  if len(points) > 0:
104
92
  logger.info("Running classification")
@@ -120,17 +108,4 @@ def main(
120
108
  )
121
109
  else:
122
110
  logger.info("No candidates, skipping classification")
123
-
124
111
  return points
125
-
126
-
127
- def suppress_tf_logging(tf_suppress_log_messages: List[str]) -> None:
128
- """
129
- Prevents many lines of logs such as:
130
- "2019-10-24 16:54:41.363978: I tensorflow/stream_executor/platform/default
131
- /dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1"
132
- """
133
- os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
134
-
135
- for message in tf_suppress_log_messages:
136
- suppress_specific_logs("tensorflow", message)
@@ -9,9 +9,7 @@ from pathlib import Path
9
9
  from typing import Optional
10
10
 
11
11
  from brainglobe_utils.general.config import get_config_obj
12
- from brainglobe_utils.general.system import get_num_processes
13
12
 
14
- import cellfinder.core.tools.tf as tf_tools
15
13
  from cellfinder.core import logger
16
14
  from cellfinder.core.download.download import (
17
15
  DEFAULT_DOWNLOAD_DIRECTORY,
@@ -26,20 +24,13 @@ def prep_model_weights(
26
24
  model_weights: Optional[os.PathLike],
27
25
  install_path: Optional[os.PathLike],
28
26
  model_name: model_type,
29
- n_free_cpus: int,
30
27
  ) -> Path:
31
- n_processes = get_num_processes(min_free_cpu_cores=n_free_cpus)
32
- prep_tensorflow(n_processes)
28
+ # prepare models (get default weights or provided ones)
33
29
  model_weights = prep_models(model_weights, install_path, model_name)
34
30
 
35
31
  return model_weights
36
32
 
37
33
 
38
- def prep_tensorflow(max_threads: int) -> None:
39
- tf_tools.set_tf_threads(max_threads)
40
- tf_tools.allow_gpu_memory_growth()
41
-
42
-
43
34
  def prep_models(
44
35
  model_weights_path: Optional[os.PathLike],
45
36
  install_path: Optional[os.PathLike],
@@ -1,5 +1,6 @@
1
1
  from pathlib import Path
2
2
 
3
+ import keras
3
4
  from brainglobe_utils.general.exceptions import CommandLineInputError
4
5
 
5
6
 
@@ -80,3 +81,12 @@ def memory_in_bytes(memory_amount, unit):
80
81
  )
81
82
  else:
82
83
  return memory_amount * 10 ** supported_units[unit]
84
+
85
+
86
+ def force_cpu():
87
+ """
88
+ Forces the CPU to be used, even if a GPU is available
89
+ """
90
+ keras.src.backend.common.global_state.set_global_attribute(
91
+ "torch_device", "cpu"
92
+ )
@@ -22,7 +22,10 @@ from brainglobe_utils.general.numerical import (
22
22
  check_positive_float,
23
23
  check_positive_int,
24
24
  )
25
- from brainglobe_utils.general.system import ensure_directory_exists
25
+ from brainglobe_utils.general.system import (
26
+ ensure_directory_exists,
27
+ get_num_processes,
28
+ )
26
29
  from brainglobe_utils.IO.cells import find_relevant_tiffs
27
30
  from brainglobe_utils.IO.yaml import read_yaml_section
28
31
  from fancylog import fancylog
@@ -33,11 +36,6 @@ from cellfinder.core import logger
33
36
  from cellfinder.core.classify.resnet import layer_type
34
37
  from cellfinder.core.download.download import DEFAULT_DOWNLOAD_DIRECTORY
35
38
 
36
- tf_suppress_log_messages = [
37
- "sample_weight modes were coerced from",
38
- "multiprocessing can interact badly with TensorFlow",
39
- ]
40
-
41
39
  depth_type = Literal["18", "34", "50", "101", "152"]
42
40
 
43
41
  models: Dict[depth_type, layer_type] = {
@@ -318,11 +316,7 @@ def run(
318
316
  save_progress=False,
319
317
  epochs=100,
320
318
  ):
321
- from cellfinder.core.main import suppress_tf_logging
322
-
323
- suppress_tf_logging(tf_suppress_log_messages)
324
-
325
- from tensorflow.keras.callbacks import (
319
+ from keras.callbacks import (
326
320
  CSVLogger,
327
321
  ModelCheckpoint,
328
322
  TensorBoard,
@@ -339,7 +333,6 @@ def run(
339
333
  model_weights=model_weights,
340
334
  install_path=install_path,
341
335
  model_name=model,
342
- n_free_cpus=n_free_cpus,
343
336
  )
344
337
 
345
338
  yaml_contents = parse_yaml(yaml_file)
@@ -361,6 +354,7 @@ def run(
361
354
 
362
355
  signal_train, background_train, labels_train = make_lists(tiff_files)
363
356
 
357
+ n_processes = get_num_processes(min_free_cpu_cores=n_free_cpus)
364
358
  if test_fraction > 0:
365
359
  logger.info("Splitting data into training and validation datasets")
366
360
  (
@@ -387,15 +381,17 @@ def run(
387
381
  labels=labels_test,
388
382
  batch_size=batch_size,
389
383
  train=True,
384
+ use_multiprocessing=False,
385
+ workers=n_processes,
390
386
  )
391
387
 
392
388
  # for saving checkpoints
393
- base_checkpoint_file_name = "-epoch.{epoch:02d}-loss-{val_loss:.3f}.h5"
389
+ base_checkpoint_file_name = "-epoch.{epoch:02d}-loss-{val_loss:.3f}"
394
390
 
395
391
  else:
396
392
  logger.info("No validation data selected.")
397
393
  validation_generator = None
398
- base_checkpoint_file_name = "-epoch.{epoch:02d}.h5"
394
+ base_checkpoint_file_name = "-epoch.{epoch:02d}"
399
395
 
400
396
  training_generator = CubeGeneratorFromDisk(
401
397
  signal_train,
@@ -405,6 +401,8 @@ def run(
405
401
  shuffle=True,
406
402
  train=True,
407
403
  augment=not no_augment,
404
+ use_multiprocessing=False,
405
+ workers=n_processes,
408
406
  )
409
407
  callbacks = []
410
408
 
@@ -421,9 +419,14 @@ def run(
421
419
 
422
420
  if not no_save_checkpoints:
423
421
  if save_weights:
424
- filepath = str(output_dir / ("weight" + base_checkpoint_file_name))
422
+ filepath = str(
423
+ output_dir
424
+ / ("weight" + base_checkpoint_file_name + ".weights.h5")
425
+ )
425
426
  else:
426
- filepath = str(output_dir / ("model" + base_checkpoint_file_name))
427
+ filepath = str(
428
+ output_dir / ("model" + base_checkpoint_file_name + ".keras")
429
+ )
427
430
 
428
431
  checkpoints = ModelCheckpoint(
429
432
  filepath,
@@ -432,25 +435,26 @@ def run(
432
435
  callbacks.append(checkpoints)
433
436
 
434
437
  if save_progress:
435
- filepath = str(output_dir / "training.csv")
436
- csv_logger = CSVLogger(filepath)
438
+ csv_filepath = str(output_dir / "training.csv")
439
+ csv_logger = CSVLogger(csv_filepath)
437
440
  callbacks.append(csv_logger)
438
441
 
439
442
  logger.info("Beginning training.")
443
+ # Keras 3.0: `use_multiprocessing` input is set in the
444
+ # `training_generator` (False by default)
440
445
  model.fit(
441
446
  training_generator,
442
447
  validation_data=validation_generator,
443
- use_multiprocessing=False,
444
448
  epochs=epochs,
445
449
  callbacks=callbacks,
446
450
  )
447
451
 
448
452
  if save_weights:
449
453
  logger.info("Saving model weights")
450
- model.save_weights(str(output_dir / "model_weights.h5"))
454
+ model.save_weights(output_dir / "model.weights.h5")
451
455
  else:
452
456
  logger.info("Saving model")
453
- model.save(output_dir / "model.h5")
457
+ model.save(output_dir / "model.keras")
454
458
 
455
459
  logger.info(
456
460
  "Finished training, " "Total time taken: %s",
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: cellfinder
3
- Version: 1.2.0
3
+ Version: 1.3.0rc1
4
4
  Summary: Automated 3D cell detection in large microscopy images
5
5
  Author-email: "Adam Tyson, Christian Niedworok, Charly Rousseau" <code@adamltyson.com>
6
6
  License: BSD-3-Clause
@@ -18,6 +18,7 @@ Classifier: Programming Language :: Python
18
18
  Classifier: Programming Language :: Python :: 3
19
19
  Classifier: Programming Language :: Python :: 3.9
20
20
  Classifier: Programming Language :: Python :: 3.10
21
+ Classifier: Programming Language :: Python :: 3.11
21
22
  Classifier: Topic :: Scientific/Engineering :: Image Recognition
22
23
  Requires-Python: >=3.9
23
24
  Description-Content-Type: text/markdown
@@ -31,10 +32,10 @@ Requires-Dist: numba
31
32
  Requires-Dist: numpy
32
33
  Requires-Dist: scikit-image
33
34
  Requires-Dist: scikit-learn
35
+ Requires-Dist: keras >=3.0.0
36
+ Requires-Dist: torch >=2.1.0
34
37
  Requires-Dist: tifffile
35
38
  Requires-Dist: tqdm
36
- Requires-Dist: tensorflow <2.12.0,>=2.5.0 ; platform_system != "Darwin" or platform_machine != "arm64"
37
- Requires-Dist: tensorflow-macos <2.12.0,>=2.5.0 ; platform_system == "Darwin" and platform_machine == "arm64"
38
39
  Provides-Extra: dev
39
40
  Requires-Dist: black ; extra == 'dev'
40
41
  Requires-Dist: pre-commit ; extra == 'dev'
@@ -1,14 +1,14 @@
1
- cellfinder/__init__.py,sha256=7H9UKFWCk-TNkFLwk-D4EVU5-rJZsGxfo0qcaFVcfKY,1035
1
+ cellfinder/__init__.py,sha256=rxpLq2RH-aoB3vm93M3btIrGi2lPxZRIbmzsKhkkVnI,1118
2
2
  cellfinder/cli_migration_warning.py,sha256=gPtNrtnXvWpl5q0k_EGAQZg0DwcpCmuBTgpg56n5NfA,1578
3
3
  cellfinder/core/__init__.py,sha256=pRFuQsl78HEK0S6gvhJw70QLbjjSBzP-GFO0AtVaGtk,62
4
- cellfinder/core/main.py,sha256=Y-4Wt9d9K7o2l3IO7acZbtNuhqZzF5UU-rMJksb6k94,4392
4
+ cellfinder/core/main.py,sha256=6Uby8WuJ-U6_XBzHIla-fm3WQ2q6Vu7rYjme5Igfp_8,3625
5
5
  cellfinder/core/types.py,sha256=lTqWE4v0SMM0qLAZJdyAzqV1nLgDtobEpglNJcXt160,106
6
6
  cellfinder/core/classify/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  cellfinder/core/classify/augment.py,sha256=8dMbM7KhimM6NMgdMC53oHoCfYj1CIB-h3Yk8CZAxPw,6321
8
- cellfinder/core/classify/classify.py,sha256=y4EnHX3IpAUAfhGScoJGv2hLLpy6OtmGvkqxAow3_Kw,3046
9
- cellfinder/core/classify/cube_generator.py,sha256=4zMaa7bb7vr1QxBFpzqqitnWaNdzgEzZ2gt2xFeN37A,16586
10
- cellfinder/core/classify/resnet.py,sha256=976Qt0li7ySYx_w2m9QfRMaDAc0rEkA8rO9SYP5a6uw,10057
11
- cellfinder/core/classify/tools.py,sha256=UqABKS9KnkwR3PIhGRl7xHJbADP0mgVRSxXI5dybpqA,2547
8
+ cellfinder/core/classify/classify.py,sha256=aL2kNojKb4wsk7Zm26yq2QRiazRbwUO_cbbC2BJN0uc,3061
9
+ cellfinder/core/classify/cube_generator.py,sha256=L5BvTDiHbkJ6VFeApALGtCV7Ws--jXR1foYY-bL0Buc,17125
10
+ cellfinder/core/classify/resnet.py,sha256=vGa85y_NcQnOXwAt5EtatLx5mrO8IoShCcNKtJ5-EFg,10034
11
+ cellfinder/core/classify/tools.py,sha256=s5PEKAsZVbVuoferZ_nqMUM0f2bV_8WEKsdKe3SXEuE,2560
12
12
  cellfinder/core/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
13
  cellfinder/core/config/cellfinder.conf,sha256=5i8axif7ekMutKDiVnZRs-LiJrgVQljg_beltidqtNk,56
14
14
  cellfinder/core/detect/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -31,14 +31,13 @@ cellfinder/core/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3h
31
31
  cellfinder/core/tools/array_operations.py,sha256=LDbqWA_N2YtxeKS877QYdJRL2FCMC1R1ExJtdb6-vEA,3371
32
32
  cellfinder/core/tools/geometry.py,sha256=xlEQQmVQ9jcXqRzUqU554P8VxkaWkc5J_YhjkkKlI0Q,1124
33
33
  cellfinder/core/tools/image_processing.py,sha256=z27bGjf3Iv3G4Nt1OYzpEnIYQNc4nNomj_QitqvZB78,2269
34
- cellfinder/core/tools/prep.py,sha256=hGWwXxeP88ahp6ji2bkBu9FOz8BmrZsVwI-CEv4qxQ4,2473
34
+ cellfinder/core/tools/prep.py,sha256=YU4VDyjEsOXn3S3gymEfPUzka-WYiHmR4Q4XdRebhDI,2175
35
35
  cellfinder/core/tools/source_files.py,sha256=vvwsIMe1ULKvXg_x22L75iqvCyMjEbUjJsDFQk3GYzY,856
36
- cellfinder/core/tools/system.py,sha256=6iSOLrz2mtKgOIdwjp_VS0-74XQCuaQYCvWAViJgEus,2232
37
- cellfinder/core/tools/tf.py,sha256=jNU97-gIB51rLube9EoZ9bREkbqWRk-xPZhDTXG_jE4,1713
36
+ cellfinder/core/tools/system.py,sha256=WvEzPr7v-ohLDnzf4n13TMcN5OYIAXOEkaSmrHzdnwc,2438
38
37
  cellfinder/core/tools/tiff.py,sha256=NzIz6wq2GzxmcIhawFMwZADe-uQO2rIG46H7xkpGKLs,2899
39
38
  cellfinder/core/tools/tools.py,sha256=G8oDGNRuWkzEJDnnC4r3SNGgpVbqbelCZR5ODk9JRzs,4867
40
39
  cellfinder/core/train/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
- cellfinder/core/train/train_yml.py,sha256=0iiROBdxNoMyMoPGYC8tq6bGM3jzAKlGA2LABgoqd6M,13139
40
+ cellfinder/core/train/train_yml.py,sha256=9QXv2wk24G8hYskMnBij7OngEELUWySK2fH4NFbYWw4,13260
42
41
  cellfinder/napari/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
43
42
  cellfinder/napari/curation.py,sha256=jz7GekuuzOdwiEFLarvvO5Bho68k8eL7AjObMdEoPXw,21447
44
43
  cellfinder/napari/input_container.py,sha256=tkm0dkPt7kSL8Xkvs1fh8M6vKWw57QLIt_wv74HFkGk,2150
@@ -52,9 +51,9 @@ cellfinder/napari/detect/thread_worker.py,sha256=3xGUPSthycpErcVxl_yc5soIv_z0Hf0
52
51
  cellfinder/napari/train/__init__.py,sha256=xo4CK-DvSecInGEc2ohcTgQYlH3iylFnGvKTCoq2WkI,35
53
52
  cellfinder/napari/train/train.py,sha256=zJY7zKcLqDTDtD76thmbwViEU4tTFCmXZze-zHsTpoo,5941
54
53
  cellfinder/napari/train/train_containers.py,sha256=1wZ_GPe7B5XsLYs5XIx4m8GMw5KeVhg6SchhPtXu4V8,4386
55
- cellfinder-1.2.0.dist-info/LICENSE,sha256=Tw8iMytIDXLSmcIUsbQmRWojstl9yOWsPCx6ZT6dZLY,1564
56
- cellfinder-1.2.0.dist-info/METADATA,sha256=0_L_i066TdGFnfaRZe8zY-y0XwF7HX88F0mzV4AqLEw,6632
57
- cellfinder-1.2.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
58
- cellfinder-1.2.0.dist-info/entry_points.txt,sha256=cKKjU8GPiN-TRelG2sT2JCKAcB9XDCjP6g9atE9pSoY,247
59
- cellfinder-1.2.0.dist-info/top_level.txt,sha256=jyTQzX-tDjbsMr6s-E71Oy0IKQzmHTXSk4ZhpG5EDSE,11
60
- cellfinder-1.2.0.dist-info/RECORD,,
54
+ cellfinder-1.3.0rc1.dist-info/LICENSE,sha256=Tw8iMytIDXLSmcIUsbQmRWojstl9yOWsPCx6ZT6dZLY,1564
55
+ cellfinder-1.3.0rc1.dist-info/METADATA,sha256=GiwPyIxT0EFxoHCCwWWaZs8CUnrvUPGrFcD3DWWt9Vg,6531
56
+ cellfinder-1.3.0rc1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
57
+ cellfinder-1.3.0rc1.dist-info/entry_points.txt,sha256=cKKjU8GPiN-TRelG2sT2JCKAcB9XDCjP6g9atE9pSoY,247
58
+ cellfinder-1.3.0rc1.dist-info/top_level.txt,sha256=jyTQzX-tDjbsMr6s-E71Oy0IKQzmHTXSk4ZhpG5EDSE,11
59
+ cellfinder-1.3.0rc1.dist-info/RECORD,,
@@ -1,46 +0,0 @@
1
- import tensorflow as tf
2
-
3
- from cellfinder.core import logger
4
-
5
-
6
- def allow_gpu_memory_growth():
7
- """
8
- If a gpu is present, prevent tensorflow from using all the memory straight
9
- away. Allows multiple processes to use the GPU (and avoid occasional
10
- errors on some systems) at the cost of a slight performance penalty.
11
- """
12
- gpus = tf.config.experimental.list_physical_devices("GPU")
13
- if gpus:
14
- logger.debug("Allowing GPU memory growth")
15
- try:
16
- # Currently, memory growth needs to be the same across GPUs
17
- for gpu in gpus:
18
- tf.config.experimental.set_memory_growth(gpu, True)
19
- logical_gpus = tf.config.experimental.list_logical_devices("GPU")
20
- logger.debug(
21
- f"{len(gpus)} physical GPUs, {len(logical_gpus)} logical GPUs"
22
- )
23
- except RuntimeError as e:
24
- # Memory growth must be set before GPUs have been initialized
25
- print(e)
26
- else:
27
- logger.debug("No GPUs found, using CPU.")
28
-
29
-
30
- def set_tf_threads(max_threads):
31
- """
32
- Limit the number of threads that tensorflow uses
33
- :param max_threads: Maximum number of threads to use
34
- :return:
35
- """
36
- logger.debug(
37
- f"Setting maximum number of threads for tensorflow "
38
- f"to: {max_threads}"
39
- )
40
-
41
- # If statements are for testing. If tf is initialised, then setting these
42
- # parameters throws an error
43
- if tf.config.threading.get_inter_op_parallelism_threads() != 0:
44
- tf.config.threading.set_inter_op_parallelism_threads(max_threads)
45
- if tf.config.threading.get_intra_op_parallelism_threads() != 0:
46
- tf.config.threading.set_intra_op_parallelism_threads(max_threads)