celldetective 1.4.2__py3-none-any.whl → 1.5.0b1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- celldetective/__init__.py +25 -0
- celldetective/__main__.py +62 -43
- celldetective/_version.py +1 -1
- celldetective/extra_properties.py +477 -399
- celldetective/filters.py +192 -97
- celldetective/gui/InitWindow.py +541 -411
- celldetective/gui/__init__.py +0 -15
- celldetective/gui/about.py +44 -39
- celldetective/gui/analyze_block.py +120 -84
- celldetective/gui/base/__init__.py +0 -0
- celldetective/gui/base/channel_norm_generator.py +335 -0
- celldetective/gui/base/components.py +249 -0
- celldetective/gui/base/feature_choice.py +92 -0
- celldetective/gui/base/figure_canvas.py +52 -0
- celldetective/gui/base/list_widget.py +133 -0
- celldetective/gui/{styles.py → base/styles.py} +92 -36
- celldetective/gui/base/utils.py +33 -0
- celldetective/gui/base_annotator.py +900 -767
- celldetective/gui/classifier_widget.py +6 -22
- celldetective/gui/configure_new_exp.py +777 -671
- celldetective/gui/control_panel.py +635 -524
- celldetective/gui/dynamic_progress.py +449 -0
- celldetective/gui/event_annotator.py +2023 -1662
- celldetective/gui/generic_signal_plot.py +1292 -944
- celldetective/gui/gui_utils.py +899 -1289
- celldetective/gui/interactions_block.py +658 -0
- celldetective/gui/interactive_timeseries_viewer.py +447 -0
- celldetective/gui/json_readers.py +48 -15
- celldetective/gui/layouts/__init__.py +5 -0
- celldetective/gui/layouts/background_model_free_layout.py +537 -0
- celldetective/gui/layouts/channel_offset_layout.py +134 -0
- celldetective/gui/layouts/local_correction_layout.py +91 -0
- celldetective/gui/layouts/model_fit_layout.py +372 -0
- celldetective/gui/layouts/operation_layout.py +68 -0
- celldetective/gui/layouts/protocol_designer_layout.py +96 -0
- celldetective/gui/pair_event_annotator.py +3130 -2435
- celldetective/gui/plot_measurements.py +586 -267
- celldetective/gui/plot_signals_ui.py +724 -506
- celldetective/gui/preprocessing_block.py +395 -0
- celldetective/gui/process_block.py +1678 -1831
- celldetective/gui/seg_model_loader.py +580 -473
- celldetective/gui/settings/__init__.py +0 -7
- celldetective/gui/settings/_cellpose_model_params.py +181 -0
- celldetective/gui/settings/_event_detection_model_params.py +95 -0
- celldetective/gui/settings/_segmentation_model_params.py +159 -0
- celldetective/gui/settings/_settings_base.py +77 -65
- celldetective/gui/settings/_settings_event_model_training.py +752 -526
- celldetective/gui/settings/_settings_measurements.py +1133 -964
- celldetective/gui/settings/_settings_neighborhood.py +574 -488
- celldetective/gui/settings/_settings_segmentation_model_training.py +779 -564
- celldetective/gui/settings/_settings_signal_annotator.py +329 -305
- celldetective/gui/settings/_settings_tracking.py +1304 -1094
- celldetective/gui/settings/_stardist_model_params.py +98 -0
- celldetective/gui/survival_ui.py +422 -312
- celldetective/gui/tableUI.py +1665 -1701
- celldetective/gui/table_ops/_maths.py +295 -0
- celldetective/gui/table_ops/_merge_groups.py +140 -0
- celldetective/gui/table_ops/_merge_one_hot.py +95 -0
- celldetective/gui/table_ops/_query_table.py +43 -0
- celldetective/gui/table_ops/_rename_col.py +44 -0
- celldetective/gui/thresholds_gui.py +382 -179
- celldetective/gui/viewers/__init__.py +0 -0
- celldetective/gui/viewers/base_viewer.py +700 -0
- celldetective/gui/viewers/channel_offset_viewer.py +331 -0
- celldetective/gui/viewers/contour_viewer.py +394 -0
- celldetective/gui/viewers/size_viewer.py +153 -0
- celldetective/gui/viewers/spot_detection_viewer.py +341 -0
- celldetective/gui/viewers/threshold_viewer.py +309 -0
- celldetective/gui/workers.py +403 -126
- celldetective/log_manager.py +92 -0
- celldetective/measure.py +1895 -1478
- celldetective/napari/__init__.py +0 -0
- celldetective/napari/utils.py +1025 -0
- celldetective/neighborhood.py +1914 -1448
- celldetective/preprocessing.py +1620 -1220
- celldetective/processes/__init__.py +0 -0
- celldetective/processes/background_correction.py +271 -0
- celldetective/processes/compute_neighborhood.py +894 -0
- celldetective/processes/detect_events.py +246 -0
- celldetective/processes/downloader.py +137 -0
- celldetective/processes/measure_cells.py +565 -0
- celldetective/processes/segment_cells.py +760 -0
- celldetective/processes/track_cells.py +435 -0
- celldetective/processes/train_segmentation_model.py +694 -0
- celldetective/processes/train_signal_model.py +265 -0
- celldetective/processes/unified_process.py +292 -0
- celldetective/regionprops/_regionprops.py +358 -317
- celldetective/relative_measurements.py +987 -710
- celldetective/scripts/measure_cells.py +313 -212
- celldetective/scripts/measure_relative.py +90 -46
- celldetective/scripts/segment_cells.py +165 -104
- celldetective/scripts/segment_cells_thresholds.py +96 -68
- celldetective/scripts/track_cells.py +198 -149
- celldetective/scripts/train_segmentation_model.py +324 -201
- celldetective/scripts/train_signal_model.py +87 -45
- celldetective/segmentation.py +844 -749
- celldetective/signals.py +3514 -2861
- celldetective/tracking.py +30 -15
- celldetective/utils/__init__.py +0 -0
- celldetective/utils/cellpose_utils/__init__.py +133 -0
- celldetective/utils/color_mappings.py +42 -0
- celldetective/utils/data_cleaning.py +630 -0
- celldetective/utils/data_loaders.py +450 -0
- celldetective/utils/dataset_helpers.py +207 -0
- celldetective/utils/downloaders.py +235 -0
- celldetective/utils/event_detection/__init__.py +8 -0
- celldetective/utils/experiment.py +1782 -0
- celldetective/utils/image_augmenters.py +308 -0
- celldetective/utils/image_cleaning.py +74 -0
- celldetective/utils/image_loaders.py +926 -0
- celldetective/utils/image_transforms.py +335 -0
- celldetective/utils/io.py +62 -0
- celldetective/utils/mask_cleaning.py +348 -0
- celldetective/utils/mask_transforms.py +5 -0
- celldetective/utils/masks.py +184 -0
- celldetective/utils/maths.py +351 -0
- celldetective/utils/model_getters.py +325 -0
- celldetective/utils/model_loaders.py +296 -0
- celldetective/utils/normalization.py +380 -0
- celldetective/utils/parsing.py +465 -0
- celldetective/utils/plots/__init__.py +0 -0
- celldetective/utils/plots/regression.py +53 -0
- celldetective/utils/resources.py +34 -0
- celldetective/utils/stardist_utils/__init__.py +104 -0
- celldetective/utils/stats.py +90 -0
- celldetective/utils/types.py +21 -0
- {celldetective-1.4.2.dist-info → celldetective-1.5.0b1.dist-info}/METADATA +1 -1
- celldetective-1.5.0b1.dist-info/RECORD +187 -0
- {celldetective-1.4.2.dist-info → celldetective-1.5.0b1.dist-info}/WHEEL +1 -1
- tests/gui/test_new_project.py +129 -117
- tests/gui/test_project.py +127 -79
- tests/test_filters.py +39 -15
- tests/test_notebooks.py +8 -0
- tests/test_tracking.py +232 -13
- tests/test_utils.py +123 -77
- celldetective/gui/base_components.py +0 -23
- celldetective/gui/layouts.py +0 -1602
- celldetective/gui/processes/compute_neighborhood.py +0 -594
- celldetective/gui/processes/downloader.py +0 -111
- celldetective/gui/processes/measure_cells.py +0 -360
- celldetective/gui/processes/segment_cells.py +0 -499
- celldetective/gui/processes/track_cells.py +0 -303
- celldetective/gui/processes/train_segmentation_model.py +0 -270
- celldetective/gui/processes/train_signal_model.py +0 -108
- celldetective/gui/table_ops/merge_groups.py +0 -118
- celldetective/gui/viewers.py +0 -1354
- celldetective/io.py +0 -3663
- celldetective/utils.py +0 -3108
- celldetective-1.4.2.dist-info/RECORD +0 -123
- {celldetective-1.4.2.dist-info → celldetective-1.5.0b1.dist-info}/entry_points.txt +0 -0
- {celldetective-1.4.2.dist-info → celldetective-1.5.0b1.dist-info}/licenses/LICENSE +0 -0
- {celldetective-1.4.2.dist-info → celldetective-1.5.0b1.dist-info}/top_level.txt +0 -0
celldetective/gui/tableUI.py
CHANGED
|
@@ -1,499 +1,113 @@
|
|
|
1
|
-
from PyQt5.QtWidgets import
|
|
1
|
+
from PyQt5.QtWidgets import (
|
|
2
|
+
QRadioButton,
|
|
3
|
+
QButtonGroup,
|
|
4
|
+
QTableView,
|
|
5
|
+
QAction,
|
|
6
|
+
QMenu,
|
|
7
|
+
QFileDialog,
|
|
8
|
+
QHBoxLayout,
|
|
9
|
+
QPushButton,
|
|
10
|
+
QVBoxLayout,
|
|
11
|
+
QComboBox,
|
|
12
|
+
QLabel,
|
|
13
|
+
QCheckBox,
|
|
14
|
+
QMessageBox,
|
|
15
|
+
)
|
|
2
16
|
from PyQt5.QtCore import Qt
|
|
3
|
-
from PyQt5.QtGui import QBrush, QColor
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
from celldetective.gui.
|
|
11
|
-
|
|
12
|
-
from celldetective.
|
|
17
|
+
from PyQt5.QtGui import QBrush, QColor
|
|
18
|
+
|
|
19
|
+
from celldetective.gui.gui_utils import (
|
|
20
|
+
PandasModel,
|
|
21
|
+
)
|
|
22
|
+
from celldetective.gui.base.figure_canvas import FigureCanvas
|
|
23
|
+
from celldetective.gui.base.utils import center_window
|
|
24
|
+
from celldetective.gui.table_ops._maths import DifferentiateColWidget, OperationOnColsWidget, CalibrateColWidget, \
|
|
25
|
+
AbsColWidget, LogColWidget
|
|
26
|
+
from celldetective.gui.table_ops._merge_one_hot import MergeOneHotWidget
|
|
27
|
+
from celldetective.gui.table_ops._query_table import QueryWidget
|
|
28
|
+
from celldetective.gui.table_ops._rename_col import RenameColWidget
|
|
13
29
|
from celldetective.relative_measurements import expand_pair_table
|
|
30
|
+
from celldetective.utils.data_cleaning import collapse_trajectories_by_status
|
|
31
|
+
from celldetective.utils.stats import test_2samp_generic
|
|
14
32
|
import numpy as np
|
|
15
|
-
import seaborn as sns
|
|
16
|
-
import matplotlib.cm as mcm
|
|
17
33
|
import os
|
|
18
|
-
from celldetective.gui import
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
34
|
+
from celldetective.gui.base.components import (
|
|
35
|
+
CelldetectiveWidget,
|
|
36
|
+
CelldetectiveMainWindow,
|
|
37
|
+
QHSeperationLine,
|
|
38
|
+
)
|
|
39
|
+
from superqt import QColormapComboBox, QSearchableComboBox
|
|
22
40
|
from math import floor
|
|
41
|
+
from celldetective import get_logger
|
|
42
|
+
from celldetective.utils.types import test_bool_array
|
|
23
43
|
|
|
24
|
-
|
|
25
|
-
import matplotlib.cm
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
class QueryWidget(CelldetectiveWidget):
|
|
29
|
-
|
|
30
|
-
def __init__(self, parent_window):
|
|
31
|
-
|
|
32
|
-
super().__init__()
|
|
33
|
-
self.parent_window = parent_window
|
|
34
|
-
|
|
35
|
-
self.setWindowTitle("Filter table")
|
|
36
|
-
# Create the QComboBox and add some items
|
|
44
|
+
logger = get_logger(__name__)
|
|
37
45
|
|
|
38
|
-
layout = QHBoxLayout(self)
|
|
39
|
-
layout.setContentsMargins(30,30,30,30)
|
|
40
|
-
self.query_le = QLineEdit()
|
|
41
|
-
layout.addWidget(self.query_le, 70)
|
|
42
|
-
|
|
43
|
-
self.submit_btn = QPushButton('submit')
|
|
44
|
-
self.submit_btn.clicked.connect(self.filter_table)
|
|
45
|
-
layout.addWidget(self.submit_btn, 30)
|
|
46
|
-
center_window(self)
|
|
47
|
-
|
|
48
|
-
def filter_table(self):
|
|
49
|
-
try:
|
|
50
|
-
query_text = self.query_le.text() #.replace('class', '`class`')
|
|
51
|
-
tab = self.parent_window.data.query(query_text)
|
|
52
|
-
self.subtable = TableUI(tab, query_text, plot_mode="static", population=self.parent_window.population)
|
|
53
|
-
self.subtable.show()
|
|
54
|
-
self.close()
|
|
55
|
-
except Exception as e:
|
|
56
|
-
print(e)
|
|
57
|
-
return None
|
|
58
46
|
|
|
47
|
+
class PivotTableUI(CelldetectiveWidget):
|
|
59
48
|
|
|
60
|
-
|
|
49
|
+
def __init__(self, data, title="", mode=None, *args, **kwargs):
|
|
61
50
|
|
|
62
|
-
|
|
51
|
+
CelldetectiveWidget.__init__(self, *args, **kwargs)
|
|
63
52
|
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
53
|
+
self.data = data
|
|
54
|
+
self.title = title
|
|
55
|
+
self.mode = mode
|
|
67
56
|
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
center_window(self)
|
|
71
|
-
|
|
72
|
-
self.layout = QVBoxLayout(self)
|
|
73
|
-
self.layout.setContentsMargins(30,30,30,30)
|
|
74
|
-
|
|
75
|
-
if self.selected_columns is not None:
|
|
76
|
-
n_cols = len(self.selected_columns)
|
|
77
|
-
else:
|
|
78
|
-
n_cols = 2
|
|
79
|
-
|
|
80
|
-
name_hbox = QHBoxLayout()
|
|
81
|
-
name_hbox.addWidget(QLabel('New categorical column: '), 33)
|
|
82
|
-
self.new_col_le = QLineEdit()
|
|
83
|
-
self.new_col_le.setText('categorical_')
|
|
84
|
-
self.new_col_le.textChanged.connect(self.allow_merge)
|
|
85
|
-
name_hbox.addWidget(self.new_col_le, 66)
|
|
86
|
-
self.layout.addLayout(name_hbox)
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
self.layout.addWidget(QLabel('Source columns: '))
|
|
90
|
-
|
|
91
|
-
self.cbs = [QSearchableComboBox() for i in range(n_cols)]
|
|
92
|
-
self.cbs_layout = QVBoxLayout()
|
|
93
|
-
|
|
94
|
-
for i in range(n_cols):
|
|
95
|
-
lay = QHBoxLayout()
|
|
96
|
-
lay.addWidget(QLabel(f'column {i}: '), 33)
|
|
97
|
-
self.cbs[i].addItems(['--']+list(self.parent_window.data.columns))
|
|
98
|
-
if self.selected_columns is not None:
|
|
99
|
-
self.cbs[i].setCurrentText(self.selected_columns[i])
|
|
100
|
-
lay.addWidget(self.cbs[i], 66)
|
|
101
|
-
self.cbs_layout.addLayout(lay)
|
|
102
|
-
|
|
103
|
-
self.layout.addLayout(self.cbs_layout)
|
|
104
|
-
|
|
105
|
-
hbox = QHBoxLayout()
|
|
106
|
-
self.add_col_btn = QPushButton('Add column')
|
|
107
|
-
self.add_col_btn.clicked.connect(self.add_col)
|
|
108
|
-
self.add_col_btn.setStyleSheet(self.button_add)
|
|
109
|
-
self.add_col_btn.setIcon(icon(MDI6.plus,color="black"))
|
|
110
|
-
|
|
111
|
-
hbox.addWidget(QLabel(''), 50)
|
|
112
|
-
hbox.addWidget(self.add_col_btn, 50, alignment=Qt.AlignRight)
|
|
113
|
-
self.layout.addLayout(hbox)
|
|
114
|
-
|
|
115
|
-
self.submit_btn = QPushButton('Merge')
|
|
116
|
-
self.submit_btn.setStyleSheet(self.button_style_sheet)
|
|
117
|
-
self.submit_btn.clicked.connect(self.merge_cols)
|
|
118
|
-
self.layout.addWidget(self.submit_btn, 30)
|
|
119
|
-
|
|
120
|
-
self.setAttribute(Qt.WA_DeleteOnClose)
|
|
121
|
-
|
|
122
|
-
def add_col(self):
|
|
123
|
-
self.cbs.append(QSearchableComboBox())
|
|
124
|
-
self.cbs[-1].addItems(['--']+list(self.parent_window.data.columns))
|
|
125
|
-
lay = QHBoxLayout()
|
|
126
|
-
lay.addWidget(QLabel(f'column {len(self.cbs)-1}: '), 33)
|
|
127
|
-
lay.addWidget(self.cbs[-1], 66)
|
|
128
|
-
self.cbs_layout.addLayout(lay)
|
|
129
|
-
|
|
130
|
-
def merge_cols(self):
|
|
131
|
-
|
|
132
|
-
self.parent_window.data[self.new_col_le.text()] = self.parent_window.data.loc[:,list(self.selected_columns)].idxmax(axis=1)
|
|
133
|
-
self.parent_window.model = PandasModel(self.parent_window.data)
|
|
134
|
-
self.parent_window.table_view.setModel(self.parent_window.model)
|
|
135
|
-
self.close()
|
|
136
|
-
|
|
137
|
-
def allow_merge(self):
|
|
138
|
-
|
|
139
|
-
if self.new_col_le.text()=='':
|
|
140
|
-
self.submit_btn.setEnabled(False)
|
|
141
|
-
else:
|
|
142
|
-
self.submit_btn.setEnabled(True)
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
class DifferentiateColWidget(CelldetectiveWidget):
|
|
146
|
-
|
|
147
|
-
def __init__(self, parent_window, column=None):
|
|
148
|
-
|
|
149
|
-
super().__init__()
|
|
150
|
-
self.parent_window = parent_window
|
|
151
|
-
self.column = column
|
|
152
|
-
|
|
153
|
-
self.setWindowTitle("d/dt")
|
|
154
|
-
# Create the QComboBox and add some items
|
|
155
|
-
center_window(self)
|
|
156
|
-
|
|
157
|
-
layout = QVBoxLayout(self)
|
|
158
|
-
layout.setContentsMargins(30,30,30,30)
|
|
159
|
-
|
|
160
|
-
self.measurements_cb = QComboBox()
|
|
161
|
-
self.measurements_cb.addItems(list(self.parent_window.data.columns))
|
|
162
|
-
if self.column is not None:
|
|
163
|
-
idx = self.measurements_cb.findText(self.column)
|
|
164
|
-
self.measurements_cb.setCurrentIndex(idx)
|
|
165
|
-
|
|
166
|
-
measurement_layout = QHBoxLayout()
|
|
167
|
-
measurement_layout.addWidget(QLabel('measurements: '), 25)
|
|
168
|
-
measurement_layout.addWidget(self.measurements_cb, 75)
|
|
169
|
-
layout.addLayout(measurement_layout)
|
|
170
|
-
|
|
171
|
-
self.window_size_slider = QLabeledSlider()
|
|
172
|
-
self.window_size_slider.setRange(1,int(np.nanmax(self.parent_window.data.FRAME.to_numpy())))
|
|
173
|
-
self.window_size_slider.setValue(3)
|
|
174
|
-
window_layout = QHBoxLayout()
|
|
175
|
-
window_layout.addWidget(QLabel('window size: '), 25)
|
|
176
|
-
window_layout.addWidget(self.window_size_slider, 75)
|
|
177
|
-
layout.addLayout(window_layout)
|
|
178
|
-
|
|
179
|
-
self.backward_btn = QRadioButton('backward')
|
|
180
|
-
self.bi_btn = QRadioButton('bi')
|
|
181
|
-
self.bi_btn.click()
|
|
182
|
-
self.forward_btn = QRadioButton('forward')
|
|
183
|
-
self.mode_btn_group = QButtonGroup()
|
|
184
|
-
self.mode_btn_group.addButton(self.backward_btn)
|
|
185
|
-
self.mode_btn_group.addButton(self.bi_btn)
|
|
186
|
-
self.mode_btn_group.addButton(self.forward_btn)
|
|
187
|
-
|
|
188
|
-
mode_layout = QHBoxLayout()
|
|
189
|
-
mode_layout.addWidget(QLabel('mode: '),25)
|
|
190
|
-
mode_sublayout = QHBoxLayout()
|
|
191
|
-
mode_sublayout.addWidget(self.backward_btn, 33, alignment=Qt.AlignCenter)
|
|
192
|
-
mode_sublayout.addWidget(self.bi_btn, 33, alignment=Qt.AlignCenter)
|
|
193
|
-
mode_sublayout.addWidget(self.forward_btn, 33, alignment=Qt.AlignCenter)
|
|
194
|
-
mode_layout.addLayout(mode_sublayout, 75)
|
|
195
|
-
layout.addLayout(mode_layout)
|
|
196
|
-
|
|
197
|
-
self.submit_btn = QPushButton('Compute')
|
|
198
|
-
self.submit_btn.setStyleSheet(self.button_style_sheet)
|
|
199
|
-
self.submit_btn.clicked.connect(self.compute_derivative_and_add_new_column)
|
|
200
|
-
layout.addWidget(self.submit_btn, 30)
|
|
201
|
-
|
|
202
|
-
self.setAttribute(Qt.WA_DeleteOnClose)
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
def compute_derivative_and_add_new_column(self):
|
|
206
|
-
|
|
207
|
-
if self.bi_btn.isChecked():
|
|
208
|
-
mode = 'bi'
|
|
209
|
-
elif self.forward_btn.isChecked():
|
|
210
|
-
mode = 'forward'
|
|
211
|
-
elif self.backward_btn.isChecked():
|
|
212
|
-
mode = 'backward'
|
|
213
|
-
self.parent_window.data = differentiate_per_track(self.parent_window.data,
|
|
214
|
-
self.measurements_cb.currentText(),
|
|
215
|
-
window_size=self.window_size_slider.value(),
|
|
216
|
-
mode=mode)
|
|
217
|
-
self.parent_window.model = PandasModel(self.parent_window.data)
|
|
218
|
-
self.parent_window.table_view.setModel(self.parent_window.model)
|
|
219
|
-
self.close()
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
class OperationOnColsWidget(CelldetectiveWidget):
|
|
224
|
-
|
|
225
|
-
def __init__(self, parent_window, column1=None, column2=None, operation='divide'):
|
|
226
|
-
|
|
227
|
-
super().__init__()
|
|
228
|
-
self.parent_window = parent_window
|
|
229
|
-
self.column1 = column1
|
|
230
|
-
self.column2 = column2
|
|
231
|
-
self.operation = operation
|
|
232
|
-
|
|
233
|
-
self.setWindowTitle(self.operation)
|
|
234
|
-
# Create the QComboBox and add some items
|
|
235
|
-
center_window(self)
|
|
236
|
-
|
|
237
|
-
layout = QVBoxLayout(self)
|
|
238
|
-
layout.setContentsMargins(30,30,30,30)
|
|
239
|
-
|
|
240
|
-
self.col1_cb = QComboBox()
|
|
241
|
-
self.col1_cb.addItems(list(self.parent_window.data.columns))
|
|
242
|
-
if self.column1 is not None:
|
|
243
|
-
idx = self.col1_cb.findText(self.column1)
|
|
244
|
-
self.col1_cb.setCurrentIndex(idx)
|
|
245
|
-
|
|
246
|
-
numerator_layout = QHBoxLayout()
|
|
247
|
-
numerator_layout.addWidget(QLabel('column 1: '), 25)
|
|
248
|
-
numerator_layout.addWidget(self.col1_cb, 75)
|
|
249
|
-
layout.addLayout(numerator_layout)
|
|
250
|
-
|
|
251
|
-
self.col2_cb = QComboBox()
|
|
252
|
-
self.col2_cb.addItems(list(self.parent_window.data.columns))
|
|
253
|
-
if self.column2 is not None:
|
|
254
|
-
idx = self.col2_cb.findText(self.column2)
|
|
255
|
-
self.col2_cb.setCurrentIndex(idx)
|
|
256
|
-
|
|
257
|
-
denominator_layout = QHBoxLayout()
|
|
258
|
-
denominator_layout.addWidget(QLabel('column 2: '), 25)
|
|
259
|
-
denominator_layout.addWidget(self.col2_cb, 75)
|
|
260
|
-
layout.addLayout(denominator_layout)
|
|
261
|
-
|
|
262
|
-
self.submit_btn = QPushButton('Compute')
|
|
263
|
-
self.submit_btn.setStyleSheet(self.button_style_sheet)
|
|
264
|
-
self.submit_btn.clicked.connect(self.compute)
|
|
265
|
-
layout.addWidget(self.submit_btn, 30)
|
|
266
|
-
|
|
267
|
-
self.setAttribute(Qt.WA_DeleteOnClose)
|
|
268
|
-
|
|
269
|
-
def compute(self):
|
|
270
|
-
|
|
271
|
-
test = self._check_cols_before_operation()
|
|
272
|
-
if not test:
|
|
273
|
-
msgBox = QMessageBox()
|
|
274
|
-
msgBox.setIcon(QMessageBox.Warning)
|
|
275
|
-
msgBox.setText(f"Operation could not be performed, one of the column types is object...")
|
|
276
|
-
msgBox.setWindowTitle("Warning")
|
|
277
|
-
msgBox.setStandardButtons(QMessageBox.Ok)
|
|
278
|
-
returnValue = msgBox.exec()
|
|
279
|
-
if returnValue == QMessageBox.Ok:
|
|
280
|
-
return None
|
|
281
|
-
else:
|
|
282
|
-
return None
|
|
283
|
-
else:
|
|
284
|
-
if self.operation=='divide':
|
|
285
|
-
name = f"{self.col1_txt}/{self.col2_txt}"
|
|
286
|
-
with np.errstate(divide='ignore', invalid='ignore'):
|
|
287
|
-
res = np.true_divide(self.col1, self.col2)
|
|
288
|
-
res[res == np.inf] = np.nan
|
|
289
|
-
res[self.col1!=self.col1] = np.nan
|
|
290
|
-
res[self.col2!=self.col2] = np.nan
|
|
291
|
-
self.parent_window.data[name] = res
|
|
292
|
-
|
|
293
|
-
elif self.operation=='multiply':
|
|
294
|
-
name = f"{self.col1_txt}*{self.col2_txt}"
|
|
295
|
-
res = np.multiply(self.col1, self.col2)
|
|
296
|
-
|
|
297
|
-
elif self.operation=='add':
|
|
298
|
-
name = f"{self.col1_txt}+{self.col2_txt}"
|
|
299
|
-
res = np.add(self.col1, self.col2)
|
|
300
|
-
|
|
301
|
-
elif self.operation=='subtract':
|
|
302
|
-
name = f"{self.col1_txt}-{self.col2_txt}"
|
|
303
|
-
res = np.subtract(self.col1, self.col2)
|
|
304
|
-
|
|
305
|
-
self.parent_window.data[name] = res
|
|
306
|
-
self.parent_window.model = PandasModel(self.parent_window.data)
|
|
307
|
-
self.parent_window.table_view.setModel(self.parent_window.model)
|
|
308
|
-
self.close()
|
|
309
|
-
|
|
310
|
-
def _check_cols_before_operation(self):
|
|
311
|
-
|
|
312
|
-
self.col1_txt = self.col1_cb.currentText()
|
|
313
|
-
self.col2_txt = self.col2_cb.currentText()
|
|
314
|
-
|
|
315
|
-
self.col1 = self.parent_window.data[self.col1_txt].to_numpy()
|
|
316
|
-
self.col2 = self.parent_window.data[self.col2_txt].to_numpy()
|
|
317
|
-
|
|
318
|
-
test = np.all([self.col1.dtype!='O', self.col2.dtype!='O'])
|
|
319
|
-
|
|
320
|
-
return test
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
class CalibrateColWidget(GenericOpColWidget):
|
|
324
|
-
|
|
325
|
-
def __init__(self, *args, **kwargs):
|
|
326
|
-
|
|
327
|
-
super().__init__(title="Calibrate data", *args, **kwargs)
|
|
328
|
-
|
|
329
|
-
self.floatValidator = QDoubleValidator()
|
|
330
|
-
self.calibration_factor_le = QLineEdit('1')
|
|
331
|
-
self.calibration_factor_le.setPlaceholderText('multiplicative calibration factor...')
|
|
332
|
-
self.calibration_factor_le.setValidator(self.floatValidator)
|
|
333
|
-
|
|
334
|
-
self.units_le = QLineEdit('um')
|
|
335
|
-
self.units_le.setPlaceholderText('units...')
|
|
336
|
-
|
|
337
|
-
self.calibration_factor_le.textChanged.connect(self.check_valid_params)
|
|
338
|
-
self.units_le.textChanged.connect(self.check_valid_params)
|
|
339
|
-
|
|
340
|
-
calib_layout = QHBoxLayout()
|
|
341
|
-
calib_layout.addWidget(QLabel('calibration factor: '), 33)
|
|
342
|
-
calib_layout.addWidget(self.calibration_factor_le, 66)
|
|
343
|
-
self.sublayout.addLayout(calib_layout)
|
|
344
|
-
|
|
345
|
-
units_layout = QHBoxLayout()
|
|
346
|
-
units_layout.addWidget(QLabel('units: '), 33)
|
|
347
|
-
units_layout.addWidget(self.units_le, 66)
|
|
348
|
-
self.sublayout.addLayout(units_layout)
|
|
349
|
-
|
|
350
|
-
# info_layout = QHBoxLayout()
|
|
351
|
-
# info_layout.addWidget(QLabel('For reference: '))
|
|
352
|
-
# self.sublayout.addLayout(info_layout)
|
|
353
|
-
|
|
354
|
-
# info_layout2 = QHBoxLayout()
|
|
355
|
-
# info_layout2.addWidget(QLabel(f'PxToUm = {self.parent_window.parent_window.parent_window.PxToUm}'), 50)
|
|
356
|
-
# info_layout2.addWidget(QLabel(f'FrameToMin = {self.parent_window.parent_window.parent_window.FrameToMin}'), 50)
|
|
357
|
-
# self.sublayout.addLayout(info_layout2)
|
|
358
|
-
|
|
359
|
-
def check_valid_params(self):
|
|
360
|
-
|
|
361
|
-
try:
|
|
362
|
-
factor = float(self.calibration_factor_le.text().replace(',','.'))
|
|
363
|
-
factor_valid = True
|
|
364
|
-
except Exception as e:
|
|
365
|
-
factor_valid = False
|
|
366
|
-
|
|
367
|
-
if self.units_le.text()=='':
|
|
368
|
-
units_valid = False
|
|
369
|
-
else:
|
|
370
|
-
units_valid = True
|
|
371
|
-
|
|
372
|
-
if factor_valid and units_valid:
|
|
373
|
-
self.submit_btn.setEnabled(True)
|
|
374
|
-
else:
|
|
375
|
-
self.submit_btn.setEnabled(False)
|
|
376
|
-
|
|
377
|
-
def compute(self):
|
|
378
|
-
self.parent_window.data[self.measurements_cb.currentText()+f'[{self.units_le.text()}]'] = self.parent_window.data[self.measurements_cb.currentText()] * float(self.calibration_factor_le.text().replace(',','.'))
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
class AbsColWidget(GenericOpColWidget):
|
|
382
|
-
|
|
383
|
-
def __init__(self, *args, **kwargs):
|
|
384
|
-
|
|
385
|
-
super().__init__(title="abs(.)", *args, **kwargs)
|
|
386
|
-
|
|
387
|
-
def compute(self):
|
|
388
|
-
self.parent_window.data['|'+self.measurements_cb.currentText()+'|'] = self.parent_window.data[self.measurements_cb.currentText()].abs()
|
|
57
|
+
self.setWindowTitle(title)
|
|
58
|
+
print("tab to show: ", self.data)
|
|
389
59
|
|
|
390
|
-
|
|
391
|
-
|
|
392
|
-
def __init__(self, *args, **kwargs):
|
|
60
|
+
self.table = QTableView(self)
|
|
393
61
|
|
|
394
|
-
|
|
62
|
+
self.v_layout = QVBoxLayout()
|
|
63
|
+
self.information_label = QLabel("Information about color code...")
|
|
64
|
+
self.v_layout.addWidget(self.information_label)
|
|
65
|
+
self.v_layout.addWidget(self.table)
|
|
66
|
+
self.setLayout(self.v_layout)
|
|
395
67
|
|
|
396
|
-
|
|
397
|
-
self.parent_window.data['log10('+self.measurements_cb.currentText()+')'] = safe_log(self.parent_window.data[self.measurements_cb.currentText()].values)
|
|
68
|
+
self.showdata()
|
|
398
69
|
|
|
70
|
+
if self.mode == "cliff":
|
|
71
|
+
self.color_cells_cliff()
|
|
72
|
+
elif self.mode == "pvalue":
|
|
73
|
+
self.color_cells_pvalue()
|
|
399
74
|
|
|
400
|
-
|
|
75
|
+
self.table.resizeColumnsToContents()
|
|
76
|
+
self.setAttribute(Qt.WA_DeleteOnClose)
|
|
77
|
+
center_window(self)
|
|
401
78
|
|
|
402
|
-
|
|
79
|
+
def showdata(self):
|
|
80
|
+
self.model = PandasModel(self.data)
|
|
81
|
+
self.table.setModel(self.model)
|
|
403
82
|
|
|
404
|
-
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
self.column = ''
|
|
83
|
+
def set_cell_color(self, row, column, color="red"):
|
|
84
|
+
self.model.change_color(
|
|
85
|
+
row, column, QBrush(QColor(color))
|
|
86
|
+
) # eval(f"Qt.{color}")
|
|
409
87
|
|
|
410
|
-
|
|
411
|
-
# Create the QComboBox and add some items
|
|
412
|
-
center_window(self)
|
|
413
|
-
|
|
414
|
-
layout = QHBoxLayout(self)
|
|
415
|
-
layout.setContentsMargins(30,30,30,30)
|
|
416
|
-
self.new_col_name = QLineEdit()
|
|
417
|
-
self.new_col_name.setText(self.column)
|
|
418
|
-
layout.addWidget(self.new_col_name, 70)
|
|
88
|
+
def color_cells_cliff(self):
|
|
419
89
|
|
|
420
|
-
|
|
421
|
-
|
|
422
|
-
|
|
423
|
-
|
|
90
|
+
color_codes = {
|
|
91
|
+
"negligible": "#eff3ff", # Green
|
|
92
|
+
"small": "#bdd7e7", # Yellow
|
|
93
|
+
"medium": "#6baed6", # Orange
|
|
94
|
+
"large": "#2171b5", # Red
|
|
95
|
+
}
|
|
424
96
|
|
|
425
|
-
|
|
426
|
-
|
|
427
|
-
|
|
428
|
-
|
|
429
|
-
|
|
430
|
-
|
|
431
|
-
|
|
432
|
-
|
|
433
|
-
|
|
97
|
+
for i in range(self.data.shape[0]):
|
|
98
|
+
for j in range(self.data.shape[1]):
|
|
99
|
+
value = self.data.iloc[i, j]
|
|
100
|
+
if value < 0.147:
|
|
101
|
+
self.set_cell_color(i, j, color_codes["negligible"])
|
|
102
|
+
elif value < 0.33:
|
|
103
|
+
self.set_cell_color(i, j, color_codes["small"])
|
|
104
|
+
elif value < 0.474:
|
|
105
|
+
self.set_cell_color(i, j, color_codes["medium"])
|
|
106
|
+
elif value >= 0.474:
|
|
107
|
+
self.set_cell_color(i, j, color_codes["large"])
|
|
434
108
|
|
|
435
|
-
|
|
436
|
-
|
|
437
|
-
def __init__(self, data, title="", mode=None, *args, **kwargs):
|
|
438
|
-
|
|
439
|
-
CelldetectiveWidget.__init__(self, *args, **kwargs)
|
|
440
|
-
|
|
441
|
-
self.data = data
|
|
442
|
-
self.title = title
|
|
443
|
-
self.mode = mode
|
|
444
|
-
|
|
445
|
-
self.setWindowTitle(title)
|
|
446
|
-
print("tab to show: ",self.data)
|
|
447
|
-
|
|
448
|
-
self.table = QTableView(self)
|
|
449
|
-
|
|
450
|
-
self.v_layout = QVBoxLayout()
|
|
451
|
-
self.information_label = QLabel('Information about color code...')
|
|
452
|
-
self.v_layout.addWidget(self.information_label)
|
|
453
|
-
self.v_layout.addWidget(self.table)
|
|
454
|
-
self.setLayout(self.v_layout)
|
|
455
|
-
|
|
456
|
-
self.showdata()
|
|
457
|
-
|
|
458
|
-
if self.mode=="cliff":
|
|
459
|
-
self.color_cells_cliff()
|
|
460
|
-
elif self.mode=="pvalue":
|
|
461
|
-
self.color_cells_pvalue()
|
|
462
|
-
|
|
463
|
-
self.table.resizeColumnsToContents()
|
|
464
|
-
self.setAttribute(Qt.WA_DeleteOnClose)
|
|
465
|
-
center_window(self)
|
|
466
|
-
|
|
467
|
-
def showdata(self):
|
|
468
|
-
self.model = PandasModel(self.data)
|
|
469
|
-
self.table.setModel(self.model)
|
|
470
|
-
|
|
471
|
-
def set_cell_color(self, row, column, color='red'):
|
|
472
|
-
self.model.change_color(row, column, QBrush(QColor(color))) #eval(f"Qt.{color}")
|
|
473
|
-
|
|
474
|
-
def color_cells_cliff(self):
|
|
475
|
-
|
|
476
|
-
color_codes = {
|
|
477
|
-
"negligible": "#eff3ff", # Green
|
|
478
|
-
"small": "#bdd7e7", # Yellow
|
|
479
|
-
"medium": "#6baed6", # Orange
|
|
480
|
-
"large": "#2171b5" # Red
|
|
481
|
-
}
|
|
482
|
-
|
|
483
|
-
for i in range(self.data.shape[0]):
|
|
484
|
-
for j in range(self.data.shape[1]):
|
|
485
|
-
value = self.data.iloc[i,j]
|
|
486
|
-
if value < 0.147:
|
|
487
|
-
self.set_cell_color(i,j,color_codes['negligible'])
|
|
488
|
-
elif value < 0.33:
|
|
489
|
-
self.set_cell_color(i,j,color_codes['small'])
|
|
490
|
-
elif value < 0.474:
|
|
491
|
-
self.set_cell_color(i,j,color_codes['medium'])
|
|
492
|
-
elif value >= 0.474:
|
|
493
|
-
self.set_cell_color(i,j,color_codes['large'])
|
|
494
|
-
|
|
495
|
-
# Create the HTML text for the label
|
|
496
|
-
html_caption = f"""
|
|
109
|
+
# Create the HTML text for the label
|
|
110
|
+
html_caption = f"""
|
|
497
111
|
<p style="background-color:black; padding: 5px; font-weight:bold;">
|
|
498
112
|
<span style="color:{color_codes['negligible']}">Negligible</span>,
|
|
499
113
|
<span style="color:{color_codes['small']}">Small</span>,
|
|
@@ -501,33 +115,33 @@ class PivotTableUI(CelldetectiveWidget):
|
|
|
501
115
|
<span style="color:{color_codes['large']}">Large</span>
|
|
502
116
|
</p>
|
|
503
117
|
"""
|
|
504
|
-
|
|
505
|
-
|
|
506
|
-
|
|
507
|
-
|
|
508
|
-
|
|
509
|
-
|
|
510
|
-
|
|
511
|
-
|
|
512
|
-
|
|
513
|
-
|
|
514
|
-
|
|
515
|
-
|
|
516
|
-
|
|
517
|
-
|
|
518
|
-
|
|
519
|
-
|
|
520
|
-
|
|
521
|
-
|
|
522
|
-
|
|
523
|
-
|
|
524
|
-
|
|
525
|
-
|
|
526
|
-
|
|
527
|
-
|
|
528
|
-
|
|
529
|
-
|
|
530
|
-
|
|
118
|
+
self.information_label.setText(html_caption)
|
|
119
|
+
|
|
120
|
+
def color_cells_pvalue(self):
|
|
121
|
+
|
|
122
|
+
color_codes = {
|
|
123
|
+
"ns": "#fee5d9",
|
|
124
|
+
"*": "#fcae91",
|
|
125
|
+
"**": "#fb6a4a",
|
|
126
|
+
"***": "#de2d26",
|
|
127
|
+
"****": "#a50f15",
|
|
128
|
+
}
|
|
129
|
+
|
|
130
|
+
for i in range(self.data.shape[0]):
|
|
131
|
+
for j in range(self.data.shape[1]):
|
|
132
|
+
value = self.data.iloc[i, j]
|
|
133
|
+
if value <= 0.0001:
|
|
134
|
+
self.set_cell_color(i, j, color_codes["****"])
|
|
135
|
+
elif value <= 0.001:
|
|
136
|
+
self.set_cell_color(i, j, color_codes["***"])
|
|
137
|
+
elif value <= 0.01:
|
|
138
|
+
self.set_cell_color(i, j, color_codes["**"])
|
|
139
|
+
elif value <= 0.05:
|
|
140
|
+
self.set_cell_color(i, j, color_codes["*"])
|
|
141
|
+
elif value > 0.05:
|
|
142
|
+
self.set_cell_color(i, j, color_codes["ns"])
|
|
143
|
+
|
|
144
|
+
html_caption = f"""
|
|
531
145
|
<p style="background-color:black; padding: 5px; font-weight:bold;">
|
|
532
146
|
<span style="color:{color_codes['ns']}">ns</span>,
|
|
533
147
|
<span style="color:{color_codes['*']}">*</span>,
|
|
@@ -536,1207 +150,1557 @@ class PivotTableUI(CelldetectiveWidget):
|
|
|
536
150
|
<span style="color:{color_codes['****']}">****</span>
|
|
537
151
|
</p>
|
|
538
152
|
"""
|
|
539
|
-
|
|
540
|
-
|
|
541
|
-
class TableUI(CelldetectiveMainWindow):
|
|
542
|
-
|
|
543
|
-
def __init__(self, data, title, population='targets',plot_mode="plot_track_signals", save_inplace_option=False, collapse_tracks_option=True, *args, **kwargs):
|
|
544
|
-
|
|
545
|
-
CelldetectiveMainWindow.__init__(self, *args, **kwargs)
|
|
546
|
-
|
|
547
|
-
self.setWindowTitle(title)
|
|
548
|
-
self.setGeometry(100,100,1000,400)
|
|
549
|
-
center_window(self)
|
|
550
|
-
self.title = title
|
|
551
|
-
self.plot_mode = plot_mode
|
|
552
|
-
self.population = population
|
|
553
|
-
self.numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
|
|
554
|
-
self.groupby_cols = ['position', 'TRACK_ID']
|
|
555
|
-
self.tracks = False
|
|
556
|
-
self.save_inplace_option = save_inplace_option
|
|
557
|
-
self.collapse_tracks_option = collapse_tracks_option
|
|
558
|
-
|
|
559
|
-
if self.population=='pairs':
|
|
560
|
-
self.groupby_cols = ['position','reference_population', 'neighbor_population','REFERENCE_ID', 'NEIGHBOR_ID']
|
|
561
|
-
self.tracks = True # for now
|
|
562
|
-
else:
|
|
563
|
-
if 'TRACK_ID' in data.columns:
|
|
564
|
-
if not np.all(data['TRACK_ID'].isnull()):
|
|
565
|
-
self.tracks = True
|
|
566
|
-
|
|
567
|
-
self.data = data
|
|
568
|
-
|
|
569
|
-
self._createMenuBar()
|
|
570
|
-
self._createActions()
|
|
571
|
-
|
|
572
|
-
self.table_view = QTableView(self)
|
|
573
|
-
self.setCentralWidget(self.table_view)
|
|
574
|
-
|
|
575
|
-
# Set the model for the table view
|
|
576
|
-
|
|
577
|
-
self.model = PandasModel(data)
|
|
578
|
-
self.table_view.setModel(self.model)
|
|
579
|
-
self.table_view.resizeColumnsToContents()
|
|
580
|
-
|
|
581
|
-
def resizeEvent(self, event):
|
|
582
|
-
|
|
583
|
-
super().resizeEvent(event)
|
|
584
|
-
|
|
585
|
-
try:
|
|
586
|
-
self.fig.tight_layout()
|
|
587
|
-
except:
|
|
588
|
-
pass
|
|
589
|
-
|
|
590
|
-
def _createActions(self):
|
|
591
|
-
|
|
592
|
-
self.save_as = QAction("&Save as...", self)
|
|
593
|
-
self.save_as.triggered.connect(self.save_as_csv)
|
|
594
|
-
self.save_as.setShortcut("Ctrl+s")
|
|
595
|
-
self.fileMenu.addAction(self.save_as)
|
|
596
|
-
|
|
597
|
-
if self.save_inplace_option:
|
|
598
|
-
self.save_inplace = QAction("&Save inplace...", self)
|
|
599
|
-
self.save_inplace.triggered.connect(self.save_as_csv_inplace_per_pos)
|
|
600
|
-
#self.save_inplace.setShortcut("Ctrl+s")
|
|
601
|
-
self.fileMenu.addAction(self.save_inplace)
|
|
602
|
-
|
|
603
|
-
self.plot_action = QAction("&Plot...", self)
|
|
604
|
-
self.plot_action.triggered.connect(self.plot)
|
|
605
|
-
self.plot_action.setShortcut("Ctrl+p")
|
|
606
|
-
self.fileMenu.addAction(self.plot_action)
|
|
607
|
-
|
|
608
|
-
self.plot_inst_action = QAction("&Plot instantaneous...", self)
|
|
609
|
-
self.plot_inst_action.triggered.connect(self.plot_instantaneous)
|
|
610
|
-
self.plot_inst_action.setShortcut("Ctrl+i")
|
|
611
|
-
self.fileMenu.addAction(self.plot_inst_action)
|
|
612
|
-
|
|
613
|
-
self.groupby_action = QAction("&Collapse tracks...", self)
|
|
614
|
-
self.groupby_action.triggered.connect(self.set_projection_mode_tracks)
|
|
615
|
-
self.groupby_action.setShortcut("Ctrl+g")
|
|
616
|
-
self.fileMenu.addAction(self.groupby_action)
|
|
617
|
-
if not self.tracks or not self.collapse_tracks_option:
|
|
618
|
-
self.groupby_action.setEnabled(False)
|
|
619
|
-
|
|
620
|
-
if self.population=='pairs':
|
|
621
|
-
|
|
622
|
-
self.groupby_pairs_in_neigh_action = QAction("&Collapse pairs in neighborhood...", self)
|
|
623
|
-
self.groupby_pairs_in_neigh_action.triggered.connect(self.collapse_pairs_in_neigh)
|
|
624
|
-
self.fileMenu.addAction(self.groupby_pairs_in_neigh_action)
|
|
625
|
-
|
|
626
|
-
if 'FRAME' in list(self.data.columns):
|
|
627
|
-
self.groupby_time_action = QAction("&Group by frames...", self)
|
|
628
|
-
self.groupby_time_action.triggered.connect(self.groupby_time_table)
|
|
629
|
-
self.groupby_time_action.setShortcut("Ctrl+t")
|
|
630
|
-
self.fileMenu.addAction(self.groupby_time_action)
|
|
631
|
-
|
|
632
|
-
self.query_action = QAction('Query...', self)
|
|
633
|
-
self.query_action.triggered.connect(self.perform_query)
|
|
634
|
-
self.fileMenu.addAction(self.query_action)
|
|
635
|
-
|
|
636
|
-
self.delete_action = QAction('&Delete...', self)
|
|
637
|
-
self.delete_action.triggered.connect(self.delete_columns)
|
|
638
|
-
self.delete_action.setShortcut(Qt.Key_Delete)
|
|
639
|
-
self.editMenu.addAction(self.delete_action)
|
|
640
|
-
|
|
641
|
-
self.rename_col_action = QAction('&Rename...', self)
|
|
642
|
-
self.rename_col_action.triggered.connect(self.rename_column)
|
|
643
|
-
#self.rename_col_action.setShortcut(Qt.Key_Delete)
|
|
644
|
-
self.editMenu.addAction(self.rename_col_action)
|
|
645
|
-
|
|
646
|
-
if self.population=='pairs':
|
|
647
|
-
self.merge_action = QAction('&Merge...', self)
|
|
648
|
-
self.merge_action.triggered.connect(self.merge_tables)
|
|
649
|
-
#self.rename_col_action.setShortcut(Qt.Key_Delete)
|
|
650
|
-
self.editMenu.addAction(self.merge_action)
|
|
651
|
-
|
|
652
|
-
self.calibrate_action = QAction('&Calibrate...', self)
|
|
653
|
-
self.calibrate_action.triggered.connect(self.calibrate_selected_feature)
|
|
654
|
-
self.calibrate_action.setShortcut("Ctrl+C")
|
|
655
|
-
self.mathMenu.addAction(self.calibrate_action)
|
|
656
|
-
|
|
657
|
-
self.merge_classification_action = QAction('&Merge states...', self)
|
|
658
|
-
self.merge_classification_action.triggered.connect(self.merge_classification_features)
|
|
659
|
-
self.mathMenu.addAction(self.merge_classification_action)
|
|
660
|
-
|
|
661
|
-
self.derivative_action = QAction('&Differentiate...', self)
|
|
662
|
-
self.derivative_action.triggered.connect(self.differenciate_selected_feature)
|
|
663
|
-
self.derivative_action.setShortcut("Ctrl+D")
|
|
664
|
-
self.mathMenu.addAction(self.derivative_action)
|
|
665
|
-
if not self.tracks:
|
|
666
|
-
self.derivative_action.setEnabled(False)
|
|
667
|
-
|
|
668
|
-
self.abs_action = QAction('&Absolute value...', self)
|
|
669
|
-
self.abs_action.triggered.connect(self.take_abs_of_selected_feature)
|
|
670
|
-
#self.derivative_action.setShortcut("Ctrl+D")
|
|
671
|
-
self.mathMenu.addAction(self.abs_action)
|
|
672
|
-
|
|
673
|
-
self.log_action = QAction('&Log (decimal)...', self)
|
|
674
|
-
self.log_action.triggered.connect(self.take_log_of_selected_feature)
|
|
675
|
-
#self.derivative_action.setShortcut("Ctrl+D")
|
|
676
|
-
self.mathMenu.addAction(self.log_action)
|
|
677
|
-
|
|
678
|
-
|
|
679
|
-
self.divide_action = QAction('&Divide...', self)
|
|
680
|
-
self.divide_action.triggered.connect(self.divide_signals)
|
|
681
|
-
#self.derivative_action.setShortcut("Ctrl+D")
|
|
682
|
-
self.mathMenu.addAction(self.divide_action)
|
|
683
|
-
|
|
684
|
-
self.multiply_action = QAction('&Multiply...', self)
|
|
685
|
-
self.multiply_action.triggered.connect(self.multiply_signals)
|
|
686
|
-
#self.derivative_action.setShortcut("Ctrl+D")
|
|
687
|
-
self.mathMenu.addAction(self.multiply_action)
|
|
688
|
-
|
|
689
|
-
self.add_action = QAction('&Add...', self)
|
|
690
|
-
self.add_action.triggered.connect(self.add_signals)
|
|
691
|
-
#self.derivative_action.setShortcut("Ctrl+D")
|
|
692
|
-
self.mathMenu.addAction(self.add_action)
|
|
693
|
-
|
|
694
|
-
self.subtract_action = QAction('&Subtract...', self)
|
|
695
|
-
self.subtract_action.triggered.connect(self.subtract_signals)
|
|
696
|
-
#self.derivative_action.setShortcut("Ctrl+D")
|
|
697
|
-
self.mathMenu.addAction(self.subtract_action)
|
|
698
|
-
|
|
699
|
-
|
|
700
|
-
# self.onehot_action = QAction('&One hot to categorical...', self)
|
|
701
|
-
# self.onehot_action.triggered.connect(self.transform_one_hot_cols_to_categorical)
|
|
702
|
-
# #self.onehot_action.setShortcut("Ctrl+D")
|
|
703
|
-
# self.mathMenu.addAction(self.onehot_action)
|
|
704
|
-
|
|
705
|
-
def collapse_pairs_in_neigh(self):
|
|
706
|
-
|
|
707
|
-
self.selectNeighWidget = CelldetectiveWidget()
|
|
708
|
-
self.selectNeighWidget.setMinimumWidth(480)
|
|
709
|
-
self.selectNeighWidget.setWindowTitle('Set neighborhood of interest')
|
|
710
|
-
|
|
711
|
-
layout = QVBoxLayout()
|
|
712
|
-
self.selectNeighWidget.setLayout(layout)
|
|
713
|
-
|
|
714
|
-
self.reference_lbl = QLabel('reference population: ')
|
|
715
|
-
self.reference_pop_cb = QComboBox()
|
|
716
|
-
ref_pops = self.data['reference_population'].unique()
|
|
717
|
-
self.reference_pop_cb.addItems(ref_pops)
|
|
718
|
-
self.reference_pop_cb.currentIndexChanged.connect(self.update_neighborhoods)
|
|
719
|
-
|
|
720
|
-
reference_hbox = QHBoxLayout()
|
|
721
|
-
reference_hbox.addWidget(self.reference_lbl, 33)
|
|
722
|
-
reference_hbox.addWidget(self.reference_pop_cb, 66)
|
|
723
|
-
layout.addLayout(reference_hbox)
|
|
724
|
-
|
|
725
|
-
self.neigh_lbl = QLabel('neighborhod: ')
|
|
726
|
-
self.neigh_cb = QComboBox()
|
|
727
|
-
neigh_cols = [c.replace('status_','') for c in list(self.data.loc[self.data['reference_population']==self.reference_pop_cb.currentText()].columns) if c.startswith('status_neighborhood')]
|
|
728
|
-
self.neigh_cb.addItems(neigh_cols)
|
|
729
|
-
|
|
730
|
-
neigh_hbox = QHBoxLayout()
|
|
731
|
-
neigh_hbox.addWidget(self.neigh_lbl, 33)
|
|
732
|
-
neigh_hbox.addWidget(self.neigh_cb, 66)
|
|
733
|
-
layout.addLayout(neigh_hbox)
|
|
734
|
-
|
|
735
|
-
contact_hbox = QHBoxLayout()
|
|
736
|
-
self.contact_only_check = QCheckBox('keep only pairs in contact')
|
|
737
|
-
self.contact_only_check.setChecked(True)
|
|
738
|
-
contact_hbox.addWidget(self.contact_only_check, alignment=Qt.AlignLeft)
|
|
739
|
-
layout.addLayout(contact_hbox)
|
|
740
|
-
|
|
741
|
-
self.groupby_pair_rb = QRadioButton('Group by pair')
|
|
742
|
-
self.groupby_reference_rb = QRadioButton('Group by reference')
|
|
743
|
-
self.groupby_pair_rb.setChecked(True)
|
|
744
|
-
|
|
745
|
-
groupby_hbox = QHBoxLayout()
|
|
746
|
-
groupby_hbox.addWidget(QLabel('collapse option: '), 33)
|
|
747
|
-
groupby_hbox.addWidget(self.groupby_pair_rb, (100-33)//2)
|
|
748
|
-
groupby_hbox.addWidget(self.groupby_reference_rb, (100-33)//2)
|
|
749
|
-
layout.addLayout(groupby_hbox)
|
|
750
|
-
|
|
751
|
-
self.apply_neigh_btn = QPushButton('Set')
|
|
752
|
-
self.apply_neigh_btn.setStyleSheet(self.button_style_sheet)
|
|
753
|
-
self.apply_neigh_btn.clicked.connect(self.prepare_table_at_neighborhood)
|
|
754
|
-
|
|
755
|
-
apply_hbox = QHBoxLayout()
|
|
756
|
-
apply_hbox.addWidget(QLabel(''),33)
|
|
757
|
-
apply_hbox.addWidget(self.apply_neigh_btn,66)
|
|
758
|
-
layout.addLayout(apply_hbox)
|
|
759
|
-
|
|
760
|
-
self.selectNeighWidget.show()
|
|
761
|
-
center_window(self.selectNeighWidget)
|
|
762
|
-
|
|
763
|
-
def prepare_table_at_neighborhood(self):
|
|
764
|
-
|
|
765
|
-
ref_pop = self.reference_pop_cb.currentText()
|
|
766
|
-
neighborhood = self.neigh_cb.currentText()
|
|
767
|
-
status_neigh = 'status_'+neighborhood
|
|
768
|
-
|
|
769
|
-
if 'self' in neighborhood:
|
|
770
|
-
neighbor_pop = ref_pop
|
|
771
|
-
|
|
772
|
-
neigh_col = neighborhood.replace('status_','')
|
|
773
|
-
if '_(' in neigh_col and ')_' in neigh_col:
|
|
774
|
-
neighbor_pop = neigh_col.split('_(')[-1].split(')_')[0].split('-')[-1]
|
|
775
|
-
else:
|
|
776
|
-
if ref_pop=='targets':
|
|
777
|
-
neighbor_pop = 'effectors'
|
|
778
|
-
if ref_pop=='effectors':
|
|
779
|
-
neighbor_pop = "targets"
|
|
780
|
-
|
|
781
|
-
data = extract_neighborhood_in_pair_table(self.data, neighborhood_key=neighborhood, contact_only=self.contact_only_check.isChecked(), reference_population=ref_pop)
|
|
782
|
-
|
|
783
|
-
if self.groupby_pair_rb.isChecked():
|
|
784
|
-
self.groupby_cols = ['position', 'REFERENCE_ID', 'NEIGHBOR_ID']
|
|
785
|
-
elif self.groupby_reference_rb.isChecked():
|
|
786
|
-
self.groupby_cols = ['position', 'REFERENCE_ID']
|
|
787
|
-
|
|
788
|
-
self.current_data = data
|
|
789
|
-
skip_projection = False
|
|
790
|
-
if 'reference_tracked' in list(self.current_data.columns):
|
|
791
|
-
print(f"{self.current_data['reference_tracked']=} {(self.current_data['reference_tracked']==False)=} {np.all(self.current_data['reference_tracked']==False)=}")
|
|
792
|
-
if np.all(self.current_data['reference_tracked'].astype(bool)==False):
|
|
793
|
-
# reference not tracked
|
|
794
|
-
if self.groupby_reference_rb.isChecked():
|
|
795
|
-
self.groupby_cols = ['position', 'FRAME', 'REFERENCE_ID']
|
|
796
|
-
elif self.groupby_pair_rb.isChecked():
|
|
797
|
-
print('The reference cells seem to not be tracked. No collapse can be performed.')
|
|
798
|
-
skip_projection=True
|
|
799
|
-
else:
|
|
800
|
-
if np.all(self.current_data['neighbors_tracked'].astype(bool)==False):
|
|
801
|
-
# neighbors not tracked
|
|
802
|
-
if self.groupby_pair_rb.isChecked():
|
|
803
|
-
print('The neighbor cells seem to not be tracked. No collapse can be performed.')
|
|
804
|
-
skip_projection=True
|
|
805
|
-
elif self.groupby_reference_rb.isChecked():
|
|
806
|
-
self.groupby_cols = ['position', 'REFERENCE_ID'] # think about what would be best
|
|
807
|
-
|
|
808
|
-
if not skip_projection:
|
|
809
|
-
self.set_projection_mode_tracks()
|
|
810
|
-
|
|
811
|
-
def update_neighborhoods(self):
|
|
812
|
-
|
|
813
|
-
neigh_cols = [c.replace('status_','') for c in list(self.data.loc[self.data['reference_population']==self.reference_pop_cb.currentText()].columns) if c.startswith('status_neighborhood')]
|
|
814
|
-
self.neigh_cb.clear()
|
|
815
|
-
self.neigh_cb.addItems(neigh_cols)
|
|
816
|
-
|
|
817
|
-
def merge_tables(self):
|
|
818
|
-
|
|
819
|
-
df_expanded = expand_pair_table(self.data)
|
|
820
|
-
self.subtable = TableUI(df_expanded, 'merge', plot_mode = "static", population='pairs')
|
|
821
|
-
self.subtable.show()
|
|
822
|
-
|
|
823
|
-
|
|
824
|
-
def delete_columns(self):
|
|
825
|
-
|
|
826
|
-
x = self.table_view.selectedIndexes()
|
|
827
|
-
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
828
|
-
cols = np.array(list(self.data.columns))
|
|
829
|
-
|
|
830
|
-
msgBox = QMessageBox()
|
|
831
|
-
msgBox.setIcon(QMessageBox.Question)
|
|
832
|
-
msgBox.setText(f"You are about to delete columns {cols[col_idx]}... Do you want to proceed?")
|
|
833
|
-
msgBox.setWindowTitle("Info")
|
|
834
|
-
msgBox.setStandardButtons(QMessageBox.Yes | QMessageBox.No)
|
|
835
|
-
returnValue = msgBox.exec()
|
|
836
|
-
if returnValue == QMessageBox.No:
|
|
837
|
-
return None
|
|
838
|
-
|
|
839
|
-
self.data = self.data.drop(list(cols[col_idx]),axis=1)
|
|
840
|
-
self.model = PandasModel(self.data)
|
|
841
|
-
self.table_view.setModel(self.model)
|
|
842
|
-
|
|
843
|
-
def rename_column(self):
|
|
844
|
-
|
|
845
|
-
x = self.table_view.selectedIndexes()
|
|
846
|
-
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
847
|
-
|
|
848
|
-
if len(col_idx) == 0:
|
|
849
|
-
msgBox = QMessageBox()
|
|
850
|
-
msgBox.setIcon(QMessageBox.Question)
|
|
851
|
-
msgBox.setText(f"Please select a column first.")
|
|
852
|
-
msgBox.setWindowTitle("Warning")
|
|
853
|
-
msgBox.setStandardButtons(QMessageBox.Ok)
|
|
854
|
-
returnValue = msgBox.exec()
|
|
855
|
-
if returnValue == QMessageBox.Ok:
|
|
856
|
-
return None
|
|
857
|
-
else:
|
|
858
|
-
return None
|
|
859
|
-
|
|
860
|
-
cols = np.array(list(self.data.columns))
|
|
861
|
-
selected_col = str(cols[col_idx][0])
|
|
862
|
-
|
|
863
|
-
self.renameWidget = RenameColWidget(self, selected_col)
|
|
864
|
-
self.renameWidget.show()
|
|
865
|
-
|
|
866
|
-
def save_as_csv_inplace_per_pos(self):
|
|
867
|
-
|
|
868
|
-
print("Saving each table in its respective position folder...")
|
|
869
|
-
for pos,pos_group in self.data.groupby(['position']):
|
|
870
|
-
invalid_cols = [c for c in list(pos_group.columns) if c.startswith('Unnamed')]
|
|
871
|
-
if len(invalid_cols)>0:
|
|
872
|
-
pos_group = pos_group.drop(invalid_cols, axis=1)
|
|
873
|
-
pos_group.to_csv(pos[0]+os.sep.join(['output', 'tables', f'trajectories_{self.population}.csv']), index=False)
|
|
874
|
-
print("Done...")
|
|
875
|
-
|
|
876
|
-
def divide_signals(self):
|
|
877
|
-
|
|
878
|
-
x = self.table_view.selectedIndexes()
|
|
879
|
-
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
880
|
-
if isinstance(col_idx, (list, np.ndarray)):
|
|
881
|
-
cols = np.array(list(self.data.columns))
|
|
882
|
-
if len(col_idx)>0:
|
|
883
|
-
selected_col1 = str(cols[col_idx[0]])
|
|
884
|
-
if len(col_idx)>1:
|
|
885
|
-
selected_col2 = str(cols[col_idx[1]])
|
|
886
|
-
else:
|
|
887
|
-
selected_col2 = None
|
|
888
|
-
else:
|
|
889
|
-
selected_col1 = None
|
|
890
|
-
selected_col2 = None
|
|
891
|
-
else:
|
|
892
|
-
selected_col1 = None
|
|
893
|
-
selected_col2 = None
|
|
894
|
-
|
|
895
|
-
self.divWidget = OperationOnColsWidget(self, column1=selected_col1, column2=selected_col2, operation='divide')
|
|
896
|
-
self.divWidget.show()
|
|
897
|
-
|
|
898
|
-
|
|
899
|
-
def multiply_signals(self):
|
|
900
|
-
|
|
901
|
-
x = self.table_view.selectedIndexes()
|
|
902
|
-
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
903
|
-
if isinstance(col_idx, (list, np.ndarray)):
|
|
904
|
-
cols = np.array(list(self.data.columns))
|
|
905
|
-
if len(col_idx)>0:
|
|
906
|
-
selected_col1 = str(cols[col_idx[0]])
|
|
907
|
-
if len(col_idx)>1:
|
|
908
|
-
selected_col2 = str(cols[col_idx[1]])
|
|
909
|
-
else:
|
|
910
|
-
selected_col2 = None
|
|
911
|
-
else:
|
|
912
|
-
selected_col1 = None
|
|
913
|
-
selected_col2 = None
|
|
914
|
-
else:
|
|
915
|
-
selected_col1 = None
|
|
916
|
-
selected_col2 = None
|
|
917
|
-
|
|
918
|
-
self.mulWidget = OperationOnColsWidget(self, column1=selected_col1, column2=selected_col2, operation='multiply')
|
|
919
|
-
self.mulWidget.show()
|
|
920
|
-
|
|
921
|
-
def add_signals(self):
|
|
922
|
-
|
|
923
|
-
x = self.table_view.selectedIndexes()
|
|
924
|
-
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
925
|
-
if isinstance(col_idx, (list, np.ndarray)):
|
|
926
|
-
cols = np.array(list(self.data.columns))
|
|
927
|
-
if len(col_idx)>0:
|
|
928
|
-
selected_col1 = str(cols[col_idx[0]])
|
|
929
|
-
if len(col_idx)>1:
|
|
930
|
-
selected_col2 = str(cols[col_idx[1]])
|
|
931
|
-
else:
|
|
932
|
-
selected_col2 = None
|
|
933
|
-
else:
|
|
934
|
-
selected_col1 = None
|
|
935
|
-
selected_col2 = None
|
|
936
|
-
else:
|
|
937
|
-
selected_col1 = None
|
|
938
|
-
selected_col2 = None
|
|
939
|
-
|
|
940
|
-
self.addiWidget = OperationOnColsWidget(self, column1=selected_col1, column2=selected_col2, operation='add')
|
|
941
|
-
self.addiWidget.show()
|
|
942
|
-
|
|
943
|
-
def subtract_signals(self):
|
|
944
|
-
|
|
945
|
-
x = self.table_view.selectedIndexes()
|
|
946
|
-
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
947
|
-
if isinstance(col_idx, (list, np.ndarray)):
|
|
948
|
-
cols = np.array(list(self.data.columns))
|
|
949
|
-
if len(col_idx)>0:
|
|
950
|
-
selected_col1 = str(cols[col_idx[0]])
|
|
951
|
-
if len(col_idx)>1:
|
|
952
|
-
selected_col2 = str(cols[col_idx[1]])
|
|
953
|
-
else:
|
|
954
|
-
selected_col2 = None
|
|
955
|
-
else:
|
|
956
|
-
selected_col1 = None
|
|
957
|
-
selected_col2 = None
|
|
958
|
-
else:
|
|
959
|
-
selected_col1 = None
|
|
960
|
-
selected_col2 = None
|
|
961
|
-
|
|
962
|
-
self.subWidget = OperationOnColsWidget(self, column1=selected_col1, column2=selected_col2, operation='subtract')
|
|
963
|
-
self.subWidget.show()
|
|
964
|
-
|
|
965
|
-
|
|
966
|
-
def differenciate_selected_feature(self):
|
|
967
|
-
|
|
968
|
-
# check only one col selected and assert is numerical
|
|
969
|
-
# open widget to select window parameters, directionality
|
|
970
|
-
# create new col
|
|
971
|
-
|
|
972
|
-
x = self.table_view.selectedIndexes()
|
|
973
|
-
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
974
|
-
if isinstance(col_idx, (list, np.ndarray)):
|
|
975
|
-
cols = np.array(list(self.data.columns))
|
|
976
|
-
if len(col_idx)>0:
|
|
977
|
-
selected_col = str(cols[col_idx[0]])
|
|
978
|
-
else:
|
|
979
|
-
selected_col = None
|
|
980
|
-
else:
|
|
981
|
-
selected_col = None
|
|
982
|
-
|
|
983
|
-
self.diffWidget = DifferentiateColWidget(self, selected_col)
|
|
984
|
-
self.diffWidget.show()
|
|
985
|
-
|
|
986
|
-
def take_log_of_selected_feature(self):
|
|
987
|
-
|
|
988
|
-
# check only one col selected and assert is numerical
|
|
989
|
-
# open widget to select window parameters, directionality
|
|
990
|
-
# create new col
|
|
991
|
-
|
|
992
|
-
x = self.table_view.selectedIndexes()
|
|
993
|
-
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
994
|
-
if isinstance(col_idx, (list, np.ndarray)):
|
|
995
|
-
cols = np.array(list(self.data.columns))
|
|
996
|
-
if len(col_idx)>0:
|
|
997
|
-
selected_col = str(cols[col_idx[0]])
|
|
998
|
-
else:
|
|
999
|
-
selected_col = None
|
|
1000
|
-
else:
|
|
1001
|
-
selected_col = None
|
|
1002
|
-
|
|
1003
|
-
self.LogWidget = LogColWidget(self, selected_col)
|
|
1004
|
-
self.LogWidget.show()
|
|
1005
|
-
|
|
1006
|
-
def merge_classification_features(self):
|
|
1007
|
-
|
|
1008
|
-
x = self.table_view.selectedIndexes()
|
|
1009
|
-
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
1010
|
-
|
|
1011
|
-
col_selection = []
|
|
1012
|
-
if isinstance(col_idx, (list, np.ndarray)):
|
|
1013
|
-
cols = np.array(list(self.data.columns))
|
|
1014
|
-
if len(col_idx) > 0:
|
|
1015
|
-
selected_cols = cols[col_idx]
|
|
1016
|
-
col_selection.extend(selected_cols)
|
|
1017
|
-
|
|
1018
|
-
self.merge_classification_widget = MergeGroupWidget(self, columns = col_selection)
|
|
1019
|
-
self.merge_classification_widget.show()
|
|
1020
|
-
|
|
1021
|
-
|
|
1022
|
-
def calibrate_selected_feature(self):
|
|
1023
|
-
|
|
1024
|
-
x = self.table_view.selectedIndexes()
|
|
1025
|
-
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
1026
|
-
if isinstance(col_idx, (list, np.ndarray)):
|
|
1027
|
-
cols = np.array(list(self.data.columns))
|
|
1028
|
-
if len(col_idx)>0:
|
|
1029
|
-
selected_col = str(cols[col_idx[0]])
|
|
1030
|
-
else:
|
|
1031
|
-
selected_col = None
|
|
1032
|
-
else:
|
|
1033
|
-
selected_col = None
|
|
1034
|
-
|
|
1035
|
-
self.calWidget = CalibrateColWidget(self, selected_col)
|
|
1036
|
-
self.calWidget.show()
|
|
1037
|
-
|
|
1038
|
-
|
|
1039
|
-
def take_abs_of_selected_feature(self):
|
|
1040
|
-
|
|
1041
|
-
# check only one col selected and assert is numerical
|
|
1042
|
-
# open widget to select window parameters, directionality
|
|
1043
|
-
# create new col
|
|
1044
|
-
|
|
1045
|
-
x = self.table_view.selectedIndexes()
|
|
1046
|
-
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
1047
|
-
if isinstance(col_idx, (list, np.ndarray)):
|
|
1048
|
-
cols = np.array(list(self.data.columns))
|
|
1049
|
-
if len(col_idx)>0:
|
|
1050
|
-
selected_col = str(cols[col_idx[0]])
|
|
1051
|
-
else:
|
|
1052
|
-
selected_col = None
|
|
1053
|
-
else:
|
|
1054
|
-
selected_col = None
|
|
1055
|
-
|
|
1056
|
-
self.absWidget = AbsColWidget(self, selected_col)
|
|
1057
|
-
self.absWidget.show()
|
|
1058
|
-
|
|
1059
|
-
|
|
1060
|
-
def transform_one_hot_cols_to_categorical(self):
|
|
1061
|
-
|
|
1062
|
-
x = self.table_view.selectedIndexes()
|
|
1063
|
-
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
1064
|
-
selected_cols = None
|
|
1065
|
-
if isinstance(col_idx, (list, np.ndarray)):
|
|
1066
|
-
cols = np.array(list(self.data.columns))
|
|
1067
|
-
if len(col_idx)>0:
|
|
1068
|
-
selected_col = str(cols[col_idx[0]])
|
|
1069
|
-
|
|
1070
|
-
self.mergewidget = MergeOneHotWidget(self, selected_columns=selected_cols)
|
|
1071
|
-
self.mergewidget.show()
|
|
1072
|
-
|
|
1073
|
-
|
|
1074
|
-
def groupby_time_table(self):
|
|
1075
|
-
|
|
1076
|
-
"""
|
|
1077
|
-
|
|
1078
|
-
Perform a time average across each track for all features
|
|
1079
|
-
|
|
1080
|
-
"""
|
|
153
|
+
self.information_label.setText(html_caption)
|
|
1081
154
|
|
|
1082
|
-
num_df = self.data.select_dtypes(include=self.numerics)
|
|
1083
155
|
|
|
1084
|
-
|
|
1085
|
-
timeseries["timeline"] = timeseries.index
|
|
1086
|
-
self.subtable = TableUI(timeseries,"Group by frames", plot_mode="plot_timeseries")
|
|
1087
|
-
self.subtable.show()
|
|
1088
|
-
|
|
1089
|
-
def perform_query(self):
|
|
1090
|
-
|
|
1091
|
-
"""
|
|
1092
|
-
|
|
1093
|
-
Perform a time average across each track for all features
|
|
156
|
+
class TableUI(CelldetectiveMainWindow):
|
|
1094
157
|
|
|
1095
|
-
|
|
1096
|
-
|
|
1097
|
-
|
|
1098
|
-
|
|
1099
|
-
|
|
1100
|
-
|
|
1101
|
-
|
|
1102
|
-
|
|
1103
|
-
|
|
1104
|
-
|
|
1105
|
-
|
|
1106
|
-
|
|
1107
|
-
|
|
1108
|
-
|
|
1109
|
-
|
|
1110
|
-
|
|
1111
|
-
|
|
1112
|
-
|
|
1113
|
-
|
|
1114
|
-
|
|
1115
|
-
|
|
1116
|
-
|
|
1117
|
-
|
|
1118
|
-
|
|
1119
|
-
|
|
1120
|
-
|
|
1121
|
-
|
|
1122
|
-
|
|
1123
|
-
|
|
1124
|
-
|
|
1125
|
-
|
|
1126
|
-
|
|
1127
|
-
|
|
1128
|
-
|
|
1129
|
-
|
|
1130
|
-
|
|
1131
|
-
|
|
1132
|
-
|
|
1133
|
-
|
|
1134
|
-
|
|
1135
|
-
|
|
1136
|
-
|
|
1137
|
-
|
|
1138
|
-
|
|
1139
|
-
|
|
1140
|
-
|
|
1141
|
-
|
|
1142
|
-
|
|
1143
|
-
|
|
1144
|
-
|
|
1145
|
-
|
|
1146
|
-
|
|
1147
|
-
|
|
1148
|
-
|
|
1149
|
-
|
|
1150
|
-
|
|
1151
|
-
|
|
1152
|
-
|
|
1153
|
-
|
|
1154
|
-
|
|
1155
|
-
|
|
1156
|
-
|
|
1157
|
-
|
|
1158
|
-
|
|
1159
|
-
|
|
1160
|
-
|
|
1161
|
-
|
|
1162
|
-
|
|
1163
|
-
|
|
1164
|
-
|
|
1165
|
-
|
|
1166
|
-
|
|
1167
|
-
|
|
1168
|
-
|
|
1169
|
-
|
|
1170
|
-
|
|
1171
|
-
|
|
1172
|
-
|
|
1173
|
-
|
|
1174
|
-
|
|
1175
|
-
|
|
1176
|
-
|
|
1177
|
-
|
|
1178
|
-
|
|
1179
|
-
|
|
1180
|
-
|
|
1181
|
-
|
|
1182
|
-
|
|
1183
|
-
|
|
1184
|
-
|
|
1185
|
-
|
|
1186
|
-
|
|
1187
|
-
|
|
1188
|
-
|
|
1189
|
-
|
|
1190
|
-
|
|
1191
|
-
|
|
1192
|
-
|
|
1193
|
-
|
|
1194
|
-
|
|
1195
|
-
|
|
1196
|
-
|
|
1197
|
-
|
|
1198
|
-
|
|
1199
|
-
|
|
1200
|
-
|
|
1201
|
-
|
|
1202
|
-
|
|
1203
|
-
|
|
1204
|
-
|
|
1205
|
-
|
|
1206
|
-
|
|
1207
|
-
|
|
1208
|
-
|
|
1209
|
-
|
|
1210
|
-
|
|
1211
|
-
|
|
1212
|
-
|
|
1213
|
-
|
|
1214
|
-
|
|
1215
|
-
|
|
1216
|
-
|
|
1217
|
-
|
|
1218
|
-
|
|
1219
|
-
|
|
1220
|
-
|
|
1221
|
-
|
|
1222
|
-
|
|
1223
|
-
|
|
1224
|
-
|
|
1225
|
-
|
|
1226
|
-
|
|
1227
|
-
|
|
1228
|
-
|
|
1229
|
-
|
|
1230
|
-
|
|
1231
|
-
|
|
1232
|
-
|
|
1233
|
-
|
|
1234
|
-
|
|
1235
|
-
|
|
1236
|
-
|
|
1237
|
-
|
|
1238
|
-
|
|
1239
|
-
|
|
1240
|
-
|
|
1241
|
-
|
|
1242
|
-
|
|
1243
|
-
|
|
1244
|
-
|
|
1245
|
-
|
|
1246
|
-
|
|
1247
|
-
|
|
1248
|
-
|
|
1249
|
-
|
|
1250
|
-
|
|
1251
|
-
|
|
1252
|
-
|
|
1253
|
-
|
|
1254
|
-
|
|
1255
|
-
|
|
1256
|
-
|
|
1257
|
-
|
|
1258
|
-
|
|
1259
|
-
|
|
1260
|
-
|
|
1261
|
-
|
|
1262
|
-
|
|
1263
|
-
|
|
1264
|
-
|
|
1265
|
-
|
|
1266
|
-
|
|
1267
|
-
|
|
1268
|
-
|
|
1269
|
-
|
|
1270
|
-
|
|
1271
|
-
|
|
1272
|
-
|
|
1273
|
-
|
|
1274
|
-
|
|
1275
|
-
|
|
1276
|
-
|
|
1277
|
-
|
|
1278
|
-
|
|
1279
|
-
|
|
1280
|
-
|
|
1281
|
-
|
|
1282
|
-
|
|
1283
|
-
|
|
1284
|
-
|
|
1285
|
-
|
|
1286
|
-
|
|
1287
|
-
|
|
1288
|
-
|
|
1289
|
-
|
|
1290
|
-
|
|
1291
|
-
|
|
1292
|
-
|
|
1293
|
-
|
|
1294
|
-
|
|
1295
|
-
|
|
1296
|
-
|
|
1297
|
-
|
|
1298
|
-
|
|
1299
|
-
|
|
1300
|
-
|
|
1301
|
-
|
|
1302
|
-
|
|
1303
|
-
|
|
1304
|
-
|
|
1305
|
-
|
|
1306
|
-
|
|
1307
|
-
|
|
1308
|
-
|
|
1309
|
-
|
|
1310
|
-
|
|
1311
|
-
|
|
1312
|
-
|
|
1313
|
-
|
|
1314
|
-
|
|
1315
|
-
|
|
1316
|
-
|
|
1317
|
-
|
|
1318
|
-
|
|
1319
|
-
|
|
1320
|
-
|
|
1321
|
-
|
|
1322
|
-
|
|
1323
|
-
|
|
1324
|
-
|
|
1325
|
-
|
|
1326
|
-
|
|
1327
|
-
|
|
1328
|
-
|
|
1329
|
-
|
|
1330
|
-
|
|
1331
|
-
|
|
1332
|
-
|
|
1333
|
-
|
|
1334
|
-
|
|
1335
|
-
|
|
1336
|
-
|
|
1337
|
-
|
|
1338
|
-
|
|
1339
|
-
|
|
1340
|
-
|
|
1341
|
-
|
|
1342
|
-
|
|
1343
|
-
|
|
1344
|
-
|
|
1345
|
-
|
|
1346
|
-
|
|
1347
|
-
|
|
1348
|
-
|
|
1349
|
-
|
|
1350
|
-
|
|
1351
|
-
|
|
1352
|
-
|
|
1353
|
-
|
|
1354
|
-
|
|
1355
|
-
|
|
1356
|
-
|
|
1357
|
-
|
|
1358
|
-
|
|
1359
|
-
|
|
1360
|
-
|
|
1361
|
-
|
|
1362
|
-
|
|
1363
|
-
|
|
1364
|
-
|
|
1365
|
-
|
|
1366
|
-
|
|
1367
|
-
|
|
1368
|
-
|
|
1369
|
-
|
|
1370
|
-
|
|
1371
|
-
|
|
1372
|
-
|
|
1373
|
-
|
|
1374
|
-
|
|
1375
|
-
|
|
1376
|
-
|
|
1377
|
-
|
|
1378
|
-
|
|
1379
|
-
|
|
1380
|
-
|
|
1381
|
-
|
|
1382
|
-
|
|
1383
|
-
|
|
1384
|
-
|
|
1385
|
-
|
|
1386
|
-
|
|
1387
|
-
|
|
1388
|
-
|
|
1389
|
-
|
|
1390
|
-
|
|
1391
|
-
|
|
1392
|
-
|
|
1393
|
-
|
|
1394
|
-
|
|
1395
|
-
|
|
1396
|
-
|
|
1397
|
-
|
|
1398
|
-
|
|
1399
|
-
|
|
1400
|
-
|
|
1401
|
-
|
|
1402
|
-
|
|
1403
|
-
|
|
1404
|
-
|
|
1405
|
-
|
|
1406
|
-
|
|
1407
|
-
|
|
1408
|
-
|
|
1409
|
-
|
|
1410
|
-
|
|
1411
|
-
|
|
1412
|
-
|
|
1413
|
-
|
|
1414
|
-
|
|
1415
|
-
|
|
1416
|
-
|
|
1417
|
-
|
|
1418
|
-
|
|
1419
|
-
|
|
1420
|
-
|
|
1421
|
-
|
|
1422
|
-
|
|
1423
|
-
|
|
1424
|
-
|
|
1425
|
-
|
|
1426
|
-
|
|
1427
|
-
|
|
1428
|
-
|
|
1429
|
-
|
|
1430
|
-
|
|
1431
|
-
|
|
1432
|
-
|
|
1433
|
-
|
|
1434
|
-
|
|
1435
|
-
|
|
1436
|
-
|
|
1437
|
-
|
|
1438
|
-
|
|
1439
|
-
|
|
1440
|
-
|
|
1441
|
-
|
|
1442
|
-
|
|
1443
|
-
|
|
1444
|
-
|
|
1445
|
-
|
|
1446
|
-
|
|
1447
|
-
|
|
1448
|
-
|
|
1449
|
-
|
|
1450
|
-
|
|
1451
|
-
|
|
1452
|
-
|
|
1453
|
-
|
|
1454
|
-
|
|
1455
|
-
|
|
1456
|
-
|
|
1457
|
-
|
|
1458
|
-
|
|
1459
|
-
|
|
1460
|
-
|
|
1461
|
-
|
|
1462
|
-
|
|
1463
|
-
|
|
1464
|
-
|
|
1465
|
-
|
|
1466
|
-
|
|
1467
|
-
|
|
1468
|
-
|
|
1469
|
-
|
|
1470
|
-
|
|
1471
|
-
|
|
1472
|
-
|
|
1473
|
-
|
|
1474
|
-
|
|
1475
|
-
|
|
1476
|
-
|
|
1477
|
-
|
|
1478
|
-
|
|
1479
|
-
|
|
1480
|
-
|
|
1481
|
-
|
|
1482
|
-
|
|
1483
|
-
|
|
1484
|
-
|
|
1485
|
-
|
|
1486
|
-
|
|
1487
|
-
|
|
1488
|
-
|
|
1489
|
-
|
|
1490
|
-
|
|
1491
|
-
|
|
1492
|
-
|
|
1493
|
-
|
|
1494
|
-
|
|
1495
|
-
|
|
1496
|
-
|
|
1497
|
-
|
|
1498
|
-
|
|
1499
|
-
|
|
1500
|
-
|
|
1501
|
-
|
|
1502
|
-
|
|
1503
|
-
|
|
1504
|
-
|
|
1505
|
-
|
|
1506
|
-
|
|
1507
|
-
|
|
1508
|
-
|
|
1509
|
-
|
|
1510
|
-
|
|
1511
|
-
|
|
1512
|
-
|
|
1513
|
-
|
|
1514
|
-
|
|
1515
|
-
|
|
1516
|
-
|
|
1517
|
-
|
|
1518
|
-
|
|
1519
|
-
|
|
1520
|
-
|
|
1521
|
-
|
|
1522
|
-
|
|
1523
|
-
|
|
1524
|
-
|
|
1525
|
-
|
|
1526
|
-
|
|
1527
|
-
|
|
1528
|
-
|
|
1529
|
-
|
|
1530
|
-
|
|
1531
|
-
|
|
1532
|
-
|
|
1533
|
-
|
|
1534
|
-
|
|
1535
|
-
|
|
1536
|
-
|
|
1537
|
-
|
|
1538
|
-
|
|
1539
|
-
|
|
1540
|
-
|
|
1541
|
-
|
|
1542
|
-
|
|
1543
|
-
|
|
1544
|
-
|
|
1545
|
-
|
|
1546
|
-
|
|
1547
|
-
|
|
1548
|
-
|
|
1549
|
-
|
|
1550
|
-
|
|
1551
|
-
|
|
1552
|
-
|
|
1553
|
-
|
|
1554
|
-
|
|
1555
|
-
|
|
1556
|
-
|
|
1557
|
-
|
|
1558
|
-
|
|
1559
|
-
|
|
1560
|
-
|
|
1561
|
-
|
|
1562
|
-
|
|
1563
|
-
|
|
1564
|
-
|
|
1565
|
-
|
|
1566
|
-
|
|
1567
|
-
|
|
1568
|
-
|
|
1569
|
-
|
|
1570
|
-
|
|
1571
|
-
|
|
1572
|
-
|
|
1573
|
-
|
|
1574
|
-
|
|
1575
|
-
|
|
1576
|
-
|
|
1577
|
-
|
|
1578
|
-
|
|
1579
|
-
|
|
1580
|
-
|
|
1581
|
-
|
|
1582
|
-
|
|
1583
|
-
|
|
1584
|
-
|
|
1585
|
-
|
|
1586
|
-
|
|
1587
|
-
|
|
1588
|
-
|
|
1589
|
-
|
|
1590
|
-
|
|
1591
|
-
|
|
1592
|
-
|
|
1593
|
-
|
|
1594
|
-
|
|
1595
|
-
|
|
1596
|
-
|
|
1597
|
-
|
|
1598
|
-
|
|
1599
|
-
|
|
1600
|
-
|
|
1601
|
-
|
|
1602
|
-
|
|
1603
|
-
|
|
1604
|
-
|
|
1605
|
-
|
|
1606
|
-
|
|
1607
|
-
|
|
1608
|
-
|
|
1609
|
-
|
|
1610
|
-
|
|
1611
|
-
|
|
1612
|
-
|
|
1613
|
-
|
|
1614
|
-
|
|
1615
|
-
|
|
1616
|
-
|
|
1617
|
-
|
|
1618
|
-
|
|
1619
|
-
|
|
1620
|
-
|
|
1621
|
-
|
|
1622
|
-
|
|
1623
|
-
|
|
1624
|
-
|
|
1625
|
-
|
|
1626
|
-
|
|
1627
|
-
|
|
1628
|
-
|
|
1629
|
-
|
|
1630
|
-
|
|
1631
|
-
|
|
1632
|
-
|
|
1633
|
-
|
|
1634
|
-
|
|
1635
|
-
|
|
1636
|
-
|
|
1637
|
-
|
|
1638
|
-
|
|
1639
|
-
|
|
1640
|
-
|
|
1641
|
-
|
|
1642
|
-
|
|
1643
|
-
|
|
1644
|
-
|
|
1645
|
-
|
|
1646
|
-
|
|
1647
|
-
|
|
1648
|
-
|
|
1649
|
-
|
|
1650
|
-
|
|
1651
|
-
|
|
1652
|
-
|
|
1653
|
-
|
|
1654
|
-
|
|
1655
|
-
|
|
1656
|
-
|
|
1657
|
-
|
|
1658
|
-
|
|
1659
|
-
|
|
1660
|
-
|
|
1661
|
-
|
|
1662
|
-
|
|
1663
|
-
|
|
1664
|
-
|
|
1665
|
-
|
|
1666
|
-
|
|
1667
|
-
|
|
1668
|
-
|
|
1669
|
-
|
|
1670
|
-
|
|
1671
|
-
|
|
1672
|
-
|
|
1673
|
-
|
|
1674
|
-
|
|
1675
|
-
|
|
1676
|
-
|
|
1677
|
-
|
|
1678
|
-
|
|
1679
|
-
|
|
1680
|
-
|
|
1681
|
-
|
|
1682
|
-
|
|
1683
|
-
|
|
1684
|
-
|
|
1685
|
-
|
|
1686
|
-
|
|
1687
|
-
|
|
1688
|
-
|
|
1689
|
-
|
|
1690
|
-
|
|
1691
|
-
|
|
1692
|
-
|
|
1693
|
-
|
|
1694
|
-
|
|
1695
|
-
|
|
1696
|
-
|
|
1697
|
-
|
|
1698
|
-
|
|
1699
|
-
|
|
1700
|
-
|
|
1701
|
-
|
|
1702
|
-
|
|
1703
|
-
|
|
1704
|
-
|
|
1705
|
-
|
|
1706
|
-
|
|
1707
|
-
|
|
1708
|
-
|
|
1709
|
-
|
|
1710
|
-
|
|
1711
|
-
|
|
1712
|
-
|
|
1713
|
-
|
|
1714
|
-
|
|
1715
|
-
|
|
1716
|
-
|
|
1717
|
-
|
|
1718
|
-
|
|
1719
|
-
|
|
1720
|
-
|
|
1721
|
-
|
|
1722
|
-
|
|
1723
|
-
|
|
1724
|
-
|
|
1725
|
-
|
|
1726
|
-
|
|
1727
|
-
|
|
1728
|
-
|
|
1729
|
-
|
|
1730
|
-
|
|
1731
|
-
|
|
1732
|
-
|
|
1733
|
-
|
|
1734
|
-
|
|
1735
|
-
|
|
1736
|
-
|
|
1737
|
-
|
|
1738
|
-
|
|
1739
|
-
|
|
1740
|
-
|
|
1741
|
-
|
|
1742
|
-
|
|
158
|
+
def __init__(
|
|
159
|
+
self,
|
|
160
|
+
data,
|
|
161
|
+
title,
|
|
162
|
+
population="targets",
|
|
163
|
+
plot_mode="plot_track_signals",
|
|
164
|
+
save_inplace_option=False,
|
|
165
|
+
collapse_tracks_option=True,
|
|
166
|
+
*args,
|
|
167
|
+
**kwargs,
|
|
168
|
+
):
|
|
169
|
+
|
|
170
|
+
CelldetectiveMainWindow.__init__(self, *args, **kwargs)
|
|
171
|
+
|
|
172
|
+
self.setWindowTitle(title)
|
|
173
|
+
self.setGeometry(100, 100, 1000, 400)
|
|
174
|
+
center_window(self)
|
|
175
|
+
self.title = title
|
|
176
|
+
self.plot_mode = plot_mode
|
|
177
|
+
self.population = population
|
|
178
|
+
self.numerics = ["int16", "int32", "int64", "float16", "float32", "float64"]
|
|
179
|
+
self.groupby_cols = ["position", "TRACK_ID"]
|
|
180
|
+
self.tracks = False
|
|
181
|
+
self.save_inplace_option = save_inplace_option
|
|
182
|
+
self.collapse_tracks_option = collapse_tracks_option
|
|
183
|
+
|
|
184
|
+
if self.population == "pairs":
|
|
185
|
+
self.groupby_cols = [
|
|
186
|
+
"position",
|
|
187
|
+
"reference_population",
|
|
188
|
+
"neighbor_population",
|
|
189
|
+
"REFERENCE_ID",
|
|
190
|
+
"NEIGHBOR_ID",
|
|
191
|
+
]
|
|
192
|
+
self.tracks = True # for now
|
|
193
|
+
else:
|
|
194
|
+
if "TRACK_ID" in data.columns:
|
|
195
|
+
if not np.all(data["TRACK_ID"].isnull()):
|
|
196
|
+
self.tracks = True
|
|
197
|
+
|
|
198
|
+
self.data = data
|
|
199
|
+
|
|
200
|
+
self._createMenuBar()
|
|
201
|
+
self._create_actions()
|
|
202
|
+
|
|
203
|
+
self.table_view = QTableView(self)
|
|
204
|
+
self.setCentralWidget(self.table_view)
|
|
205
|
+
|
|
206
|
+
# Set the model for the table view
|
|
207
|
+
|
|
208
|
+
import matplotlib.pyplot as plt
|
|
209
|
+
|
|
210
|
+
plt.rcParams["svg.fonttype"] = "none"
|
|
211
|
+
|
|
212
|
+
self.model = PandasModel(data)
|
|
213
|
+
self.table_view.setModel(self.model)
|
|
214
|
+
self.table_view.resizeColumnsToContents()
|
|
215
|
+
|
|
216
|
+
def resizeEvent(self, event):
|
|
217
|
+
|
|
218
|
+
super().resizeEvent(event)
|
|
219
|
+
|
|
220
|
+
try:
|
|
221
|
+
self.fig.tight_layout()
|
|
222
|
+
except:
|
|
223
|
+
pass
|
|
224
|
+
|
|
225
|
+
def _create_actions(self):
|
|
226
|
+
|
|
227
|
+
self.save_as = QAction("&Save as...", self)
|
|
228
|
+
self.save_as.triggered.connect(self.save_as_csv)
|
|
229
|
+
self.save_as.setShortcut("Ctrl+s")
|
|
230
|
+
self.fileMenu.addAction(self.save_as)
|
|
231
|
+
|
|
232
|
+
if self.save_inplace_option:
|
|
233
|
+
self.save_inplace = QAction("&Save inplace...", self)
|
|
234
|
+
self.save_inplace.triggered.connect(self.save_as_csv_inplace_per_pos)
|
|
235
|
+
# self.save_inplace.setShortcut("Ctrl+s")
|
|
236
|
+
self.fileMenu.addAction(self.save_inplace)
|
|
237
|
+
|
|
238
|
+
self.plot_action = QAction("&Plot...", self)
|
|
239
|
+
self.plot_action.triggered.connect(self.plot)
|
|
240
|
+
self.plot_action.setShortcut("Ctrl+p")
|
|
241
|
+
self.fileMenu.addAction(self.plot_action)
|
|
242
|
+
|
|
243
|
+
self.plot_inst_action = QAction("&Plot instantaneous...", self)
|
|
244
|
+
self.plot_inst_action.triggered.connect(self.plot_instantaneous)
|
|
245
|
+
self.plot_inst_action.setShortcut("Ctrl+i")
|
|
246
|
+
self.fileMenu.addAction(self.plot_inst_action)
|
|
247
|
+
|
|
248
|
+
self.groupby_action = QAction("&Collapse tracks...", self)
|
|
249
|
+
self.groupby_action.triggered.connect(self.set_projection_mode_tracks)
|
|
250
|
+
self.groupby_action.setShortcut("Ctrl+g")
|
|
251
|
+
self.fileMenu.addAction(self.groupby_action)
|
|
252
|
+
if not self.tracks or not self.collapse_tracks_option:
|
|
253
|
+
self.groupby_action.setEnabled(False)
|
|
254
|
+
|
|
255
|
+
if self.population == "pairs":
|
|
256
|
+
|
|
257
|
+
self.groupby_pairs_in_neigh_action = QAction(
|
|
258
|
+
"&Collapse pairs in neighborhood...", self
|
|
259
|
+
)
|
|
260
|
+
self.groupby_pairs_in_neigh_action.triggered.connect(
|
|
261
|
+
self.collapse_pairs_in_neigh
|
|
262
|
+
)
|
|
263
|
+
self.fileMenu.addAction(self.groupby_pairs_in_neigh_action)
|
|
264
|
+
|
|
265
|
+
if "FRAME" in list(self.data.columns):
|
|
266
|
+
self.groupby_time_action = QAction("&Group by frames...", self)
|
|
267
|
+
self.groupby_time_action.triggered.connect(self.groupby_time_table)
|
|
268
|
+
self.groupby_time_action.setShortcut("Ctrl+t")
|
|
269
|
+
self.fileMenu.addAction(self.groupby_time_action)
|
|
270
|
+
|
|
271
|
+
self.query_action = QAction("Query...", self)
|
|
272
|
+
self.query_action.triggered.connect(self.perform_query)
|
|
273
|
+
self.fileMenu.addAction(self.query_action)
|
|
274
|
+
|
|
275
|
+
self.delete_action = QAction("&Delete...", self)
|
|
276
|
+
self.delete_action.triggered.connect(self.delete_columns)
|
|
277
|
+
self.delete_action.setShortcut(Qt.Key_Delete)
|
|
278
|
+
self.editMenu.addAction(self.delete_action)
|
|
279
|
+
|
|
280
|
+
self.rename_col_action = QAction("&Rename...", self)
|
|
281
|
+
self.rename_col_action.triggered.connect(self.rename_column)
|
|
282
|
+
# self.rename_col_action.setShortcut(Qt.Key_Delete)
|
|
283
|
+
self.editMenu.addAction(self.rename_col_action)
|
|
284
|
+
|
|
285
|
+
if self.population == "pairs":
|
|
286
|
+
self.merge_action = QAction("&Merge...", self)
|
|
287
|
+
self.merge_action.triggered.connect(self.merge_tables)
|
|
288
|
+
# self.rename_col_action.setShortcut(Qt.Key_Delete)
|
|
289
|
+
self.editMenu.addAction(self.merge_action)
|
|
290
|
+
|
|
291
|
+
self.calibrate_action = QAction("&Calibrate...", self)
|
|
292
|
+
self.calibrate_action.triggered.connect(self.calibrate_selected_feature)
|
|
293
|
+
self.calibrate_action.setShortcut("Ctrl+C")
|
|
294
|
+
self.mathMenu.addAction(self.calibrate_action)
|
|
295
|
+
|
|
296
|
+
self.merge_classification_action = QAction("&Merge states...", self)
|
|
297
|
+
self.merge_classification_action.triggered.connect(
|
|
298
|
+
self.merge_classification_features
|
|
299
|
+
)
|
|
300
|
+
self.mathMenu.addAction(self.merge_classification_action)
|
|
301
|
+
|
|
302
|
+
self.derivative_action = QAction("&Differentiate...", self)
|
|
303
|
+
self.derivative_action.triggered.connect(self.differenciate_selected_feature)
|
|
304
|
+
self.derivative_action.setShortcut("Ctrl+D")
|
|
305
|
+
self.mathMenu.addAction(self.derivative_action)
|
|
306
|
+
if not self.tracks:
|
|
307
|
+
self.derivative_action.setEnabled(False)
|
|
308
|
+
|
|
309
|
+
self.abs_action = QAction("&Absolute value...", self)
|
|
310
|
+
self.abs_action.triggered.connect(self.take_abs_of_selected_feature)
|
|
311
|
+
# self.derivative_action.setShortcut("Ctrl+D")
|
|
312
|
+
self.mathMenu.addAction(self.abs_action)
|
|
313
|
+
|
|
314
|
+
self.log_action = QAction("&Log (decimal)...", self)
|
|
315
|
+
self.log_action.triggered.connect(self.take_log_of_selected_feature)
|
|
316
|
+
# self.derivative_action.setShortcut("Ctrl+D")
|
|
317
|
+
self.mathMenu.addAction(self.log_action)
|
|
318
|
+
|
|
319
|
+
self.divide_action = QAction("&Divide...", self)
|
|
320
|
+
self.divide_action.triggered.connect(self.divide_signals)
|
|
321
|
+
# self.derivative_action.setShortcut("Ctrl+D")
|
|
322
|
+
self.mathMenu.addAction(self.divide_action)
|
|
323
|
+
|
|
324
|
+
self.multiply_action = QAction("&Multiply...", self)
|
|
325
|
+
self.multiply_action.triggered.connect(self.multiply_signals)
|
|
326
|
+
# self.derivative_action.setShortcut("Ctrl+D")
|
|
327
|
+
self.mathMenu.addAction(self.multiply_action)
|
|
328
|
+
|
|
329
|
+
self.add_action = QAction("&Add...", self)
|
|
330
|
+
self.add_action.triggered.connect(self.add_signals)
|
|
331
|
+
# self.derivative_action.setShortcut("Ctrl+D")
|
|
332
|
+
self.mathMenu.addAction(self.add_action)
|
|
333
|
+
|
|
334
|
+
self.subtract_action = QAction("&Subtract...", self)
|
|
335
|
+
self.subtract_action.triggered.connect(self.subtract_signals)
|
|
336
|
+
# self.derivative_action.setShortcut("Ctrl+D")
|
|
337
|
+
self.mathMenu.addAction(self.subtract_action)
|
|
338
|
+
|
|
339
|
+
# self.onehot_action = QAction('&One hot to categorical...', self)
|
|
340
|
+
# self.onehot_action.triggered.connect(self.transform_one_hot_cols_to_categorical)
|
|
341
|
+
# #self.onehot_action.setShortcut("Ctrl+D")
|
|
342
|
+
# self.mathMenu.addAction(self.onehot_action)
|
|
343
|
+
|
|
344
|
+
def collapse_pairs_in_neigh(self):
|
|
345
|
+
|
|
346
|
+
self.selectNeighWidget = CelldetectiveWidget()
|
|
347
|
+
self.selectNeighWidget.setMinimumWidth(480)
|
|
348
|
+
self.selectNeighWidget.setWindowTitle("Set neighborhood of interest")
|
|
349
|
+
|
|
350
|
+
layout = QVBoxLayout()
|
|
351
|
+
self.selectNeighWidget.setLayout(layout)
|
|
352
|
+
|
|
353
|
+
self.reference_lbl = QLabel("reference population: ")
|
|
354
|
+
self.reference_pop_cb = QComboBox()
|
|
355
|
+
ref_pops = self.data["reference_population"].unique()
|
|
356
|
+
self.reference_pop_cb.addItems(ref_pops)
|
|
357
|
+
self.reference_pop_cb.currentIndexChanged.connect(self.update_neighborhoods)
|
|
358
|
+
|
|
359
|
+
reference_hbox = QHBoxLayout()
|
|
360
|
+
reference_hbox.addWidget(self.reference_lbl, 33)
|
|
361
|
+
reference_hbox.addWidget(self.reference_pop_cb, 66)
|
|
362
|
+
layout.addLayout(reference_hbox)
|
|
363
|
+
|
|
364
|
+
self.neigh_lbl = QLabel("neighborhod: ")
|
|
365
|
+
self.neigh_cb = QComboBox()
|
|
366
|
+
neigh_cols = [
|
|
367
|
+
c.replace("status_", "")
|
|
368
|
+
for c in list(
|
|
369
|
+
self.data.loc[
|
|
370
|
+
self.data["reference_population"]
|
|
371
|
+
== self.reference_pop_cb.currentText()
|
|
372
|
+
].columns
|
|
373
|
+
)
|
|
374
|
+
if c.startswith("status_neighborhood")
|
|
375
|
+
]
|
|
376
|
+
self.neigh_cb.addItems(neigh_cols)
|
|
377
|
+
|
|
378
|
+
neigh_hbox = QHBoxLayout()
|
|
379
|
+
neigh_hbox.addWidget(self.neigh_lbl, 33)
|
|
380
|
+
neigh_hbox.addWidget(self.neigh_cb, 66)
|
|
381
|
+
layout.addLayout(neigh_hbox)
|
|
382
|
+
|
|
383
|
+
contact_hbox = QHBoxLayout()
|
|
384
|
+
self.contact_only_check = QCheckBox("keep only pairs in contact")
|
|
385
|
+
self.contact_only_check.setChecked(True)
|
|
386
|
+
contact_hbox.addWidget(self.contact_only_check, alignment=Qt.AlignLeft)
|
|
387
|
+
layout.addLayout(contact_hbox)
|
|
388
|
+
|
|
389
|
+
self.groupby_pair_rb = QRadioButton("Group by pair")
|
|
390
|
+
self.groupby_reference_rb = QRadioButton("Group by reference")
|
|
391
|
+
self.groupby_pair_rb.setChecked(True)
|
|
392
|
+
|
|
393
|
+
groupby_hbox = QHBoxLayout()
|
|
394
|
+
groupby_hbox.addWidget(QLabel("collapse option: "), 33)
|
|
395
|
+
groupby_hbox.addWidget(self.groupby_pair_rb, (100 - 33) // 2)
|
|
396
|
+
groupby_hbox.addWidget(self.groupby_reference_rb, (100 - 33) // 2)
|
|
397
|
+
layout.addLayout(groupby_hbox)
|
|
398
|
+
|
|
399
|
+
self.apply_neigh_btn = QPushButton("Set")
|
|
400
|
+
self.apply_neigh_btn.setStyleSheet(self.button_style_sheet)
|
|
401
|
+
self.apply_neigh_btn.clicked.connect(self.prepare_table_at_neighborhood)
|
|
402
|
+
|
|
403
|
+
apply_hbox = QHBoxLayout()
|
|
404
|
+
apply_hbox.addWidget(QLabel(""), 33)
|
|
405
|
+
apply_hbox.addWidget(self.apply_neigh_btn, 66)
|
|
406
|
+
layout.addLayout(apply_hbox)
|
|
407
|
+
|
|
408
|
+
self.selectNeighWidget.show()
|
|
409
|
+
center_window(self.selectNeighWidget)
|
|
410
|
+
|
|
411
|
+
def prepare_table_at_neighborhood(self):
|
|
412
|
+
|
|
413
|
+
ref_pop = self.reference_pop_cb.currentText()
|
|
414
|
+
neighborhood = self.neigh_cb.currentText()
|
|
415
|
+
status_neigh = "status_" + neighborhood
|
|
416
|
+
|
|
417
|
+
if "self" in neighborhood:
|
|
418
|
+
neighbor_pop = ref_pop
|
|
419
|
+
|
|
420
|
+
neigh_col = neighborhood.replace("status_", "")
|
|
421
|
+
if "_(" in neigh_col and ")_" in neigh_col:
|
|
422
|
+
neighbor_pop = neigh_col.split("_(")[-1].split(")_")[0].split("-")[-1]
|
|
423
|
+
else:
|
|
424
|
+
if ref_pop == "targets":
|
|
425
|
+
neighbor_pop = "effectors"
|
|
426
|
+
if ref_pop == "effectors":
|
|
427
|
+
neighbor_pop = "targets"
|
|
428
|
+
|
|
429
|
+
from celldetective.neighborhood import extract_neighborhood_in_pair_table
|
|
430
|
+
|
|
431
|
+
data = extract_neighborhood_in_pair_table(
|
|
432
|
+
self.data,
|
|
433
|
+
neighborhood_key=neighborhood,
|
|
434
|
+
contact_only=self.contact_only_check.isChecked(),
|
|
435
|
+
reference_population=ref_pop,
|
|
436
|
+
)
|
|
437
|
+
|
|
438
|
+
if self.groupby_pair_rb.isChecked():
|
|
439
|
+
self.groupby_cols = ["position", "REFERENCE_ID", "NEIGHBOR_ID"]
|
|
440
|
+
elif self.groupby_reference_rb.isChecked():
|
|
441
|
+
self.groupby_cols = ["position", "REFERENCE_ID"]
|
|
442
|
+
|
|
443
|
+
self.current_data = data
|
|
444
|
+
skip_projection = False
|
|
445
|
+
if "reference_tracked" in list(self.current_data.columns):
|
|
446
|
+
print(
|
|
447
|
+
f"{self.current_data['reference_tracked']=} {(self.current_data['reference_tracked']==False)=} {np.all(self.current_data['reference_tracked']==False)=}"
|
|
448
|
+
)
|
|
449
|
+
if np.all(self.current_data["reference_tracked"].astype(bool) == False):
|
|
450
|
+
# reference not tracked
|
|
451
|
+
if self.groupby_reference_rb.isChecked():
|
|
452
|
+
self.groupby_cols = ["position", "FRAME", "REFERENCE_ID"]
|
|
453
|
+
elif self.groupby_pair_rb.isChecked():
|
|
454
|
+
print(
|
|
455
|
+
"The reference cells seem to not be tracked. No collapse can be performed."
|
|
456
|
+
)
|
|
457
|
+
skip_projection = True
|
|
458
|
+
else:
|
|
459
|
+
if np.all(self.current_data["neighbors_tracked"].astype(bool) == False):
|
|
460
|
+
# neighbors not tracked
|
|
461
|
+
if self.groupby_pair_rb.isChecked():
|
|
462
|
+
print(
|
|
463
|
+
"The neighbor cells seem to not be tracked. No collapse can be performed."
|
|
464
|
+
)
|
|
465
|
+
skip_projection = True
|
|
466
|
+
elif self.groupby_reference_rb.isChecked():
|
|
467
|
+
self.groupby_cols = [
|
|
468
|
+
"position",
|
|
469
|
+
"REFERENCE_ID",
|
|
470
|
+
] # think about what would be best
|
|
471
|
+
|
|
472
|
+
if not skip_projection:
|
|
473
|
+
self.set_projection_mode_tracks()
|
|
474
|
+
|
|
475
|
+
def update_neighborhoods(self):
|
|
476
|
+
|
|
477
|
+
neigh_cols = [
|
|
478
|
+
c.replace("status_", "")
|
|
479
|
+
for c in list(
|
|
480
|
+
self.data.loc[
|
|
481
|
+
self.data["reference_population"]
|
|
482
|
+
== self.reference_pop_cb.currentText()
|
|
483
|
+
].columns
|
|
484
|
+
)
|
|
485
|
+
if c.startswith("status_neighborhood")
|
|
486
|
+
]
|
|
487
|
+
self.neigh_cb.clear()
|
|
488
|
+
self.neigh_cb.addItems(neigh_cols)
|
|
489
|
+
|
|
490
|
+
def merge_tables(self):
|
|
491
|
+
|
|
492
|
+
df_expanded = expand_pair_table(self.data)
|
|
493
|
+
self.subtable = TableUI(
|
|
494
|
+
df_expanded, "merge", plot_mode="static", population="pairs"
|
|
495
|
+
)
|
|
496
|
+
self.subtable.show()
|
|
497
|
+
|
|
498
|
+
def delete_columns(self):
|
|
499
|
+
|
|
500
|
+
x = self.table_view.selectedIndexes()
|
|
501
|
+
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
502
|
+
cols = np.array(list(self.data.columns))
|
|
503
|
+
|
|
504
|
+
msgBox = QMessageBox()
|
|
505
|
+
msgBox.setIcon(QMessageBox.Question)
|
|
506
|
+
msgBox.setText(
|
|
507
|
+
f"You are about to delete columns {cols[col_idx]}... Do you want to proceed?"
|
|
508
|
+
)
|
|
509
|
+
msgBox.setWindowTitle("Info")
|
|
510
|
+
msgBox.setStandardButtons(QMessageBox.Yes | QMessageBox.No)
|
|
511
|
+
return_value = msgBox.exec()
|
|
512
|
+
if return_value == QMessageBox.No:
|
|
513
|
+
return None
|
|
514
|
+
|
|
515
|
+
self.data = self.data.drop(list(cols[col_idx]), axis=1)
|
|
516
|
+
self.model = PandasModel(self.data)
|
|
517
|
+
self.table_view.setModel(self.model)
|
|
518
|
+
|
|
519
|
+
def rename_column(self):
|
|
520
|
+
|
|
521
|
+
x = self.table_view.selectedIndexes()
|
|
522
|
+
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
523
|
+
|
|
524
|
+
if len(col_idx) == 0:
|
|
525
|
+
msg_box = QMessageBox()
|
|
526
|
+
msg_box.setIcon(QMessageBox.Question)
|
|
527
|
+
msg_box.setText(f"Please select a column first.")
|
|
528
|
+
msg_box.setWindowTitle("Warning")
|
|
529
|
+
msg_box.setStandardButtons(QMessageBox.Ok)
|
|
530
|
+
returnValue = msg_box.exec()
|
|
531
|
+
if returnValue == QMessageBox.Ok:
|
|
532
|
+
return None
|
|
533
|
+
else:
|
|
534
|
+
return None
|
|
535
|
+
|
|
536
|
+
cols = np.array(list(self.data.columns))
|
|
537
|
+
selected_col = str(cols[col_idx][0])
|
|
538
|
+
|
|
539
|
+
self.renameWidget = RenameColWidget(self, selected_col)
|
|
540
|
+
self.renameWidget.show()
|
|
541
|
+
|
|
542
|
+
def save_as_csv_inplace_per_pos(self):
|
|
543
|
+
|
|
544
|
+
print("Saving each table in its respective position folder...")
|
|
545
|
+
for pos, pos_group in self.data.groupby(["position"]):
|
|
546
|
+
invalid_cols = [
|
|
547
|
+
c for c in list(pos_group.columns) if c.startswith("Unnamed")
|
|
548
|
+
]
|
|
549
|
+
if len(invalid_cols) > 0:
|
|
550
|
+
pos_group = pos_group.drop(invalid_cols, axis=1)
|
|
551
|
+
pos_group.to_csv(
|
|
552
|
+
pos[0]
|
|
553
|
+
+ os.sep.join(
|
|
554
|
+
["output", "tables", f"trajectories_{self.population}.csv"]
|
|
555
|
+
),
|
|
556
|
+
index=False,
|
|
557
|
+
)
|
|
558
|
+
print("Done...")
|
|
559
|
+
|
|
560
|
+
def divide_signals(self):
|
|
561
|
+
|
|
562
|
+
x = self.table_view.selectedIndexes()
|
|
563
|
+
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
564
|
+
if isinstance(col_idx, (list, np.ndarray)):
|
|
565
|
+
cols = np.array(list(self.data.columns))
|
|
566
|
+
if len(col_idx) > 0:
|
|
567
|
+
selected_col1 = str(cols[col_idx[0]])
|
|
568
|
+
if len(col_idx) > 1:
|
|
569
|
+
selected_col2 = str(cols[col_idx[1]])
|
|
570
|
+
else:
|
|
571
|
+
selected_col2 = None
|
|
572
|
+
else:
|
|
573
|
+
selected_col1 = None
|
|
574
|
+
selected_col2 = None
|
|
575
|
+
else:
|
|
576
|
+
selected_col1 = None
|
|
577
|
+
selected_col2 = None
|
|
578
|
+
|
|
579
|
+
self.divWidget = OperationOnColsWidget(
|
|
580
|
+
self, column1=selected_col1, column2=selected_col2, operation="divide"
|
|
581
|
+
)
|
|
582
|
+
self.divWidget.show()
|
|
583
|
+
|
|
584
|
+
def multiply_signals(self):
|
|
585
|
+
|
|
586
|
+
x = self.table_view.selectedIndexes()
|
|
587
|
+
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
588
|
+
if isinstance(col_idx, (list, np.ndarray)):
|
|
589
|
+
cols = np.array(list(self.data.columns))
|
|
590
|
+
if len(col_idx) > 0:
|
|
591
|
+
selected_col1 = str(cols[col_idx[0]])
|
|
592
|
+
if len(col_idx) > 1:
|
|
593
|
+
selected_col2 = str(cols[col_idx[1]])
|
|
594
|
+
else:
|
|
595
|
+
selected_col2 = None
|
|
596
|
+
else:
|
|
597
|
+
selected_col1 = None
|
|
598
|
+
selected_col2 = None
|
|
599
|
+
else:
|
|
600
|
+
selected_col1 = None
|
|
601
|
+
selected_col2 = None
|
|
602
|
+
|
|
603
|
+
self.mulWidget = OperationOnColsWidget(
|
|
604
|
+
self, column1=selected_col1, column2=selected_col2, operation="multiply"
|
|
605
|
+
)
|
|
606
|
+
self.mulWidget.show()
|
|
607
|
+
|
|
608
|
+
def add_signals(self):
|
|
609
|
+
|
|
610
|
+
x = self.table_view.selectedIndexes()
|
|
611
|
+
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
612
|
+
if isinstance(col_idx, (list, np.ndarray)):
|
|
613
|
+
cols = np.array(list(self.data.columns))
|
|
614
|
+
if len(col_idx) > 0:
|
|
615
|
+
selected_col1 = str(cols[col_idx[0]])
|
|
616
|
+
if len(col_idx) > 1:
|
|
617
|
+
selected_col2 = str(cols[col_idx[1]])
|
|
618
|
+
else:
|
|
619
|
+
selected_col2 = None
|
|
620
|
+
else:
|
|
621
|
+
selected_col1 = None
|
|
622
|
+
selected_col2 = None
|
|
623
|
+
else:
|
|
624
|
+
selected_col1 = None
|
|
625
|
+
selected_col2 = None
|
|
626
|
+
|
|
627
|
+
self.addiWidget = OperationOnColsWidget(
|
|
628
|
+
self, column1=selected_col1, column2=selected_col2, operation="add"
|
|
629
|
+
)
|
|
630
|
+
self.addiWidget.show()
|
|
631
|
+
|
|
632
|
+
def subtract_signals(self):
|
|
633
|
+
|
|
634
|
+
x = self.table_view.selectedIndexes()
|
|
635
|
+
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
636
|
+
if isinstance(col_idx, (list, np.ndarray)):
|
|
637
|
+
cols = np.array(list(self.data.columns))
|
|
638
|
+
if len(col_idx) > 0:
|
|
639
|
+
selected_col1 = str(cols[col_idx[0]])
|
|
640
|
+
if len(col_idx) > 1:
|
|
641
|
+
selected_col2 = str(cols[col_idx[1]])
|
|
642
|
+
else:
|
|
643
|
+
selected_col2 = None
|
|
644
|
+
else:
|
|
645
|
+
selected_col1 = None
|
|
646
|
+
selected_col2 = None
|
|
647
|
+
else:
|
|
648
|
+
selected_col1 = None
|
|
649
|
+
selected_col2 = None
|
|
650
|
+
|
|
651
|
+
self.subWidget = OperationOnColsWidget(
|
|
652
|
+
self, column1=selected_col1, column2=selected_col2, operation="subtract"
|
|
653
|
+
)
|
|
654
|
+
self.subWidget.show()
|
|
655
|
+
|
|
656
|
+
def differenciate_selected_feature(self):
|
|
657
|
+
|
|
658
|
+
# check only one col selected and assert is numerical
|
|
659
|
+
# open widget to select window parameters, directionality
|
|
660
|
+
# create new col
|
|
661
|
+
|
|
662
|
+
x = self.table_view.selectedIndexes()
|
|
663
|
+
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
664
|
+
if isinstance(col_idx, (list, np.ndarray)):
|
|
665
|
+
cols = np.array(list(self.data.columns))
|
|
666
|
+
if len(col_idx) > 0:
|
|
667
|
+
selected_col = str(cols[col_idx[0]])
|
|
668
|
+
else:
|
|
669
|
+
selected_col = None
|
|
670
|
+
else:
|
|
671
|
+
selected_col = None
|
|
672
|
+
|
|
673
|
+
self.diffWidget = DifferentiateColWidget(self, selected_col)
|
|
674
|
+
self.diffWidget.show()
|
|
675
|
+
|
|
676
|
+
def take_log_of_selected_feature(self):
|
|
677
|
+
|
|
678
|
+
# check only one col selected and assert is numerical
|
|
679
|
+
# open widget to select window parameters, directionality
|
|
680
|
+
# create new col
|
|
681
|
+
|
|
682
|
+
x = self.table_view.selectedIndexes()
|
|
683
|
+
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
684
|
+
if isinstance(col_idx, (list, np.ndarray)):
|
|
685
|
+
cols = np.array(list(self.data.columns))
|
|
686
|
+
if len(col_idx) > 0:
|
|
687
|
+
selected_col = str(cols[col_idx[0]])
|
|
688
|
+
else:
|
|
689
|
+
selected_col = None
|
|
690
|
+
else:
|
|
691
|
+
selected_col = None
|
|
692
|
+
|
|
693
|
+
self.LogWidget = LogColWidget(self, selected_col)
|
|
694
|
+
self.LogWidget.show()
|
|
695
|
+
|
|
696
|
+
def merge_classification_features(self):
|
|
697
|
+
|
|
698
|
+
x = self.table_view.selectedIndexes()
|
|
699
|
+
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
700
|
+
|
|
701
|
+
col_selection = []
|
|
702
|
+
if isinstance(col_idx, (list, np.ndarray)):
|
|
703
|
+
cols = np.array(list(self.data.columns))
|
|
704
|
+
if len(col_idx) > 0:
|
|
705
|
+
selected_cols = cols[col_idx]
|
|
706
|
+
col_selection.extend(selected_cols)
|
|
707
|
+
|
|
708
|
+
# Lazy load MergeGroupWidget
|
|
709
|
+
from celldetective.gui.table_ops._merge_groups import MergeGroupWidget
|
|
710
|
+
|
|
711
|
+
self.merge_classification_widget = MergeGroupWidget(self, columns=col_selection)
|
|
712
|
+
self.merge_classification_widget.show()
|
|
713
|
+
|
|
714
|
+
def calibrate_selected_feature(self):
|
|
715
|
+
|
|
716
|
+
x = self.table_view.selectedIndexes()
|
|
717
|
+
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
718
|
+
if isinstance(col_idx, (list, np.ndarray)):
|
|
719
|
+
cols = np.array(list(self.data.columns))
|
|
720
|
+
if len(col_idx) > 0:
|
|
721
|
+
selected_col = str(cols[col_idx[0]])
|
|
722
|
+
else:
|
|
723
|
+
selected_col = None
|
|
724
|
+
else:
|
|
725
|
+
selected_col = None
|
|
726
|
+
|
|
727
|
+
self.calWidget = CalibrateColWidget(self, selected_col)
|
|
728
|
+
self.calWidget.show()
|
|
729
|
+
|
|
730
|
+
def take_abs_of_selected_feature(self):
|
|
731
|
+
|
|
732
|
+
# check only one col selected and assert is numerical
|
|
733
|
+
# open widget to select window parameters, directionality
|
|
734
|
+
# create new col
|
|
735
|
+
|
|
736
|
+
x = self.table_view.selectedIndexes()
|
|
737
|
+
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
738
|
+
if isinstance(col_idx, (list, np.ndarray)):
|
|
739
|
+
cols = np.array(list(self.data.columns))
|
|
740
|
+
if len(col_idx) > 0:
|
|
741
|
+
selected_col = str(cols[col_idx[0]])
|
|
742
|
+
else:
|
|
743
|
+
selected_col = None
|
|
744
|
+
else:
|
|
745
|
+
selected_col = None
|
|
746
|
+
|
|
747
|
+
self.absWidget = AbsColWidget(self, selected_col)
|
|
748
|
+
self.absWidget.show()
|
|
749
|
+
|
|
750
|
+
def transform_one_hot_cols_to_categorical(self):
|
|
751
|
+
|
|
752
|
+
x = self.table_view.selectedIndexes()
|
|
753
|
+
col_idx = np.unique(np.array([l.column() for l in x]))
|
|
754
|
+
selected_cols = None
|
|
755
|
+
if isinstance(col_idx, (list, np.ndarray)):
|
|
756
|
+
cols = np.array(list(self.data.columns))
|
|
757
|
+
if len(col_idx) > 0:
|
|
758
|
+
selected_col = str(cols[col_idx[0]])
|
|
759
|
+
|
|
760
|
+
self.mergewidget = MergeOneHotWidget(self, selected_columns=selected_cols)
|
|
761
|
+
self.mergewidget.show()
|
|
762
|
+
|
|
763
|
+
def groupby_time_table(self):
|
|
764
|
+
"""
|
|
765
|
+
|
|
766
|
+
Perform a time average across each track for all features
|
|
767
|
+
|
|
768
|
+
"""
|
|
769
|
+
|
|
770
|
+
num_df = self.data.select_dtypes(include=self.numerics)
|
|
771
|
+
|
|
772
|
+
timeseries = num_df.groupby(["FRAME"]).sum().copy()
|
|
773
|
+
timeseries["timeline"] = timeseries.index
|
|
774
|
+
self.subtable = TableUI(
|
|
775
|
+
timeseries, "Group by frames", plot_mode="plot_timeseries"
|
|
776
|
+
)
|
|
777
|
+
self.subtable.show()
|
|
778
|
+
|
|
779
|
+
def perform_query(self):
|
|
780
|
+
"""
|
|
781
|
+
|
|
782
|
+
Perform a time average across each track for all features
|
|
783
|
+
|
|
784
|
+
"""
|
|
785
|
+
self.query_widget = QueryWidget(self)
|
|
786
|
+
self.query_widget.show()
|
|
787
|
+
|
|
788
|
+
# num_df = self.data.select_dtypes(include=self.numerics)
|
|
789
|
+
|
|
790
|
+
# timeseries = num_df.groupby("FRAME").mean().copy()
|
|
791
|
+
# timeseries["timeline"] = timeseries.index
|
|
792
|
+
# self.subtable = TableUI(timeseries,"Group by frames", plot_mode="plot_timeseries")
|
|
793
|
+
# self.subtable.show()
|
|
794
|
+
|
|
795
|
+
def set_projection_mode_neigh(self):
|
|
796
|
+
|
|
797
|
+
self.groupby_cols = [
|
|
798
|
+
"position",
|
|
799
|
+
"reference_population",
|
|
800
|
+
"neighbor_population",
|
|
801
|
+
"NEIGHBOR_ID",
|
|
802
|
+
"FRAME",
|
|
803
|
+
]
|
|
804
|
+
self.current_data = self.data
|
|
805
|
+
self.set_projection_mode_tracks()
|
|
806
|
+
|
|
807
|
+
def set_projection_mode_ref(self):
|
|
808
|
+
|
|
809
|
+
self.groupby_cols = [
|
|
810
|
+
"position",
|
|
811
|
+
"reference_population",
|
|
812
|
+
"neighbor_population",
|
|
813
|
+
"REFERENCE_ID",
|
|
814
|
+
"FRAME",
|
|
815
|
+
]
|
|
816
|
+
self.current_data = self.data
|
|
817
|
+
self.set_projection_mode_tracks()
|
|
818
|
+
|
|
819
|
+
def set_projection_mode_tracks(self):
|
|
820
|
+
|
|
821
|
+
self.current_data = self.data
|
|
822
|
+
|
|
823
|
+
self.projectionWidget = CelldetectiveWidget()
|
|
824
|
+
self.projectionWidget.setMinimumWidth(500)
|
|
825
|
+
self.projectionWidget.setWindowTitle("Set projection mode")
|
|
826
|
+
|
|
827
|
+
layout = QVBoxLayout()
|
|
828
|
+
self.projectionWidget.setLayout(layout)
|
|
829
|
+
|
|
830
|
+
self.projection_option = QRadioButton("global operation: ")
|
|
831
|
+
self.projection_option.setToolTip(
|
|
832
|
+
"Collapse the cell track measurements with an operation over each track."
|
|
833
|
+
)
|
|
834
|
+
self.projection_option.setChecked(True)
|
|
835
|
+
self.projection_option.toggled.connect(self.enable_projection_options)
|
|
836
|
+
self.projection_op_cb = QComboBox()
|
|
837
|
+
self.projection_op_cb.addItems(
|
|
838
|
+
["mean", "median", "min", "max", "first", "last", "prod", "sum"]
|
|
839
|
+
)
|
|
840
|
+
|
|
841
|
+
projection_layout = QHBoxLayout()
|
|
842
|
+
projection_layout.addWidget(self.projection_option, 33)
|
|
843
|
+
projection_layout.addWidget(self.projection_op_cb, 66)
|
|
844
|
+
layout.addLayout(projection_layout)
|
|
845
|
+
|
|
846
|
+
self.event_time_option = QRadioButton("@event time: ")
|
|
847
|
+
self.event_time_option.setToolTip(
|
|
848
|
+
"Pick the measurements at a specific event time."
|
|
849
|
+
)
|
|
850
|
+
self.event_time_option.toggled.connect(self.enable_projection_options)
|
|
851
|
+
self.event_times_cb = QComboBox()
|
|
852
|
+
cols = np.array(self.data.columns)
|
|
853
|
+
time_cols = np.array([c.startswith("t_") for c in cols])
|
|
854
|
+
time_cols = list(cols[time_cols])
|
|
855
|
+
if "t0" in list(self.data.columns):
|
|
856
|
+
time_cols.append("t0")
|
|
857
|
+
self.event_times_cb.addItems(time_cols)
|
|
858
|
+
self.event_times_cb.setEnabled(False)
|
|
859
|
+
|
|
860
|
+
event_time_layout = QHBoxLayout()
|
|
861
|
+
event_time_layout.addWidget(self.event_time_option, 33)
|
|
862
|
+
event_time_layout.addWidget(self.event_times_cb, 66)
|
|
863
|
+
layout.addLayout(event_time_layout)
|
|
864
|
+
|
|
865
|
+
self.per_status_option = QRadioButton("per status: ")
|
|
866
|
+
self.per_status_option.setToolTip(
|
|
867
|
+
"Collapse the cell track measurements independently for each of the cell state."
|
|
868
|
+
)
|
|
869
|
+
self.per_status_option.toggled.connect(self.enable_projection_options)
|
|
870
|
+
self.per_status_cb = QComboBox()
|
|
871
|
+
self.status_operation = QComboBox()
|
|
872
|
+
self.status_operation.setEnabled(False)
|
|
873
|
+
self.status_operation.addItems(["mean", "median", "min", "max", "prod", "sum"])
|
|
874
|
+
|
|
875
|
+
status_cols = np.array(
|
|
876
|
+
[c.startswith("status_") or c.startswith("group_") for c in cols]
|
|
877
|
+
)
|
|
878
|
+
status_cols = list(cols[status_cols])
|
|
879
|
+
if "status" in list(self.data.columns):
|
|
880
|
+
status_cols.append("status")
|
|
881
|
+
self.per_status_cb.addItems(status_cols)
|
|
882
|
+
self.per_status_cb.setEnabled(False)
|
|
883
|
+
|
|
884
|
+
per_status_layout = QHBoxLayout()
|
|
885
|
+
per_status_layout.addWidget(self.per_status_option, 33)
|
|
886
|
+
per_status_layout.addWidget(self.per_status_cb, 66)
|
|
887
|
+
layout.addLayout(per_status_layout)
|
|
888
|
+
|
|
889
|
+
status_operation_layout = QHBoxLayout()
|
|
890
|
+
status_operation_layout.addWidget(
|
|
891
|
+
QLabel("operation: "), 33, alignment=Qt.AlignRight
|
|
892
|
+
)
|
|
893
|
+
status_operation_layout.addWidget(self.status_operation, 66)
|
|
894
|
+
layout.addLayout(status_operation_layout)
|
|
895
|
+
|
|
896
|
+
self.btn_projection_group = QButtonGroup()
|
|
897
|
+
self.btn_projection_group.addButton(self.projection_option)
|
|
898
|
+
self.btn_projection_group.addButton(self.event_time_option)
|
|
899
|
+
self.btn_projection_group.addButton(self.per_status_option)
|
|
900
|
+
|
|
901
|
+
apply_layout = QHBoxLayout()
|
|
902
|
+
|
|
903
|
+
self.set_projection_btn = QPushButton("Apply")
|
|
904
|
+
self.set_projection_btn.setStyleSheet(self.button_style_sheet)
|
|
905
|
+
self.set_projection_btn.clicked.connect(self.set_proj_mode)
|
|
906
|
+
apply_layout.addWidget(QLabel(""), 33)
|
|
907
|
+
apply_layout.addWidget(self.set_projection_btn, 33)
|
|
908
|
+
apply_layout.addWidget(QLabel(""), 33)
|
|
909
|
+
layout.addLayout(apply_layout)
|
|
910
|
+
|
|
911
|
+
self.projectionWidget.show()
|
|
912
|
+
center_window(self.projectionWidget)
|
|
913
|
+
|
|
914
|
+
def enable_projection_options(self):
|
|
915
|
+
|
|
916
|
+
if self.projection_option.isChecked():
|
|
917
|
+
self.projection_op_cb.setEnabled(True)
|
|
918
|
+
self.event_times_cb.setEnabled(False)
|
|
919
|
+
self.per_status_cb.setEnabled(False)
|
|
920
|
+
self.status_operation.setEnabled(False)
|
|
921
|
+
elif self.event_time_option.isChecked():
|
|
922
|
+
self.projection_op_cb.setEnabled(False)
|
|
923
|
+
self.event_times_cb.setEnabled(True)
|
|
924
|
+
self.per_status_cb.setEnabled(False)
|
|
925
|
+
self.status_operation.setEnabled(False)
|
|
926
|
+
elif self.per_status_option.isChecked():
|
|
927
|
+
self.projection_op_cb.setEnabled(False)
|
|
928
|
+
self.event_times_cb.setEnabled(False)
|
|
929
|
+
self.per_status_cb.setEnabled(True)
|
|
930
|
+
self.status_operation.setEnabled(True)
|
|
931
|
+
|
|
932
|
+
def set_1D_plot_params(self):
|
|
933
|
+
|
|
934
|
+
self.plot1Dparams = CelldetectiveWidget()
|
|
935
|
+
self.plot1Dparams.setWindowTitle("Set 1D plot parameters")
|
|
936
|
+
|
|
937
|
+
layout = QVBoxLayout()
|
|
938
|
+
self.plot1Dparams.setLayout(layout)
|
|
939
|
+
|
|
940
|
+
layout.addWidget(QLabel("Representations: "))
|
|
941
|
+
self.hist_check = QCheckBox("histogram")
|
|
942
|
+
self.kde_check = QCheckBox("KDE plot")
|
|
943
|
+
self.count_check = QCheckBox("countplot")
|
|
944
|
+
self.ecdf_check = QCheckBox("ECDF plot")
|
|
945
|
+
self.line_check = QCheckBox("line plot")
|
|
946
|
+
self.scat_check = QCheckBox("scatter plot")
|
|
947
|
+
self.swarm_check = QCheckBox("swarm")
|
|
948
|
+
self.violin_check = QCheckBox("violin")
|
|
949
|
+
self.strip_check = QCheckBox("strip")
|
|
950
|
+
self.box_check = QCheckBox("boxplot")
|
|
951
|
+
self.boxenplot_check = QCheckBox("boxenplot")
|
|
952
|
+
|
|
953
|
+
self.sep_line = QHSeperationLine()
|
|
954
|
+
self.pvalue_check = QCheckBox("Compute KS test p-value?")
|
|
955
|
+
self.effect_size_check = QCheckBox("Compute effect size?\n(Cliff's Delta)")
|
|
956
|
+
|
|
957
|
+
layout.addWidget(self.hist_check)
|
|
958
|
+
layout.addWidget(self.kde_check)
|
|
959
|
+
layout.addWidget(self.count_check)
|
|
960
|
+
layout.addWidget(self.ecdf_check)
|
|
961
|
+
layout.addWidget(self.line_check)
|
|
962
|
+
layout.addWidget(self.scat_check)
|
|
963
|
+
layout.addWidget(self.swarm_check)
|
|
964
|
+
layout.addWidget(self.violin_check)
|
|
965
|
+
layout.addWidget(self.strip_check)
|
|
966
|
+
layout.addWidget(self.box_check)
|
|
967
|
+
layout.addWidget(self.boxenplot_check)
|
|
968
|
+
layout.addWidget(self.sep_line)
|
|
969
|
+
layout.addWidget(self.pvalue_check)
|
|
970
|
+
layout.addWidget(self.effect_size_check)
|
|
971
|
+
|
|
972
|
+
self.x_cb = QSearchableComboBox()
|
|
973
|
+
self.x_cb.addItems(["--"] + list(self.data.columns))
|
|
974
|
+
|
|
975
|
+
self.y_cb = QSearchableComboBox()
|
|
976
|
+
self.y_cb.addItems(["--"] + list(self.data.columns))
|
|
977
|
+
|
|
978
|
+
self.hue_cb = QSearchableComboBox()
|
|
979
|
+
self.hue_cb.addItems(["--"] + list(self.data.columns))
|
|
980
|
+
idx = self.hue_cb.findText("--")
|
|
981
|
+
self.hue_cb.setCurrentIndex(idx)
|
|
982
|
+
|
|
983
|
+
# Set selected column
|
|
984
|
+
|
|
985
|
+
try:
|
|
986
|
+
x = self.table_view.selectedIndexes()
|
|
987
|
+
col_idx = np.array([l.column() for l in x])
|
|
988
|
+
row_idx = np.array([l.row() for l in x])
|
|
989
|
+
column_names = self.data.columns
|
|
990
|
+
unique_cols = np.unique(col_idx)[0]
|
|
991
|
+
y = column_names[unique_cols]
|
|
992
|
+
idx = self.y_cb.findText(y)
|
|
993
|
+
self.y_cb.setCurrentIndex(idx)
|
|
994
|
+
except:
|
|
995
|
+
pass
|
|
996
|
+
|
|
997
|
+
hbox = QHBoxLayout()
|
|
998
|
+
hbox.addWidget(QLabel("x: "), 33)
|
|
999
|
+
hbox.addWidget(self.x_cb, 66)
|
|
1000
|
+
layout.addLayout(hbox)
|
|
1001
|
+
|
|
1002
|
+
hbox = QHBoxLayout()
|
|
1003
|
+
hbox.addWidget(QLabel("y: "), 33)
|
|
1004
|
+
hbox.addWidget(self.y_cb, 66)
|
|
1005
|
+
layout.addLayout(hbox)
|
|
1006
|
+
|
|
1007
|
+
hbox = QHBoxLayout()
|
|
1008
|
+
hbox.addWidget(QLabel("hue: "), 33)
|
|
1009
|
+
hbox.addWidget(self.hue_cb, 66)
|
|
1010
|
+
layout.addLayout(hbox)
|
|
1011
|
+
|
|
1012
|
+
from matplotlib import colormaps
|
|
1013
|
+
import matplotlib.cm
|
|
1014
|
+
|
|
1015
|
+
self.cmap_cb = QColormapComboBox()
|
|
1016
|
+
all_cms = list(colormaps)
|
|
1017
|
+
for cm in all_cms:
|
|
1018
|
+
if hasattr(matplotlib.cm, str(cm).lower()):
|
|
1019
|
+
try:
|
|
1020
|
+
self.cmap_cb.addColormap(cm.lower())
|
|
1021
|
+
except:
|
|
1022
|
+
pass
|
|
1023
|
+
|
|
1024
|
+
hbox = QHBoxLayout()
|
|
1025
|
+
hbox.addWidget(QLabel("colormap: "), 33)
|
|
1026
|
+
hbox.addWidget(self.cmap_cb, 66)
|
|
1027
|
+
layout.addLayout(hbox)
|
|
1028
|
+
|
|
1029
|
+
self.plot1d_btn = QPushButton("set")
|
|
1030
|
+
self.plot1d_btn.setStyleSheet(self.button_style_sheet)
|
|
1031
|
+
self.plot1d_btn.clicked.connect(self.plot1d)
|
|
1032
|
+
layout.addWidget(self.plot1d_btn)
|
|
1033
|
+
|
|
1034
|
+
self.plot1Dparams.show()
|
|
1035
|
+
center_window(self.plot1Dparams)
|
|
1036
|
+
|
|
1037
|
+
def plot1d(self):
|
|
1038
|
+
|
|
1039
|
+
self.x_option = False
|
|
1040
|
+
if self.x_cb.currentText() != "--":
|
|
1041
|
+
self.x_option = True
|
|
1042
|
+
self.x = self.x_cb.currentText()
|
|
1043
|
+
|
|
1044
|
+
import matplotlib.pyplot as plt
|
|
1045
|
+
import seaborn as sns
|
|
1046
|
+
import matplotlib.cm as mcm
|
|
1047
|
+
|
|
1048
|
+
self.fig, self.ax = plt.subplots(1, 1, figsize=(4, 3))
|
|
1049
|
+
self.plot1dWindow = FigureCanvas(self.fig, title="scatter")
|
|
1050
|
+
self.ax.clear()
|
|
1051
|
+
|
|
1052
|
+
cmap = getattr(mcm, self.cmap_cb.currentText())
|
|
1053
|
+
|
|
1054
|
+
try:
|
|
1055
|
+
self.hue_variable = self.hue_cb.currentText()
|
|
1056
|
+
colors = [
|
|
1057
|
+
cmap(i / len(self.data[self.hue_variable].unique()))
|
|
1058
|
+
for i in range(len(self.data[self.hue_variable].unique()))
|
|
1059
|
+
]
|
|
1060
|
+
except:
|
|
1061
|
+
colors = None
|
|
1062
|
+
|
|
1063
|
+
if self.hue_cb.currentText() == "--":
|
|
1064
|
+
self.hue_variable = None
|
|
1065
|
+
|
|
1066
|
+
if self.y_cb.currentText() == "--":
|
|
1067
|
+
self.y = None
|
|
1068
|
+
else:
|
|
1069
|
+
self.y = self.y_cb.currentText()
|
|
1070
|
+
|
|
1071
|
+
if self.x_cb.currentText() == "--":
|
|
1072
|
+
self.x = None
|
|
1073
|
+
else:
|
|
1074
|
+
self.x = self.x_cb.currentText()
|
|
1075
|
+
|
|
1076
|
+
legend = True
|
|
1077
|
+
|
|
1078
|
+
if self.hist_check.isChecked():
|
|
1079
|
+
if self.x is not None:
|
|
1080
|
+
sns.histplot(
|
|
1081
|
+
data=self.data,
|
|
1082
|
+
x=self.x,
|
|
1083
|
+
hue=self.hue_variable,
|
|
1084
|
+
legend=legend,
|
|
1085
|
+
ax=self.ax,
|
|
1086
|
+
palette=colors,
|
|
1087
|
+
kde=True,
|
|
1088
|
+
common_norm=False,
|
|
1089
|
+
stat="density",
|
|
1090
|
+
)
|
|
1091
|
+
legend = False
|
|
1092
|
+
elif self.x is None and self.y is not None:
|
|
1093
|
+
sns.histplot(
|
|
1094
|
+
data=self.data,
|
|
1095
|
+
x=self.y,
|
|
1096
|
+
hue=self.hue_variable,
|
|
1097
|
+
legend=legend,
|
|
1098
|
+
ax=self.ax,
|
|
1099
|
+
palette=colors,
|
|
1100
|
+
kde=True,
|
|
1101
|
+
common_norm=False,
|
|
1102
|
+
stat="density",
|
|
1103
|
+
)
|
|
1104
|
+
legend = False
|
|
1105
|
+
else:
|
|
1106
|
+
pass
|
|
1107
|
+
|
|
1108
|
+
if self.kde_check.isChecked():
|
|
1109
|
+
if self.x is not None:
|
|
1110
|
+
sns.kdeplot(
|
|
1111
|
+
data=self.data,
|
|
1112
|
+
x=self.x,
|
|
1113
|
+
hue=self.hue_variable,
|
|
1114
|
+
legend=legend,
|
|
1115
|
+
ax=self.ax,
|
|
1116
|
+
palette=colors,
|
|
1117
|
+
cut=0,
|
|
1118
|
+
)
|
|
1119
|
+
legend = False
|
|
1120
|
+
elif self.x is None and self.y is not None:
|
|
1121
|
+
sns.kdeplot(
|
|
1122
|
+
data=self.data,
|
|
1123
|
+
x=self.y,
|
|
1124
|
+
hue=self.hue_variable,
|
|
1125
|
+
legend=legend,
|
|
1126
|
+
ax=self.ax,
|
|
1127
|
+
palette=colors,
|
|
1128
|
+
cut=0,
|
|
1129
|
+
)
|
|
1130
|
+
legend = False
|
|
1131
|
+
else:
|
|
1132
|
+
pass
|
|
1133
|
+
|
|
1134
|
+
if self.count_check.isChecked():
|
|
1135
|
+
sns.countplot(
|
|
1136
|
+
data=self.data,
|
|
1137
|
+
x=self.x,
|
|
1138
|
+
hue=self.hue_variable,
|
|
1139
|
+
legend=legend,
|
|
1140
|
+
ax=self.ax,
|
|
1141
|
+
palette=colors,
|
|
1142
|
+
)
|
|
1143
|
+
legend = False
|
|
1144
|
+
|
|
1145
|
+
if self.ecdf_check.isChecked():
|
|
1146
|
+
if self.x is not None:
|
|
1147
|
+
sns.ecdfplot(
|
|
1148
|
+
data=self.data,
|
|
1149
|
+
x=self.x,
|
|
1150
|
+
hue=self.hue_variable,
|
|
1151
|
+
legend=legend,
|
|
1152
|
+
ax=self.ax,
|
|
1153
|
+
palette=colors,
|
|
1154
|
+
)
|
|
1155
|
+
legend = False
|
|
1156
|
+
elif self.x is None and self.y is not None:
|
|
1157
|
+
sns.ecdfplot(
|
|
1158
|
+
data=self.data,
|
|
1159
|
+
x=self.y,
|
|
1160
|
+
hue=self.hue_variable,
|
|
1161
|
+
legend=legend,
|
|
1162
|
+
ax=self.ax,
|
|
1163
|
+
palette=colors,
|
|
1164
|
+
)
|
|
1165
|
+
legend = False
|
|
1166
|
+
else:
|
|
1167
|
+
pass
|
|
1168
|
+
|
|
1169
|
+
if self.line_check.isChecked():
|
|
1170
|
+
if self.x_option:
|
|
1171
|
+
sns.lineplot(
|
|
1172
|
+
data=self.data,
|
|
1173
|
+
x=self.x,
|
|
1174
|
+
y=self.y,
|
|
1175
|
+
hue=self.hue_variable,
|
|
1176
|
+
legend=legend,
|
|
1177
|
+
ax=self.ax,
|
|
1178
|
+
palette=colors,
|
|
1179
|
+
)
|
|
1180
|
+
legend = False
|
|
1181
|
+
else:
|
|
1182
|
+
print("please provide a -x variable...")
|
|
1183
|
+
pass
|
|
1184
|
+
|
|
1185
|
+
if self.scat_check.isChecked():
|
|
1186
|
+
if self.x_option:
|
|
1187
|
+
sns.scatterplot(
|
|
1188
|
+
data=self.data,
|
|
1189
|
+
x=self.x,
|
|
1190
|
+
y=self.y,
|
|
1191
|
+
hue=self.hue_variable,
|
|
1192
|
+
legend=legend,
|
|
1193
|
+
ax=self.ax,
|
|
1194
|
+
palette=colors,
|
|
1195
|
+
)
|
|
1196
|
+
legend = False
|
|
1197
|
+
else:
|
|
1198
|
+
print("please provide a -x variable...")
|
|
1199
|
+
pass
|
|
1200
|
+
|
|
1201
|
+
if self.swarm_check.isChecked():
|
|
1202
|
+
if self.x_option:
|
|
1203
|
+
sns.swarmplot(
|
|
1204
|
+
data=self.data,
|
|
1205
|
+
x=self.x,
|
|
1206
|
+
y=self.y,
|
|
1207
|
+
dodge=True,
|
|
1208
|
+
hue=self.hue_variable,
|
|
1209
|
+
legend=legend,
|
|
1210
|
+
ax=self.ax,
|
|
1211
|
+
palette=colors,
|
|
1212
|
+
)
|
|
1213
|
+
legend = False
|
|
1214
|
+
else:
|
|
1215
|
+
sns.swarmplot(
|
|
1216
|
+
data=self.data,
|
|
1217
|
+
y=self.y,
|
|
1218
|
+
dodge=True,
|
|
1219
|
+
hue=self.hue_variable,
|
|
1220
|
+
legend=legend,
|
|
1221
|
+
ax=self.ax,
|
|
1222
|
+
palette=colors,
|
|
1223
|
+
)
|
|
1224
|
+
legend = False
|
|
1225
|
+
|
|
1226
|
+
if self.violin_check.isChecked():
|
|
1227
|
+
if self.x_option:
|
|
1228
|
+
sns.violinplot(
|
|
1229
|
+
data=self.data,
|
|
1230
|
+
x=self.x,
|
|
1231
|
+
y=self.y,
|
|
1232
|
+
dodge=True,
|
|
1233
|
+
ax=self.ax,
|
|
1234
|
+
hue=self.hue_variable,
|
|
1235
|
+
legend=legend,
|
|
1236
|
+
palette=colors,
|
|
1237
|
+
)
|
|
1238
|
+
legend = False
|
|
1239
|
+
else:
|
|
1240
|
+
sns.violinplot(
|
|
1241
|
+
data=self.data,
|
|
1242
|
+
y=self.y,
|
|
1243
|
+
dodge=True,
|
|
1244
|
+
hue=self.hue_variable,
|
|
1245
|
+
legend=legend,
|
|
1246
|
+
ax=self.ax,
|
|
1247
|
+
palette=colors,
|
|
1248
|
+
cut=0,
|
|
1249
|
+
)
|
|
1250
|
+
legend = False
|
|
1251
|
+
|
|
1252
|
+
if self.box_check.isChecked():
|
|
1253
|
+
if self.x_option:
|
|
1254
|
+
sns.boxplot(
|
|
1255
|
+
data=self.data,
|
|
1256
|
+
x=self.x,
|
|
1257
|
+
y=self.y,
|
|
1258
|
+
dodge=True,
|
|
1259
|
+
hue=self.hue_variable,
|
|
1260
|
+
legend=legend,
|
|
1261
|
+
ax=self.ax,
|
|
1262
|
+
fill=False,
|
|
1263
|
+
palette=colors,
|
|
1264
|
+
linewidth=2,
|
|
1265
|
+
)
|
|
1266
|
+
legend = False
|
|
1267
|
+
else:
|
|
1268
|
+
sns.boxplot(
|
|
1269
|
+
data=self.data,
|
|
1270
|
+
y=self.y,
|
|
1271
|
+
dodge=True,
|
|
1272
|
+
hue=self.hue_variable,
|
|
1273
|
+
legend=legend,
|
|
1274
|
+
ax=self.ax,
|
|
1275
|
+
fill=False,
|
|
1276
|
+
palette=colors,
|
|
1277
|
+
linewidth=2,
|
|
1278
|
+
)
|
|
1279
|
+
legend = False
|
|
1280
|
+
|
|
1281
|
+
if self.boxenplot_check.isChecked():
|
|
1282
|
+
if self.x_option:
|
|
1283
|
+
sns.boxenplot(
|
|
1284
|
+
data=self.data,
|
|
1285
|
+
x=self.x,
|
|
1286
|
+
y=self.y,
|
|
1287
|
+
dodge=True,
|
|
1288
|
+
hue=self.hue_variable,
|
|
1289
|
+
legend=legend,
|
|
1290
|
+
ax=self.ax,
|
|
1291
|
+
fill=False,
|
|
1292
|
+
palette=colors,
|
|
1293
|
+
linewidth=2,
|
|
1294
|
+
)
|
|
1295
|
+
legend = False
|
|
1296
|
+
else:
|
|
1297
|
+
sns.boxenplot(
|
|
1298
|
+
data=self.data,
|
|
1299
|
+
y=self.y,
|
|
1300
|
+
dodge=True,
|
|
1301
|
+
hue=self.hue_variable,
|
|
1302
|
+
legend=legend,
|
|
1303
|
+
ax=self.ax,
|
|
1304
|
+
fill=False,
|
|
1305
|
+
palette=colors,
|
|
1306
|
+
linewidth=2,
|
|
1307
|
+
)
|
|
1308
|
+
legend = False
|
|
1309
|
+
|
|
1310
|
+
if self.strip_check.isChecked():
|
|
1311
|
+
if self.x_option:
|
|
1312
|
+
sns.stripplot(
|
|
1313
|
+
data=self.data,
|
|
1314
|
+
x=self.x,
|
|
1315
|
+
y=self.y,
|
|
1316
|
+
dodge=True,
|
|
1317
|
+
ax=self.ax,
|
|
1318
|
+
hue=self.hue_variable,
|
|
1319
|
+
legend=legend,
|
|
1320
|
+
palette=colors,
|
|
1321
|
+
)
|
|
1322
|
+
legend = False
|
|
1323
|
+
else:
|
|
1324
|
+
sns.stripplot(
|
|
1325
|
+
data=self.data,
|
|
1326
|
+
y=self.y,
|
|
1327
|
+
dodge=True,
|
|
1328
|
+
ax=self.ax,
|
|
1329
|
+
hue=self.hue_variable,
|
|
1330
|
+
legend=legend,
|
|
1331
|
+
palette=colors,
|
|
1332
|
+
)
|
|
1333
|
+
legend = False
|
|
1334
|
+
|
|
1335
|
+
plt.tight_layout()
|
|
1336
|
+
self.fig.set_facecolor("none") # or 'None'
|
|
1337
|
+
self.fig.canvas.setStyleSheet("background-color: transparent;")
|
|
1338
|
+
self.plot1dWindow.canvas.draw()
|
|
1339
|
+
self.plot1dWindow.show()
|
|
1340
|
+
|
|
1341
|
+
if self.effect_size_check.isChecked():
|
|
1342
|
+
self.compute_effect_size()
|
|
1343
|
+
if self.pvalue_check.isChecked():
|
|
1344
|
+
self.compute_pvalue()
|
|
1345
|
+
|
|
1346
|
+
def extract_groupby_cols(self):
|
|
1347
|
+
|
|
1348
|
+
x = self.x
|
|
1349
|
+
y = self.y
|
|
1350
|
+
hue_variable = self.hue_variable
|
|
1351
|
+
|
|
1352
|
+
if (
|
|
1353
|
+
self.hist_check.isChecked()
|
|
1354
|
+
or self.ecdf_check.isChecked()
|
|
1355
|
+
or self.kde_check.isChecked()
|
|
1356
|
+
):
|
|
1357
|
+
y = self.x
|
|
1358
|
+
x = None
|
|
1359
|
+
|
|
1360
|
+
groupby_cols = []
|
|
1361
|
+
if x is not None:
|
|
1362
|
+
groupby_cols.append(x)
|
|
1363
|
+
if hue_variable is not None:
|
|
1364
|
+
groupby_cols.append(hue_variable)
|
|
1365
|
+
|
|
1366
|
+
return groupby_cols, y
|
|
1367
|
+
|
|
1368
|
+
def compute_effect_size(self):
|
|
1369
|
+
|
|
1370
|
+
if self.count_check.isChecked() or self.scat_check.isChecked():
|
|
1371
|
+
print(
|
|
1372
|
+
"Please select a valid plot representation to compute effect size (histogram, boxplot, etc.)..."
|
|
1373
|
+
)
|
|
1374
|
+
return None
|
|
1375
|
+
|
|
1376
|
+
groupby_cols, y = self.extract_groupby_cols()
|
|
1377
|
+
pivot = test_2samp_generic(
|
|
1378
|
+
self.data, feature=y, groupby_cols=groupby_cols, method="cliffs_delta"
|
|
1379
|
+
)
|
|
1380
|
+
self.effect_size_table = PivotTableUI(
|
|
1381
|
+
pivot, title="Effect size (Cliff's Delta)", mode="cliff"
|
|
1382
|
+
)
|
|
1383
|
+
self.effect_size_table.show()
|
|
1384
|
+
|
|
1385
|
+
def compute_pvalue(self):
|
|
1386
|
+
|
|
1387
|
+
if self.count_check.isChecked() or self.scat_check.isChecked():
|
|
1388
|
+
print(
|
|
1389
|
+
"Please select a valid plot representation to compute effect size (histogram, boxplot, etc.)..."
|
|
1390
|
+
)
|
|
1391
|
+
return None
|
|
1392
|
+
|
|
1393
|
+
groupby_cols, y = self.extract_groupby_cols()
|
|
1394
|
+
pivot = test_2samp_generic(
|
|
1395
|
+
self.data, feature=y, groupby_cols=groupby_cols, method="ks_2samp"
|
|
1396
|
+
)
|
|
1397
|
+
self.pval_table = PivotTableUI(
|
|
1398
|
+
pivot, title="p-value (1-sided KS test)", mode="pvalue"
|
|
1399
|
+
)
|
|
1400
|
+
self.pval_table.show()
|
|
1401
|
+
|
|
1402
|
+
def set_proj_mode(self):
|
|
1403
|
+
|
|
1404
|
+
self.static_columns = [
|
|
1405
|
+
"well_index",
|
|
1406
|
+
"well_name",
|
|
1407
|
+
"pos_name",
|
|
1408
|
+
"position",
|
|
1409
|
+
"well",
|
|
1410
|
+
"status",
|
|
1411
|
+
"t0",
|
|
1412
|
+
"class",
|
|
1413
|
+
"cell_type",
|
|
1414
|
+
"concentration",
|
|
1415
|
+
"antibody",
|
|
1416
|
+
"pharmaceutical_agent",
|
|
1417
|
+
"TRACK_ID",
|
|
1418
|
+
"position",
|
|
1419
|
+
"neighbor_population",
|
|
1420
|
+
"reference_population",
|
|
1421
|
+
"NEIGHBOR_ID",
|
|
1422
|
+
"REFERENCE_ID",
|
|
1423
|
+
"FRAME",
|
|
1424
|
+
]
|
|
1425
|
+
|
|
1426
|
+
if self.projection_option.isChecked():
|
|
1427
|
+
|
|
1428
|
+
self.projection_mode = self.projection_op_cb.currentText()
|
|
1429
|
+
op = getattr(
|
|
1430
|
+
self.current_data.groupby(self.groupby_cols), self.projection_mode
|
|
1431
|
+
)
|
|
1432
|
+
group_table = op(self.current_data.groupby(self.groupby_cols))
|
|
1433
|
+
|
|
1434
|
+
for c in self.static_columns:
|
|
1435
|
+
try:
|
|
1436
|
+
group_table[c] = self.current_data.groupby(self.groupby_cols)[
|
|
1437
|
+
c
|
|
1438
|
+
].apply(lambda x: x.unique()[0])
|
|
1439
|
+
except Exception as e:
|
|
1440
|
+
print(e)
|
|
1441
|
+
pass
|
|
1442
|
+
|
|
1443
|
+
if self.population == "pairs":
|
|
1444
|
+
for col in reversed(
|
|
1445
|
+
self.groupby_cols
|
|
1446
|
+
): # ['neighbor_population', 'reference_population', 'NEIGHBOR_ID', 'REFERENCE_ID']
|
|
1447
|
+
if col in group_table:
|
|
1448
|
+
first_column = group_table.pop(col)
|
|
1449
|
+
group_table.insert(0, col, first_column)
|
|
1450
|
+
else:
|
|
1451
|
+
for col in ["TRACK_ID"]:
|
|
1452
|
+
first_column = group_table.pop(col)
|
|
1453
|
+
group_table.insert(0, col, first_column)
|
|
1454
|
+
group_table.pop("FRAME")
|
|
1455
|
+
|
|
1456
|
+
elif self.event_time_option.isChecked():
|
|
1457
|
+
|
|
1458
|
+
time_of_interest = self.event_times_cb.currentText()
|
|
1459
|
+
self.projection_mode = f"measurements at {time_of_interest}"
|
|
1460
|
+
new_table = []
|
|
1461
|
+
for tid, group in self.current_data.groupby(self.groupby_cols):
|
|
1462
|
+
time = group[time_of_interest].values[0]
|
|
1463
|
+
if time == time:
|
|
1464
|
+
time = floor(time) # floor for onset
|
|
1465
|
+
else:
|
|
1466
|
+
continue
|
|
1467
|
+
frames = group["FRAME"].values
|
|
1468
|
+
values = group.loc[group["FRAME"] == time, :].to_numpy()
|
|
1469
|
+
if len(values) > 0:
|
|
1470
|
+
values = dict(zip(list(self.current_data.columns), values[0]))
|
|
1471
|
+
for k, c in enumerate(self.groupby_cols):
|
|
1472
|
+
values.update({c: tid[k]})
|
|
1473
|
+
new_table.append(values)
|
|
1474
|
+
import pandas as pd
|
|
1475
|
+
|
|
1476
|
+
group_table = pd.DataFrame(new_table)
|
|
1477
|
+
if self.population == "pairs":
|
|
1478
|
+
for col in self.groupby_cols[1:]:
|
|
1479
|
+
first_column = group_table.pop(col)
|
|
1480
|
+
group_table.insert(0, col, first_column)
|
|
1481
|
+
else:
|
|
1482
|
+
for col in ["TRACK_ID"]:
|
|
1483
|
+
first_column = group_table.pop(col)
|
|
1484
|
+
group_table.insert(0, col, first_column)
|
|
1485
|
+
|
|
1486
|
+
group_table = group_table.sort_values(
|
|
1487
|
+
by=self.groupby_cols + ["FRAME"], ignore_index=True
|
|
1488
|
+
)
|
|
1489
|
+
group_table = group_table.reset_index(drop=True)
|
|
1490
|
+
|
|
1491
|
+
elif self.per_status_option.isChecked():
|
|
1492
|
+
self.projection_mode = self.status_operation.currentText()
|
|
1493
|
+
group_table = collapse_trajectories_by_status(
|
|
1494
|
+
self.current_data,
|
|
1495
|
+
status=self.per_status_cb.currentText(),
|
|
1496
|
+
population=self.population,
|
|
1497
|
+
projection=self.status_operation.currentText(),
|
|
1498
|
+
groupby_columns=self.groupby_cols,
|
|
1499
|
+
)
|
|
1500
|
+
|
|
1501
|
+
self.subtable = TableUI(
|
|
1502
|
+
group_table,
|
|
1503
|
+
f"Group by tracks: {self.projection_mode}",
|
|
1504
|
+
plot_mode="static",
|
|
1505
|
+
collapse_tracks_option=False,
|
|
1506
|
+
)
|
|
1507
|
+
self.subtable.show()
|
|
1508
|
+
|
|
1509
|
+
self.projectionWidget.close()
|
|
1510
|
+
|
|
1511
|
+
# def groupby_track_table(self):
|
|
1512
|
+
|
|
1513
|
+
# """
|
|
1514
|
+
|
|
1515
|
+
# Perform a time average across each track for all features
|
|
1516
|
+
|
|
1517
|
+
# """
|
|
1518
|
+
|
|
1519
|
+
# self.subtable = TrajectoryTablePanel(self.data.groupby("TRACK_ID").mean(),"Group by tracks", plot_mode="scatter")
|
|
1520
|
+
# self.subtable.show()
|
|
1521
|
+
|
|
1522
|
+
def _createMenuBar(self):
|
|
1523
|
+
menuBar = self.menuBar()
|
|
1524
|
+
self.fileMenu = QMenu("&File", self)
|
|
1525
|
+
menuBar.addMenu(self.fileMenu)
|
|
1526
|
+
self.editMenu = QMenu("&Edit", self)
|
|
1527
|
+
menuBar.addMenu(self.editMenu)
|
|
1528
|
+
self.mathMenu = QMenu("&Math", self)
|
|
1529
|
+
menuBar.addMenu(self.mathMenu)
|
|
1530
|
+
|
|
1531
|
+
def save_as_csv(self):
|
|
1532
|
+
options = QFileDialog.Options()
|
|
1533
|
+
options |= QFileDialog.ReadOnly
|
|
1534
|
+
file_name, _ = QFileDialog.getSaveFileName(
|
|
1535
|
+
self,
|
|
1536
|
+
"Save as .csv",
|
|
1537
|
+
"",
|
|
1538
|
+
"CSV Files (*.csv);;All Files (*)",
|
|
1539
|
+
options=options,
|
|
1540
|
+
)
|
|
1541
|
+
if file_name:
|
|
1542
|
+
if not file_name.endswith(".csv"):
|
|
1543
|
+
file_name += ".csv"
|
|
1544
|
+
invalid_cols = [
|
|
1545
|
+
c for c in list(self.data.columns) if c.startswith("Unnamed")
|
|
1546
|
+
]
|
|
1547
|
+
if len(invalid_cols) > 0:
|
|
1548
|
+
self.data = self.data.drop(invalid_cols, axis=1)
|
|
1549
|
+
self.data.to_csv(file_name, index=False)
|
|
1550
|
+
|
|
1551
|
+
def plot_instantaneous(self):
|
|
1552
|
+
|
|
1553
|
+
if self.plot_mode == "plot_track_signals":
|
|
1554
|
+
self.plot_mode = "static"
|
|
1555
|
+
self.plot()
|
|
1556
|
+
self.plot_mode = "plot_track_signals"
|
|
1557
|
+
elif self.plot_mode == "static":
|
|
1558
|
+
self.plot()
|
|
1559
|
+
|
|
1560
|
+
def plot(self):
|
|
1561
|
+
import matplotlib.pyplot as plt
|
|
1562
|
+
|
|
1563
|
+
if self.plot_mode == "static":
|
|
1564
|
+
|
|
1565
|
+
x = self.table_view.selectedIndexes()
|
|
1566
|
+
col_idx = [l.column() for l in x]
|
|
1567
|
+
row_idx = [l.row() for l in x]
|
|
1568
|
+
column_names = self.data.columns
|
|
1569
|
+
unique_cols = np.unique(col_idx)
|
|
1570
|
+
|
|
1571
|
+
if len(unique_cols) == 1 or len(unique_cols) == 0:
|
|
1572
|
+
self.set_1D_plot_params()
|
|
1573
|
+
|
|
1574
|
+
if len(unique_cols) == 2:
|
|
1575
|
+
|
|
1576
|
+
print("two columns, plot mode")
|
|
1577
|
+
x1 = test_bool_array(self.data.iloc[row_idx, unique_cols[0]])
|
|
1578
|
+
x2 = test_bool_array(self.data.iloc[row_idx, unique_cols[1]])
|
|
1579
|
+
|
|
1580
|
+
self.fig, self.ax = plt.subplots(1, 1, figsize=(4, 3))
|
|
1581
|
+
self.scatter_wdw = FigureCanvas(self.fig, title="scatter")
|
|
1582
|
+
self.ax.clear()
|
|
1583
|
+
self.ax.scatter(x1, x2)
|
|
1584
|
+
self.ax.set_xlabel(column_names[unique_cols[0]])
|
|
1585
|
+
self.ax.set_ylabel(column_names[unique_cols[1]])
|
|
1586
|
+
plt.tight_layout()
|
|
1587
|
+
self.fig.set_facecolor("none") # or 'None'
|
|
1588
|
+
self.fig.canvas.setStyleSheet("background-color: transparent;")
|
|
1589
|
+
self.scatter_wdw.canvas.draw()
|
|
1590
|
+
self.scatter_wdw.show()
|
|
1591
|
+
|
|
1592
|
+
else:
|
|
1593
|
+
print("please select less columns")
|
|
1594
|
+
|
|
1595
|
+
elif self.plot_mode == "plot_timeseries":
|
|
1596
|
+
print("mode plot frames")
|
|
1597
|
+
x = self.table_view.selectedIndexes()
|
|
1598
|
+
col_idx = np.array([l.column() for l in x])
|
|
1599
|
+
row_idx = np.array([l.row() for l in x])
|
|
1600
|
+
column_names = self.data.columns
|
|
1601
|
+
unique_cols = np.unique(col_idx)
|
|
1602
|
+
|
|
1603
|
+
self.fig, self.ax = plt.subplots(1, 1, figsize=(4, 3))
|
|
1604
|
+
self.plot_wdw = FigureCanvas(self.fig, title="scatter")
|
|
1605
|
+
self.ax.clear()
|
|
1606
|
+
for k in range(len(unique_cols)):
|
|
1607
|
+
row_idx_i = row_idx[np.where(col_idx == unique_cols[k])[0]]
|
|
1608
|
+
y = self.data.iloc[row_idx_i, unique_cols[k]]
|
|
1609
|
+
self.ax.plot(
|
|
1610
|
+
self.data["timeline"][row_idx_i],
|
|
1611
|
+
y,
|
|
1612
|
+
label=column_names[unique_cols[k]],
|
|
1613
|
+
)
|
|
1614
|
+
|
|
1615
|
+
self.ax.legend()
|
|
1616
|
+
self.ax.set_xlabel("time [frame]")
|
|
1617
|
+
self.ax.set_ylabel(self.title)
|
|
1618
|
+
plt.tight_layout()
|
|
1619
|
+
self.fig.set_facecolor("none") # or 'None'
|
|
1620
|
+
self.fig.canvas.setStyleSheet("background-color: transparent;")
|
|
1621
|
+
self.plot_wdw.canvas.draw()
|
|
1622
|
+
plt.show()
|
|
1623
|
+
|
|
1624
|
+
elif self.plot_mode == "plot_track_signals":
|
|
1625
|
+
|
|
1626
|
+
print("mode plot track signals")
|
|
1627
|
+
print("we plot here")
|
|
1628
|
+
|
|
1629
|
+
x = self.table_view.selectedIndexes()
|
|
1630
|
+
col_idx = np.array([l.column() for l in x])
|
|
1631
|
+
row_idx = np.array([l.row() for l in x])
|
|
1632
|
+
column_names = self.data.columns
|
|
1633
|
+
unique_cols = np.unique(col_idx)
|
|
1634
|
+
|
|
1635
|
+
if len(unique_cols) > 2:
|
|
1636
|
+
fig, ax = plt.subplots(1, 1, figsize=(7, 5.5))
|
|
1637
|
+
for k in range(len(unique_cols)):
|
|
1638
|
+
|
|
1639
|
+
row_idx_i = row_idx[np.where(col_idx == unique_cols[k])[0]]
|
|
1640
|
+
y = self.data.iloc[row_idx_i, unique_cols[k]]
|
|
1641
|
+
print(unique_cols[k])
|
|
1642
|
+
for w, well_group in self.data.groupby(["well_name"]):
|
|
1643
|
+
for pos, pos_group in well_group.groupby(["pos_name"]):
|
|
1644
|
+
for tid, group_track in pos_group.groupby(
|
|
1645
|
+
self.groupby_cols[1:]
|
|
1646
|
+
):
|
|
1647
|
+
ax.plot(
|
|
1648
|
+
group_track["FRAME"],
|
|
1649
|
+
group_track[column_names[unique_cols[k]]],
|
|
1650
|
+
label=column_names[unique_cols[k]],
|
|
1651
|
+
)
|
|
1652
|
+
# ax.plot(self.data["FRAME"][row_idx_i], y, label=column_names[unique_cols[k]])
|
|
1653
|
+
ax.legend()
|
|
1654
|
+
ax.set_xlabel("time [frame]")
|
|
1655
|
+
ax.set_ylabel(self.title)
|
|
1656
|
+
plt.tight_layout()
|
|
1657
|
+
plt.show(block=False)
|
|
1658
|
+
|
|
1659
|
+
if len(unique_cols) == 2:
|
|
1660
|
+
|
|
1661
|
+
self.fig, self.ax = plt.subplots(1, 1, figsize=(4, 3))
|
|
1662
|
+
self.scatter_wdw = FigureCanvas(self.fig, title="scatter")
|
|
1663
|
+
self.ax.clear()
|
|
1664
|
+
for tid, group in self.data.groupby(self.groupby_cols[1:]):
|
|
1665
|
+
self.ax.plot(
|
|
1666
|
+
group[column_names[unique_cols[0]]],
|
|
1667
|
+
group[column_names[unique_cols[1]]],
|
|
1668
|
+
marker="o",
|
|
1669
|
+
)
|
|
1670
|
+
self.ax.set_xlabel(column_names[unique_cols[0]])
|
|
1671
|
+
self.ax.set_ylabel(column_names[unique_cols[1]])
|
|
1672
|
+
plt.tight_layout()
|
|
1673
|
+
self.fig.set_facecolor("none") # or 'None'
|
|
1674
|
+
self.fig.canvas.setStyleSheet("background-color: transparent;")
|
|
1675
|
+
self.scatter_wdw.canvas.draw()
|
|
1676
|
+
self.scatter_wdw.show()
|
|
1677
|
+
|
|
1678
|
+
if len(unique_cols) == 1:
|
|
1679
|
+
|
|
1680
|
+
self.fig, self.ax = plt.subplots(1, 1, figsize=(4, 3))
|
|
1681
|
+
self.plot_wdw = FigureCanvas(self.fig, title="scatter")
|
|
1682
|
+
self.ax.clear()
|
|
1683
|
+
|
|
1684
|
+
# if 't0' in list(self.data.columns):
|
|
1685
|
+
# ref_time_col = 't0'
|
|
1686
|
+
# else:
|
|
1687
|
+
# ref_time_col = 'FRAME'
|
|
1688
|
+
|
|
1689
|
+
for w, well_group in self.data.groupby(["well_name"]):
|
|
1690
|
+
for pos, pos_group in well_group.groupby(["pos_name"]):
|
|
1691
|
+
for tid, group_track in pos_group.groupby(
|
|
1692
|
+
self.groupby_cols[1:]
|
|
1693
|
+
):
|
|
1694
|
+
self.ax.plot(
|
|
1695
|
+
group_track["FRAME"],
|
|
1696
|
+
group_track[column_names[unique_cols[0]]],
|
|
1697
|
+
c="k",
|
|
1698
|
+
alpha=0.1,
|
|
1699
|
+
)
|
|
1700
|
+
self.ax.set_xlabel(r"$t$ [frame]")
|
|
1701
|
+
self.ax.set_ylabel(column_names[unique_cols[0]])
|
|
1702
|
+
plt.tight_layout()
|
|
1703
|
+
self.fig.set_facecolor("none") # or 'None'
|
|
1704
|
+
self.fig.canvas.setStyleSheet("background-color: transparent;")
|
|
1705
|
+
self.plot_wdw.canvas.draw()
|
|
1706
|
+
self.plot_wdw.show()
|