cellfinder 1.1.3__py3-none-any.whl → 1.3.0rc0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (185) hide show
  1. cellfinder/__init__.py +20 -11
  2. cellfinder/__pycache__/__init__.cpython-310.pyc +0 -0
  3. cellfinder/__pycache__/__init__.cpython-311.pyc +0 -0
  4. cellfinder/__pycache__/__init__.cpython-312.pyc +0 -0
  5. cellfinder/core/__pycache__/__init__.cpython-310.pyc +0 -0
  6. cellfinder/core/__pycache__/__init__.cpython-311.pyc +0 -0
  7. cellfinder/core/__pycache__/__init__.cpython-312.pyc +0 -0
  8. cellfinder/core/__pycache__/main.cpython-310.pyc +0 -0
  9. cellfinder/core/__pycache__/main.cpython-311.pyc +0 -0
  10. cellfinder/core/__pycache__/main.cpython-312.pyc +0 -0
  11. cellfinder/core/__pycache__/types.cpython-310.pyc +0 -0
  12. cellfinder/core/__pycache__/types.cpython-311.pyc +0 -0
  13. cellfinder/core/__pycache__/types.cpython-312.pyc +0 -0
  14. cellfinder/core/classify/__pycache__/__init__.cpython-310.pyc +0 -0
  15. cellfinder/core/classify/__pycache__/__init__.cpython-311.pyc +0 -0
  16. cellfinder/core/classify/__pycache__/__init__.cpython-312.pyc +0 -0
  17. cellfinder/core/classify/__pycache__/augment.cpython-310.pyc +0 -0
  18. cellfinder/core/classify/__pycache__/augment.cpython-311.pyc +0 -0
  19. cellfinder/core/classify/__pycache__/augment.cpython-312.pyc +0 -0
  20. cellfinder/core/classify/__pycache__/classify.cpython-310.pyc +0 -0
  21. cellfinder/core/classify/__pycache__/classify.cpython-311.pyc +0 -0
  22. cellfinder/core/classify/__pycache__/classify.cpython-312.pyc +0 -0
  23. cellfinder/core/classify/__pycache__/cube_generator.cpython-310.pyc +0 -0
  24. cellfinder/core/classify/__pycache__/cube_generator.cpython-311.pyc +0 -0
  25. cellfinder/core/classify/__pycache__/cube_generator.cpython-312.pyc +0 -0
  26. cellfinder/core/classify/__pycache__/resnet.cpython-310.pyc +0 -0
  27. cellfinder/core/classify/__pycache__/resnet.cpython-311.pyc +0 -0
  28. cellfinder/core/classify/__pycache__/resnet.cpython-312.pyc +0 -0
  29. cellfinder/core/classify/__pycache__/tools.cpython-310.pyc +0 -0
  30. cellfinder/core/classify/__pycache__/tools.cpython-311.pyc +0 -0
  31. cellfinder/core/classify/__pycache__/tools.cpython-312.pyc +0 -0
  32. cellfinder/core/classify/classify.py +5 -6
  33. cellfinder/core/classify/cube_generator.py +25 -9
  34. cellfinder/core/classify/resnet.py +9 -6
  35. cellfinder/core/classify/tools.py +13 -11
  36. cellfinder/core/config/cellfinder.conf.custom +3 -0
  37. cellfinder/core/detect/__pycache__/__init__.cpython-310.pyc +0 -0
  38. cellfinder/core/detect/__pycache__/__init__.cpython-311.pyc +0 -0
  39. cellfinder/core/detect/__pycache__/__init__.cpython-312.pyc +0 -0
  40. cellfinder/core/detect/__pycache__/detect.cpython-310.pyc +0 -0
  41. cellfinder/core/detect/__pycache__/detect.cpython-311.pyc +0 -0
  42. cellfinder/core/detect/__pycache__/detect.cpython-312.pyc +0 -0
  43. cellfinder/core/detect/detect.py +12 -1
  44. cellfinder/core/detect/filters/__pycache__/__init__.cpython-310.pyc +0 -0
  45. cellfinder/core/detect/filters/__pycache__/__init__.cpython-311.pyc +0 -0
  46. cellfinder/core/detect/filters/__pycache__/__init__.cpython-312.pyc +0 -0
  47. cellfinder/core/detect/filters/__pycache__/setup_filters.cpython-310.pyc +0 -0
  48. cellfinder/core/detect/filters/__pycache__/setup_filters.cpython-311.pyc +0 -0
  49. cellfinder/core/detect/filters/__pycache__/setup_filters.cpython-312.pyc +0 -0
  50. cellfinder/core/detect/filters/plane/__pycache__/__init__.cpython-310.pyc +0 -0
  51. cellfinder/core/detect/filters/plane/__pycache__/__init__.cpython-311.pyc +0 -0
  52. cellfinder/core/detect/filters/plane/__pycache__/__init__.cpython-312.pyc +0 -0
  53. cellfinder/core/detect/filters/plane/__pycache__/classical_filter.cpython-310.pyc +0 -0
  54. cellfinder/core/detect/filters/plane/__pycache__/classical_filter.cpython-311.pyc +0 -0
  55. cellfinder/core/detect/filters/plane/__pycache__/classical_filter.cpython-312.pyc +0 -0
  56. cellfinder/core/detect/filters/plane/__pycache__/plane_filter.cpython-310.pyc +0 -0
  57. cellfinder/core/detect/filters/plane/__pycache__/plane_filter.cpython-311.pyc +0 -0
  58. cellfinder/core/detect/filters/plane/__pycache__/plane_filter.cpython-312.pyc +0 -0
  59. cellfinder/core/detect/filters/plane/__pycache__/tile_walker.cpython-310.pyc +0 -0
  60. cellfinder/core/detect/filters/plane/__pycache__/tile_walker.cpython-311.pyc +0 -0
  61. cellfinder/core/detect/filters/plane/__pycache__/tile_walker.cpython-312.pyc +0 -0
  62. cellfinder/core/detect/filters/volume/__pycache__/__init__.cpython-310.pyc +0 -0
  63. cellfinder/core/detect/filters/volume/__pycache__/__init__.cpython-311.pyc +0 -0
  64. cellfinder/core/detect/filters/volume/__pycache__/__init__.cpython-312.pyc +0 -0
  65. cellfinder/core/detect/filters/volume/__pycache__/ball_filter._cube_overlaps-199.py310.1.nbc +0 -0
  66. cellfinder/core/detect/filters/volume/__pycache__/ball_filter._cube_overlaps-199.py310.nbi +0 -0
  67. cellfinder/core/detect/filters/volume/__pycache__/ball_filter._cube_overlaps-263.py310.1.nbc +0 -0
  68. cellfinder/core/detect/filters/volume/__pycache__/ball_filter._cube_overlaps-263.py310.2.nbc +0 -0
  69. cellfinder/core/detect/filters/volume/__pycache__/ball_filter._cube_overlaps-263.py310.nbi +0 -0
  70. cellfinder/core/detect/filters/volume/__pycache__/ball_filter._cube_overlaps-263.py311.1.nbc +0 -0
  71. cellfinder/core/detect/filters/volume/__pycache__/ball_filter._cube_overlaps-263.py311.2.nbc +0 -0
  72. cellfinder/core/detect/filters/volume/__pycache__/ball_filter._cube_overlaps-263.py311.nbi +0 -0
  73. cellfinder/core/detect/filters/volume/__pycache__/ball_filter._cube_overlaps-263.py312.1.nbc +0 -0
  74. cellfinder/core/detect/filters/volume/__pycache__/ball_filter._cube_overlaps-263.py312.2.nbc +0 -0
  75. cellfinder/core/detect/filters/volume/__pycache__/ball_filter._cube_overlaps-263.py312.nbi +0 -0
  76. cellfinder/core/detect/filters/volume/__pycache__/ball_filter.cpython-310.pyc +0 -0
  77. cellfinder/core/detect/filters/volume/__pycache__/ball_filter.cpython-311.pyc +0 -0
  78. cellfinder/core/detect/filters/volume/__pycache__/ball_filter.cpython-312.pyc +0 -0
  79. cellfinder/core/detect/filters/volume/__pycache__/structure_detection.cpython-310.pyc +0 -0
  80. cellfinder/core/detect/filters/volume/__pycache__/structure_detection.cpython-311.pyc +0 -0
  81. cellfinder/core/detect/filters/volume/__pycache__/structure_detection.cpython-312.pyc +0 -0
  82. cellfinder/core/detect/filters/volume/__pycache__/structure_splitting.cpython-310.pyc +0 -0
  83. cellfinder/core/detect/filters/volume/__pycache__/structure_splitting.cpython-311.pyc +0 -0
  84. cellfinder/core/detect/filters/volume/__pycache__/structure_splitting.cpython-312.pyc +0 -0
  85. cellfinder/core/detect/filters/volume/__pycache__/volume_filter.cpython-310.pyc +0 -0
  86. cellfinder/core/detect/filters/volume/__pycache__/volume_filter.cpython-311.pyc +0 -0
  87. cellfinder/core/detect/filters/volume/__pycache__/volume_filter.cpython-312.pyc +0 -0
  88. cellfinder/core/detect/filters/volume/ball_filter.py +198 -113
  89. cellfinder/core/detect/filters/volume/structure_detection.py +105 -41
  90. cellfinder/core/detect/filters/volume/structure_splitting.py +1 -1
  91. cellfinder/core/detect/filters/volume/volume_filter.py +48 -49
  92. cellfinder/core/download/__pycache__/__init__.cpython-310.pyc +0 -0
  93. cellfinder/core/download/__pycache__/__init__.cpython-311.pyc +0 -0
  94. cellfinder/core/download/__pycache__/__init__.cpython-312.pyc +0 -0
  95. cellfinder/core/download/__pycache__/cli.cpython-310.pyc +0 -0
  96. cellfinder/core/download/__pycache__/cli.cpython-312.pyc +0 -0
  97. cellfinder/core/download/__pycache__/download.cpython-310.pyc +0 -0
  98. cellfinder/core/download/__pycache__/download.cpython-311.pyc +0 -0
  99. cellfinder/core/download/__pycache__/download.cpython-312.pyc +0 -0
  100. cellfinder/core/download/cli.py +39 -32
  101. cellfinder/core/download/download.py +44 -56
  102. cellfinder/core/main.py +52 -67
  103. cellfinder/core/tools/__pycache__/IO.cpython-310.pyc +0 -0
  104. cellfinder/core/tools/__pycache__/__init__.cpython-310.pyc +0 -0
  105. cellfinder/core/tools/__pycache__/__init__.cpython-311.pyc +0 -0
  106. cellfinder/core/tools/__pycache__/__init__.cpython-312.pyc +0 -0
  107. cellfinder/core/tools/__pycache__/array_operations.cpython-310.pyc +0 -0
  108. cellfinder/core/tools/__pycache__/array_operations.cpython-311.pyc +0 -0
  109. cellfinder/core/tools/__pycache__/array_operations.cpython-312.pyc +0 -0
  110. cellfinder/core/tools/__pycache__/geometry.cpython-310.pyc +0 -0
  111. cellfinder/core/tools/__pycache__/geometry.cpython-311.pyc +0 -0
  112. cellfinder/core/tools/__pycache__/geometry.cpython-312.pyc +0 -0
  113. cellfinder/core/tools/__pycache__/image_processing.cpython-310.pyc +0 -0
  114. cellfinder/core/tools/__pycache__/image_processing.cpython-312.pyc +0 -0
  115. cellfinder/core/tools/__pycache__/prep.cpython-310.pyc +0 -0
  116. cellfinder/core/tools/__pycache__/prep.cpython-311.pyc +0 -0
  117. cellfinder/core/tools/__pycache__/prep.cpython-312.pyc +0 -0
  118. cellfinder/core/tools/__pycache__/source_files.cpython-310.pyc +0 -0
  119. cellfinder/core/tools/__pycache__/source_files.cpython-311.pyc +0 -0
  120. cellfinder/core/tools/__pycache__/source_files.cpython-312.pyc +0 -0
  121. cellfinder/core/tools/__pycache__/system.cpython-310.pyc +0 -0
  122. cellfinder/core/tools/__pycache__/system.cpython-312.pyc +0 -0
  123. cellfinder/core/tools/__pycache__/tf.cpython-310.pyc +0 -0
  124. cellfinder/core/tools/__pycache__/tiff.cpython-310.pyc +0 -0
  125. cellfinder/core/tools/__pycache__/tiff.cpython-312.pyc +0 -0
  126. cellfinder/core/tools/__pycache__/tools.cpython-310.pyc +0 -0
  127. cellfinder/core/tools/__pycache__/tools.cpython-311.pyc +0 -0
  128. cellfinder/core/tools/__pycache__/tools.cpython-312.pyc +0 -0
  129. cellfinder/core/tools/prep.py +12 -20
  130. cellfinder/core/tools/source_files.py +5 -3
  131. cellfinder/core/train/__pycache__/__init__.cpython-310.pyc +0 -0
  132. cellfinder/core/train/__pycache__/__init__.cpython-311.pyc +0 -0
  133. cellfinder/core/train/__pycache__/__init__.cpython-312.pyc +0 -0
  134. cellfinder/core/train/__pycache__/train_yml.cpython-310.pyc +0 -0
  135. cellfinder/core/train/__pycache__/train_yml.cpython-311.pyc +0 -0
  136. cellfinder/core/train/__pycache__/train_yml.cpython-312.pyc +0 -0
  137. cellfinder/core/train/train_yml.py +29 -27
  138. cellfinder/napari/__pycache__/__init__.cpython-310.pyc +0 -0
  139. cellfinder/napari/__pycache__/__init__.cpython-311.pyc +0 -0
  140. cellfinder/napari/__pycache__/__init__.cpython-312.pyc +0 -0
  141. cellfinder/napari/__pycache__/curation.cpython-310.pyc +0 -0
  142. cellfinder/napari/__pycache__/curation.cpython-312.pyc +0 -0
  143. cellfinder/napari/__pycache__/input_container.cpython-310.pyc +0 -0
  144. cellfinder/napari/__pycache__/input_container.cpython-311.pyc +0 -0
  145. cellfinder/napari/__pycache__/input_container.cpython-312.pyc +0 -0
  146. cellfinder/napari/__pycache__/sample_data.cpython-310.pyc +0 -0
  147. cellfinder/napari/__pycache__/sample_data.cpython-312.pyc +0 -0
  148. cellfinder/napari/__pycache__/utils.cpython-310.pyc +0 -0
  149. cellfinder/napari/__pycache__/utils.cpython-311.pyc +0 -0
  150. cellfinder/napari/__pycache__/utils.cpython-312.pyc +0 -0
  151. cellfinder/napari/detect/__pycache__/__init__.cpython-310.pyc +0 -0
  152. cellfinder/napari/detect/__pycache__/__init__.cpython-311.pyc +0 -0
  153. cellfinder/napari/detect/__pycache__/__init__.cpython-312.pyc +0 -0
  154. cellfinder/napari/detect/__pycache__/detect.cpython-310.pyc +0 -0
  155. cellfinder/napari/detect/__pycache__/detect.cpython-311.pyc +0 -0
  156. cellfinder/napari/detect/__pycache__/detect.cpython-312.pyc +0 -0
  157. cellfinder/napari/detect/__pycache__/detect_containers.cpython-310.pyc +0 -0
  158. cellfinder/napari/detect/__pycache__/detect_containers.cpython-311.pyc +0 -0
  159. cellfinder/napari/detect/__pycache__/detect_containers.cpython-312.pyc +0 -0
  160. cellfinder/napari/detect/__pycache__/thread_worker.cpython-310.pyc +0 -0
  161. cellfinder/napari/detect/__pycache__/thread_worker.cpython-311.pyc +0 -0
  162. cellfinder/napari/detect/__pycache__/thread_worker.cpython-312.pyc +0 -0
  163. cellfinder/napari/detect/detect.py +252 -57
  164. cellfinder/napari/detect/detect_containers.py +9 -1
  165. cellfinder/napari/detect/thread_worker.py +14 -0
  166. cellfinder/napari/train/__pycache__/__init__.cpython-310.pyc +0 -0
  167. cellfinder/napari/train/__pycache__/__init__.cpython-312.pyc +0 -0
  168. cellfinder/napari/train/__pycache__/train.cpython-310.pyc +0 -0
  169. cellfinder/napari/train/__pycache__/train.cpython-312.pyc +0 -0
  170. cellfinder/napari/train/__pycache__/train_containers.cpython-310.pyc +0 -0
  171. cellfinder/napari/train/__pycache__/train_containers.cpython-312.pyc +0 -0
  172. cellfinder/napari/train/train.py +2 -9
  173. cellfinder/napari/train/train_containers.py +3 -3
  174. cellfinder/napari/utils.py +88 -47
  175. {cellfinder-1.1.3.dist-info → cellfinder-1.3.0rc0.dist-info}/METADATA +11 -11
  176. cellfinder-1.3.0rc0.dist-info/RECORD +211 -0
  177. cellfinder/core/download/models.py +0 -49
  178. cellfinder/core/tools/IO.py +0 -48
  179. cellfinder/core/tools/tf.py +0 -46
  180. cellfinder/napari/images/brainglobe.png +0 -0
  181. cellfinder-1.1.3.dist-info/RECORD +0 -63
  182. {cellfinder-1.1.3.dist-info → cellfinder-1.3.0rc0.dist-info}/LICENSE +0 -0
  183. {cellfinder-1.1.3.dist-info → cellfinder-1.3.0rc0.dist-info}/WHEEL +0 -0
  184. {cellfinder-1.1.3.dist-info → cellfinder-1.3.0rc0.dist-info}/entry_points.txt +0 -0
  185. {cellfinder-1.1.3.dist-info → cellfinder-1.3.0rc0.dist-info}/top_level.txt +0 -0
cellfinder/__init__.py CHANGED
@@ -1,24 +1,33 @@
1
+ import os
1
2
  from importlib.metadata import PackageNotFoundError, version
3
+ from pathlib import Path
2
4
 
5
+ # Check cellfinder is installed
3
6
  try:
4
7
  __version__ = version("cellfinder")
5
8
  except PackageNotFoundError as e:
6
9
  raise PackageNotFoundError("cellfinder package not installed") from e
7
10
 
8
- # If tensorflow is not present, tools cannot be used.
11
+ # If Keras is not present, tools cannot be used.
9
12
  # Throw an error in this case to prevent invocation of functions.
10
13
  try:
11
- TF_VERSION = version("tensorflow")
14
+ KERAS_VERSION = version("keras")
12
15
  except PackageNotFoundError as e:
13
- try:
14
- TF_VERSION = version("tensorflow-macos")
15
- except PackageNotFoundError as e:
16
- raise PackageNotFoundError(
17
- f"cellfinder tools cannot be invoked without tensorflow. "
18
- f"Please install tensorflow into your environment to use cellfinder tools. "
19
- f"For more information, please see "
20
- f"https://github.com/brainglobe/brainglobe-meta#readme."
21
- ) from e
16
+ raise PackageNotFoundError(
17
+ f"cellfinder tools cannot be invoked without Keras. "
18
+ f"Please install Keras with a backend into your environment "
19
+ f"to use cellfinder tools. "
20
+ f"For more information on Keras backends, please see "
21
+ f"https://keras.io/getting_started/#installing-keras-3."
22
+ f"For more information on brainglobe, please see "
23
+ f"https://github.com/brainglobe/brainglobe-meta#readme."
24
+ ) from e
25
+
26
+
27
+ # Set the Keras backend to torch
28
+ os.environ["KERAS_BACKEND"] = "torch"
22
29
 
23
30
  __author__ = "Adam Tyson, Christian Niedworok, Charly Rousseau"
24
31
  __license__ = "BSD-3-Clause"
32
+
33
+ DEFAULT_CELLFINDER_DIRECTORY = Path.home() / ".brainglobe" / "cellfinder"
@@ -1,10 +1,10 @@
1
1
  import os
2
2
  from typing import Any, Callable, Dict, List, Optional, Tuple
3
3
 
4
+ import keras
4
5
  import numpy as np
5
6
  from brainglobe_utils.cells.cells import Cell
6
7
  from brainglobe_utils.general.system import get_num_processes
7
- from tensorflow import keras
8
8
 
9
9
  from cellfinder.core import logger, types
10
10
  from cellfinder.core.classify.cube_generator import CubeGeneratorFromFile
@@ -48,9 +48,7 @@ def main(
48
48
  callbacks = None
49
49
 
50
50
  # Too many workers doesn't increase speed, and uses huge amounts of RAM
51
- workers = get_num_processes(
52
- min_free_cpu_cores=n_free_cpus, n_max_processes=max_workers
53
- )
51
+ workers = get_num_processes(min_free_cpu_cores=n_free_cpus)
54
52
 
55
53
  logger.debug("Initialising cube generator")
56
54
  inference_generator = CubeGeneratorFromFile(
@@ -63,6 +61,8 @@ def main(
63
61
  cube_width=cube_width,
64
62
  cube_height=cube_height,
65
63
  cube_depth=cube_depth,
64
+ use_multiprocessing=False,
65
+ workers=workers,
66
66
  )
67
67
 
68
68
  model = get_model(
@@ -73,10 +73,9 @@ def main(
73
73
  )
74
74
 
75
75
  logger.info("Running inference")
76
+ # in Keras 3.0 multiprocessing params are specified in the generator
76
77
  predictions = model.predict(
77
78
  inference_generator,
78
- use_multiprocessing=True,
79
- workers=workers,
80
79
  verbose=True,
81
80
  callbacks=callbacks,
82
81
  )
@@ -2,13 +2,13 @@ from pathlib import Path
2
2
  from random import shuffle
3
3
  from typing import Dict, List, Optional, Tuple, Union
4
4
 
5
+ import keras
5
6
  import numpy as np
6
- import tensorflow as tf
7
7
  from brainglobe_utils.cells.cells import Cell, group_cells_by_z
8
8
  from brainglobe_utils.general.numerical import is_even
9
+ from keras.utils import Sequence
9
10
  from scipy.ndimage import zoom
10
11
  from skimage.io import imread
11
- from tensorflow.keras.utils import Sequence
12
12
 
13
13
  from cellfinder.core import types
14
14
  from cellfinder.core.classify.augment import AugmentationParameters, augment
@@ -56,7 +56,14 @@ class CubeGeneratorFromFile(Sequence):
56
56
  translate: Tuple[float, float, float] = (0.05, 0.05, 0.05),
57
57
  shuffle: bool = False,
58
58
  interpolation_order: int = 2,
59
+ *args,
60
+ **kwargs,
59
61
  ):
62
+ # pass any additional arguments not specified in signature to the
63
+ # constructor of the superclass (e.g.: `use_multiprocessing` or
64
+ # `workers`)
65
+ super().__init__(*args, **kwargs)
66
+
60
67
  self.points = points
61
68
  self.signal_array = signal_array
62
69
  self.background_array = background_array
@@ -218,10 +225,10 @@ class CubeGeneratorFromFile(Sequence):
218
225
 
219
226
  if self.train:
220
227
  batch_labels = [cell.type - 1 for cell in cell_batch]
221
- batch_labels = tf.keras.utils.to_categorical(
228
+ batch_labels = keras.utils.to_categorical(
222
229
  batch_labels, num_classes=self.classes
223
230
  )
224
- return images, batch_labels
231
+ return images, batch_labels.astype(np.float32)
225
232
  elif self.extract:
226
233
  batch_info = self.__get_batch_dict(cell_batch)
227
234
  return images, batch_info
@@ -252,7 +259,8 @@ class CubeGeneratorFromFile(Sequence):
252
259
  (number_images,)
253
260
  + (self.cube_height, self.cube_width, self.cube_depth)
254
261
  + (self.channels,)
255
- )
262
+ ),
263
+ dtype=np.float32,
256
264
  )
257
265
 
258
266
  for idx, cell in enumerate(cell_batch):
@@ -350,7 +358,14 @@ class CubeGeneratorFromDisk(Sequence):
350
358
  translate: Tuple[float, float, float] = (0.2, 0.2, 0.2),
351
359
  train: bool = False, # also return labels
352
360
  interpolation_order: int = 2,
361
+ *args,
362
+ **kwargs,
353
363
  ):
364
+ # pass any additional arguments not specified in signature to the
365
+ # constructor of the superclass (e.g.: `use_multiprocessing` or
366
+ # `workers`)
367
+ super().__init__(*args, **kwargs)
368
+
354
369
  self.im_shape = shape
355
370
  self.batch_size = batch_size
356
371
  self.labels = labels
@@ -410,10 +425,10 @@ class CubeGeneratorFromDisk(Sequence):
410
425
 
411
426
  if self.train and self.labels is not None:
412
427
  batch_labels = [self.labels[k] for k in indexes]
413
- batch_labels = tf.keras.utils.to_categorical(
428
+ batch_labels = keras.utils.to_categorical(
414
429
  batch_labels, num_classes=self.classes
415
430
  )
416
- return images, batch_labels
431
+ return images, batch_labels.astype(np.float32)
417
432
  else:
418
433
  return images
419
434
 
@@ -424,7 +439,8 @@ class CubeGeneratorFromDisk(Sequence):
424
439
  ) -> np.ndarray:
425
440
  number_images = len(list_signal_tmp)
426
441
  images = np.empty(
427
- ((number_images,) + self.im_shape + (self.channels,))
442
+ ((number_images,) + self.im_shape + (self.channels,)),
443
+ dtype=np.float32,
428
444
  )
429
445
 
430
446
  for idx, signal_im in enumerate(list_signal_tmp):
@@ -433,7 +449,7 @@ class CubeGeneratorFromDisk(Sequence):
433
449
  images, idx, signal_im, background_im
434
450
  )
435
451
 
436
- return images.astype(np.float16)
452
+ return images
437
453
 
438
454
  def __populate_array_with_cubes(
439
455
  self,
@@ -1,9 +1,11 @@
1
1
  from typing import Callable, Dict, List, Literal, Optional, Tuple, Union
2
2
 
3
- from tensorflow import Tensor
4
- from tensorflow.keras import Model
5
- from tensorflow.keras.initializers import Initializer
6
- from tensorflow.keras.layers import (
3
+ from keras import (
4
+ KerasTensor as Tensor,
5
+ )
6
+ from keras import Model
7
+ from keras.initializers import Initializer
8
+ from keras.layers import (
7
9
  Activation,
8
10
  Add,
9
11
  BatchNormalization,
@@ -14,7 +16,7 @@ from tensorflow.keras.layers import (
14
16
  MaxPooling3D,
15
17
  ZeroPadding3D,
16
18
  )
17
- from tensorflow.keras.optimizers import Adam, Optimizer
19
+ from keras.optimizers import Adam, Optimizer
18
20
 
19
21
  #####################################################################
20
22
  # Define the types of ResNet
@@ -113,7 +115,7 @@ def non_residual_block(
113
115
  activation: str = "relu",
114
116
  use_bias: bool = False,
115
117
  bn_epsilon: float = 1e-5,
116
- pooling_padding: str = "same",
118
+ pooling_padding: str = "valid",
117
119
  axis: int = 3,
118
120
  ) -> Tensor:
119
121
  """
@@ -131,6 +133,7 @@ def non_residual_block(
131
133
  )(x)
132
134
  x = BatchNormalization(axis=axis, epsilon=bn_epsilon, name="conv1_bn")(x)
133
135
  x = Activation(activation, name="conv1_activation")(x)
136
+
134
137
  x = MaxPooling3D(
135
138
  max_pool_size,
136
139
  strides=strides,
@@ -1,9 +1,10 @@
1
1
  import os
2
- from typing import List, Optional, Sequence, Tuple, Union
2
+ from collections.abc import Sequence
3
+ from typing import List, Optional, Tuple, Union
3
4
 
5
+ import keras
4
6
  import numpy as np
5
- import tensorflow as tf
6
- from tensorflow.keras import Model
7
+ from keras import Model
7
8
 
8
9
  from cellfinder.core import logger
9
10
  from cellfinder.core.classify.resnet import build_model, layer_type
@@ -17,8 +18,7 @@ def get_model(
17
18
  inference: bool = False,
18
19
  continue_training: bool = False,
19
20
  ) -> Model:
20
- """
21
- Returns the correct model based on the arguments passed
21
+ """Returns the correct model based on the arguments passed
22
22
  :param existing_model: An existing, trained model. This is returned if it
23
23
  exists
24
24
  :param model_weights: This file is used to set the model weights if it
@@ -30,29 +30,31 @@ def get_model(
30
30
  by using the default one
31
31
  :param continue_training: If True, will ensure that a trained model
32
32
  exists. E.g. by using the default one
33
- :return: A tf.keras model
33
+ :return: A keras model
34
34
 
35
35
  """
36
36
  if existing_model is not None or network_depth is None:
37
37
  logger.debug(f"Loading model: {existing_model}")
38
- return tf.keras.models.load_model(existing_model)
38
+ return keras.models.load_model(existing_model)
39
39
  else:
40
40
  logger.debug(f"Creating a new instance of model: {network_depth}")
41
41
  model = build_model(
42
- network_depth=network_depth, learning_rate=learning_rate
42
+ network_depth=network_depth,
43
+ learning_rate=learning_rate,
43
44
  )
44
45
  if inference or continue_training:
45
46
  logger.debug(
46
- f"Setting model weights according to: {model_weights}"
47
+ f"Setting model weights according to: {model_weights}",
47
48
  )
48
49
  if model_weights is None:
49
- raise IOError("`model_weights` must be provided")
50
+ raise OSError("`model_weights` must be provided")
50
51
  model.load_weights(model_weights)
51
52
  return model
52
53
 
53
54
 
54
55
  def make_lists(
55
- tiff_files: Sequence, train: bool = True
56
+ tiff_files: Sequence,
57
+ train: bool = True,
56
58
  ) -> Union[Tuple[List, List], Tuple[List, List, np.ndarray]]:
57
59
  signal_list = []
58
60
  background_list = []
@@ -0,0 +1,3 @@
1
+ [model]
2
+ model_path = '/home/adam/.cellfinder/model_weights/resnet50_tv.h5'
3
+ model_type = '50-layer'
@@ -22,6 +22,7 @@ from typing import Callable, List, Optional, Sequence, Tuple, TypeVar
22
22
  import numpy as np
23
23
  from brainglobe_utils.cells.cells import Cell
24
24
  from brainglobe_utils.general.system import get_num_processes
25
+ from numba import set_num_threads
25
26
 
26
27
  from cellfinder.core import logger, types
27
28
  from cellfinder.core.detect.filters.plane import TileProcessor
@@ -157,6 +158,13 @@ def main(
157
158
  )
158
159
  n_processes = get_num_processes(min_free_cpu_cores=n_free_cpus)
159
160
  n_ball_procs = max(n_processes - 1, 1)
161
+
162
+ # we parallelize 2d filtering, which typically lags behind the 3d
163
+ # processing so for n_ball_procs 2d filtering threads, ball_z_size will
164
+ # typically be in use while the others stall waiting for 3d processing
165
+ # so we can use those for other things, such as numba threading
166
+ set_num_threads(max(n_ball_procs - int(ball_z_size), 1))
167
+
160
168
  start_time = datetime.now()
161
169
 
162
170
  (
@@ -236,7 +244,10 @@ def main(
236
244
  # then 3D filtering has finished. As batches of planes are filtered
237
245
  # by the 3D filter, it releases the locks of subsequent 2D filter
238
246
  # processes.
239
- cells = mp_3d_filter.process(async_results, locks, callback=callback)
247
+ mp_3d_filter.process(async_results, locks, callback=callback)
248
+
249
+ # it's now done filtering, get results with pool
250
+ cells = mp_3d_filter.get_results(worker_pool)
240
251
 
241
252
  time_elapsed = datetime.now() - start_time
242
253
  logger.debug(