celldetective 1.4.1.post1__py3-none-any.whl → 1.5.0b0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- celldetective/__init__.py +25 -0
- celldetective/__main__.py +62 -43
- celldetective/_version.py +1 -1
- celldetective/extra_properties.py +477 -399
- celldetective/filters.py +192 -97
- celldetective/gui/InitWindow.py +541 -411
- celldetective/gui/__init__.py +0 -15
- celldetective/gui/about.py +44 -39
- celldetective/gui/analyze_block.py +120 -84
- celldetective/gui/base/__init__.py +0 -0
- celldetective/gui/base/channel_norm_generator.py +335 -0
- celldetective/gui/base/components.py +249 -0
- celldetective/gui/base/feature_choice.py +92 -0
- celldetective/gui/base/figure_canvas.py +52 -0
- celldetective/gui/base/list_widget.py +133 -0
- celldetective/gui/{styles.py → base/styles.py} +92 -36
- celldetective/gui/base/utils.py +33 -0
- celldetective/gui/base_annotator.py +900 -767
- celldetective/gui/classifier_widget.py +642 -554
- celldetective/gui/configure_new_exp.py +777 -671
- celldetective/gui/control_panel.py +635 -524
- celldetective/gui/dynamic_progress.py +449 -0
- celldetective/gui/event_annotator.py +2023 -1662
- celldetective/gui/generic_signal_plot.py +1292 -944
- celldetective/gui/gui_utils.py +899 -1289
- celldetective/gui/interactions_block.py +658 -0
- celldetective/gui/interactive_timeseries_viewer.py +447 -0
- celldetective/gui/json_readers.py +48 -15
- celldetective/gui/layouts/__init__.py +5 -0
- celldetective/gui/layouts/background_model_free_layout.py +537 -0
- celldetective/gui/layouts/channel_offset_layout.py +134 -0
- celldetective/gui/layouts/local_correction_layout.py +91 -0
- celldetective/gui/layouts/model_fit_layout.py +372 -0
- celldetective/gui/layouts/operation_layout.py +68 -0
- celldetective/gui/layouts/protocol_designer_layout.py +96 -0
- celldetective/gui/pair_event_annotator.py +3130 -2435
- celldetective/gui/plot_measurements.py +586 -267
- celldetective/gui/plot_signals_ui.py +724 -506
- celldetective/gui/preprocessing_block.py +395 -0
- celldetective/gui/process_block.py +1678 -1831
- celldetective/gui/seg_model_loader.py +580 -473
- celldetective/gui/settings/__init__.py +0 -7
- celldetective/gui/settings/_cellpose_model_params.py +181 -0
- celldetective/gui/settings/_event_detection_model_params.py +95 -0
- celldetective/gui/settings/_segmentation_model_params.py +159 -0
- celldetective/gui/settings/_settings_base.py +77 -65
- celldetective/gui/settings/_settings_event_model_training.py +752 -526
- celldetective/gui/settings/_settings_measurements.py +1133 -964
- celldetective/gui/settings/_settings_neighborhood.py +574 -488
- celldetective/gui/settings/_settings_segmentation_model_training.py +779 -564
- celldetective/gui/settings/_settings_signal_annotator.py +329 -305
- celldetective/gui/settings/_settings_tracking.py +1304 -1094
- celldetective/gui/settings/_stardist_model_params.py +98 -0
- celldetective/gui/survival_ui.py +422 -312
- celldetective/gui/tableUI.py +1665 -1700
- celldetective/gui/table_ops/_maths.py +295 -0
- celldetective/gui/table_ops/_merge_groups.py +140 -0
- celldetective/gui/table_ops/_merge_one_hot.py +95 -0
- celldetective/gui/table_ops/_query_table.py +43 -0
- celldetective/gui/table_ops/_rename_col.py +44 -0
- celldetective/gui/thresholds_gui.py +382 -179
- celldetective/gui/viewers/__init__.py +0 -0
- celldetective/gui/viewers/base_viewer.py +700 -0
- celldetective/gui/viewers/channel_offset_viewer.py +331 -0
- celldetective/gui/viewers/contour_viewer.py +394 -0
- celldetective/gui/viewers/size_viewer.py +153 -0
- celldetective/gui/viewers/spot_detection_viewer.py +341 -0
- celldetective/gui/viewers/threshold_viewer.py +309 -0
- celldetective/gui/workers.py +304 -126
- celldetective/log_manager.py +92 -0
- celldetective/measure.py +1895 -1478
- celldetective/napari/__init__.py +0 -0
- celldetective/napari/utils.py +1025 -0
- celldetective/neighborhood.py +1914 -1448
- celldetective/preprocessing.py +1620 -1220
- celldetective/processes/__init__.py +0 -0
- celldetective/processes/background_correction.py +271 -0
- celldetective/processes/compute_neighborhood.py +894 -0
- celldetective/processes/detect_events.py +246 -0
- celldetective/processes/measure_cells.py +565 -0
- celldetective/processes/segment_cells.py +760 -0
- celldetective/processes/track_cells.py +435 -0
- celldetective/processes/train_segmentation_model.py +694 -0
- celldetective/processes/train_signal_model.py +265 -0
- celldetective/processes/unified_process.py +292 -0
- celldetective/regionprops/_regionprops.py +358 -317
- celldetective/relative_measurements.py +987 -710
- celldetective/scripts/measure_cells.py +313 -212
- celldetective/scripts/measure_relative.py +90 -46
- celldetective/scripts/segment_cells.py +165 -104
- celldetective/scripts/segment_cells_thresholds.py +96 -68
- celldetective/scripts/track_cells.py +198 -149
- celldetective/scripts/train_segmentation_model.py +324 -201
- celldetective/scripts/train_signal_model.py +87 -45
- celldetective/segmentation.py +844 -749
- celldetective/signals.py +3514 -2861
- celldetective/tracking.py +1332 -1011
- celldetective/utils/__init__.py +0 -0
- celldetective/utils/cellpose_utils/__init__.py +133 -0
- celldetective/utils/color_mappings.py +42 -0
- celldetective/utils/data_cleaning.py +630 -0
- celldetective/utils/data_loaders.py +450 -0
- celldetective/utils/dataset_helpers.py +207 -0
- celldetective/utils/downloaders.py +197 -0
- celldetective/utils/event_detection/__init__.py +8 -0
- celldetective/utils/experiment.py +1782 -0
- celldetective/utils/image_augmenters.py +308 -0
- celldetective/utils/image_cleaning.py +74 -0
- celldetective/utils/image_loaders.py +926 -0
- celldetective/utils/image_transforms.py +335 -0
- celldetective/utils/io.py +62 -0
- celldetective/utils/mask_cleaning.py +348 -0
- celldetective/utils/mask_transforms.py +5 -0
- celldetective/utils/masks.py +184 -0
- celldetective/utils/maths.py +351 -0
- celldetective/utils/model_getters.py +325 -0
- celldetective/utils/model_loaders.py +296 -0
- celldetective/utils/normalization.py +380 -0
- celldetective/utils/parsing.py +465 -0
- celldetective/utils/plots/__init__.py +0 -0
- celldetective/utils/plots/regression.py +53 -0
- celldetective/utils/resources.py +34 -0
- celldetective/utils/stardist_utils/__init__.py +104 -0
- celldetective/utils/stats.py +90 -0
- celldetective/utils/types.py +21 -0
- {celldetective-1.4.1.post1.dist-info → celldetective-1.5.0b0.dist-info}/METADATA +1 -1
- celldetective-1.5.0b0.dist-info/RECORD +187 -0
- {celldetective-1.4.1.post1.dist-info → celldetective-1.5.0b0.dist-info}/WHEEL +1 -1
- tests/gui/test_new_project.py +129 -117
- tests/gui/test_project.py +127 -79
- tests/test_filters.py +39 -15
- tests/test_notebooks.py +8 -0
- tests/test_tracking.py +425 -144
- tests/test_utils.py +123 -77
- celldetective/gui/base_components.py +0 -23
- celldetective/gui/layouts.py +0 -1602
- celldetective/gui/processes/compute_neighborhood.py +0 -594
- celldetective/gui/processes/measure_cells.py +0 -360
- celldetective/gui/processes/segment_cells.py +0 -499
- celldetective/gui/processes/track_cells.py +0 -303
- celldetective/gui/processes/train_segmentation_model.py +0 -270
- celldetective/gui/processes/train_signal_model.py +0 -108
- celldetective/gui/table_ops/merge_groups.py +0 -118
- celldetective/gui/viewers.py +0 -1354
- celldetective/io.py +0 -3663
- celldetective/utils.py +0 -3108
- celldetective-1.4.1.post1.dist-info/RECORD +0 -123
- /celldetective/{gui/processes → processes}/downloader.py +0 -0
- {celldetective-1.4.1.post1.dist-info → celldetective-1.5.0b0.dist-info}/entry_points.txt +0 -0
- {celldetective-1.4.1.post1.dist-info → celldetective-1.5.0b0.dist-info}/licenses/LICENSE +0 -0
- {celldetective-1.4.1.post1.dist-info → celldetective-1.5.0b0.dist-info}/top_level.txt +0 -0
tests/test_tracking.py
CHANGED
|
@@ -1,164 +1,445 @@
|
|
|
1
1
|
import unittest
|
|
2
2
|
import numpy as np
|
|
3
3
|
import pandas as pd
|
|
4
|
-
from celldetective.tracking import
|
|
4
|
+
from celldetective.tracking import (
|
|
5
|
+
filter_by_endpoints,
|
|
6
|
+
extrapolate_tracks,
|
|
7
|
+
filter_by_tracklength,
|
|
8
|
+
interpolate_time_gaps,
|
|
9
|
+
interpolate_nan_properties,
|
|
10
|
+
compute_instantaneous_velocity,
|
|
11
|
+
compute_instantaneous_diffusion,
|
|
12
|
+
write_first_detection_class,
|
|
13
|
+
clean_trajectories,
|
|
14
|
+
)
|
|
5
15
|
|
|
6
|
-
class TestTrackFilteringByEndpoint(unittest.TestCase):
|
|
7
16
|
|
|
8
|
-
|
|
9
|
-
def setUpClass(self):
|
|
10
|
-
self.tracks = pd.DataFrame([{"TRACK_ID": 0., "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 15},
|
|
11
|
-
{"TRACK_ID": 0., "FRAME": 1, "POSITION_X": 15, "POSITION_Y": 10},
|
|
12
|
-
{"TRACK_ID": 0., "FRAME": 2, "POSITION_X": 30, "POSITION_Y": 5},
|
|
13
|
-
{"TRACK_ID": 0., "FRAME": 3, "POSITION_X": 40, "POSITION_Y": 0},
|
|
14
|
-
{"TRACK_ID": 1., "FRAME": 1, "POSITION_X": 5, "POSITION_Y": 20},
|
|
15
|
-
{"TRACK_ID": 1., "FRAME": 2, "POSITION_X": 10, "POSITION_Y": 25},
|
|
16
|
-
{"TRACK_ID": 2., "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 25},
|
|
17
|
-
{"TRACK_ID": 2., "FRAME": 1, "POSITION_X": 10, "POSITION_Y": 25}
|
|
17
|
+
class TestTrackFilteringByEndpoint(unittest.TestCase):
|
|
18
18
|
|
|
19
|
-
|
|
19
|
+
@classmethod
|
|
20
|
+
def setUpClass(self):
|
|
21
|
+
self.tracks = pd.DataFrame(
|
|
22
|
+
[
|
|
23
|
+
{"TRACK_ID": 0.0, "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 15},
|
|
24
|
+
{"TRACK_ID": 0.0, "FRAME": 1, "POSITION_X": 15, "POSITION_Y": 10},
|
|
25
|
+
{"TRACK_ID": 0.0, "FRAME": 2, "POSITION_X": 30, "POSITION_Y": 5},
|
|
26
|
+
{"TRACK_ID": 0.0, "FRAME": 3, "POSITION_X": 40, "POSITION_Y": 0},
|
|
27
|
+
{"TRACK_ID": 1.0, "FRAME": 1, "POSITION_X": 5, "POSITION_Y": 20},
|
|
28
|
+
{"TRACK_ID": 1.0, "FRAME": 2, "POSITION_X": 10, "POSITION_Y": 25},
|
|
29
|
+
{"TRACK_ID": 2.0, "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 25},
|
|
30
|
+
{"TRACK_ID": 2.0, "FRAME": 1, "POSITION_X": 10, "POSITION_Y": 25},
|
|
31
|
+
]
|
|
32
|
+
)
|
|
20
33
|
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
34
|
+
def test_filter_not_in_last(self):
|
|
35
|
+
self.filtered_tracks = filter_by_endpoints(
|
|
36
|
+
self.tracks, remove_not_in_first=False, remove_not_in_last=True
|
|
37
|
+
)
|
|
38
|
+
track_ids = list(self.filtered_tracks["TRACK_ID"].unique())
|
|
39
|
+
self.assertEqual(track_ids, [0.0])
|
|
25
40
|
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
41
|
+
def test_filter_not_in_first(self):
|
|
42
|
+
self.filtered_tracks = filter_by_endpoints(
|
|
43
|
+
self.tracks, remove_not_in_first=True, remove_not_in_last=False
|
|
44
|
+
)
|
|
45
|
+
track_ids = list(self.filtered_tracks["TRACK_ID"].unique())
|
|
46
|
+
self.assertEqual(track_ids, [0.0, 2.0])
|
|
30
47
|
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
48
|
+
def test_no_filter_does_nothing(self):
|
|
49
|
+
self.filtered_tracks = filter_by_endpoints(
|
|
50
|
+
self.tracks, remove_not_in_first=False, remove_not_in_last=False
|
|
51
|
+
)
|
|
52
|
+
track_ids = list(self.filtered_tracks["TRACK_ID"].unique())
|
|
53
|
+
self.assertEqual(track_ids, list(self.tracks["TRACK_ID"].unique()))
|
|
35
54
|
|
|
36
55
|
|
|
37
56
|
class TestTrackFilteringByLength(unittest.TestCase):
|
|
38
57
|
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
58
|
+
@classmethod
|
|
59
|
+
def setUpClass(self):
|
|
60
|
+
self.tracks = pd.DataFrame(
|
|
61
|
+
[
|
|
62
|
+
{"TRACK_ID": 0.0, "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 15},
|
|
63
|
+
{"TRACK_ID": 0.0, "FRAME": 1, "POSITION_X": 15, "POSITION_Y": 10},
|
|
64
|
+
{"TRACK_ID": 0.0, "FRAME": 2, "POSITION_X": 30, "POSITION_Y": 5},
|
|
65
|
+
{"TRACK_ID": 0.0, "FRAME": 3, "POSITION_X": 40, "POSITION_Y": 0},
|
|
66
|
+
{"TRACK_ID": 1.0, "FRAME": 1, "POSITION_X": 5, "POSITION_Y": 20},
|
|
67
|
+
{"TRACK_ID": 1.0, "FRAME": 2, "POSITION_X": 10, "POSITION_Y": 25},
|
|
68
|
+
{"TRACK_ID": 2.0, "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 25},
|
|
69
|
+
{"TRACK_ID": 2.0, "FRAME": 1, "POSITION_X": 10, "POSITION_Y": 25},
|
|
70
|
+
]
|
|
71
|
+
)
|
|
72
|
+
|
|
73
|
+
def test_filter_by_tracklength_of_zero(self):
|
|
74
|
+
self.filtered_tracks = filter_by_tracklength(self.tracks, minimum_tracklength=0)
|
|
75
|
+
track_ids = list(self.filtered_tracks["TRACK_ID"].unique())
|
|
76
|
+
self.assertEqual(track_ids, [0.0, 1.0, 2.0])
|
|
77
|
+
|
|
78
|
+
def test_filter_by_tracklength_of_three(self):
|
|
79
|
+
self.filtered_tracks = filter_by_tracklength(self.tracks, minimum_tracklength=3)
|
|
80
|
+
track_ids = list(self.filtered_tracks["TRACK_ID"].unique())
|
|
81
|
+
self.assertEqual(track_ids, [0.0])
|
|
60
82
|
|
|
61
83
|
|
|
62
84
|
class TestTrackInterpolation(unittest.TestCase):
|
|
63
85
|
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
86
|
+
@classmethod
|
|
87
|
+
def setUpClass(self):
|
|
88
|
+
|
|
89
|
+
self.tracks = pd.DataFrame(
|
|
90
|
+
[
|
|
91
|
+
{"TRACK_ID": 0.0, "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 15},
|
|
92
|
+
{"TRACK_ID": 0.0, "FRAME": 1, "POSITION_X": 15, "POSITION_Y": 10},
|
|
93
|
+
# {"TRACK_ID": 0., "FRAME": 2, "POSITION_X": 20, "POSITION_Y": 5},
|
|
94
|
+
{"TRACK_ID": 0.0, "FRAME": 3, "POSITION_X": 25, "POSITION_Y": 0},
|
|
95
|
+
{"TRACK_ID": 1.0, "FRAME": 1, "POSITION_X": 5, "POSITION_Y": 20},
|
|
96
|
+
{"TRACK_ID": 1.0, "FRAME": 2, "POSITION_X": 10, "POSITION_Y": 25},
|
|
97
|
+
{"TRACK_ID": 2.0, "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 25},
|
|
98
|
+
# {"TRACK_ID": 2., "FRAME": 1, "POSITION_X": 5, "POSITION_Y": 25},
|
|
99
|
+
{"TRACK_ID": 2.0, "FRAME": 2, "POSITION_X": 0, "POSITION_Y": 25},
|
|
100
|
+
]
|
|
101
|
+
)
|
|
102
|
+
self.tracks_real_intep = pd.DataFrame(
|
|
103
|
+
[
|
|
104
|
+
{"TRACK_ID": 0.0, "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 15},
|
|
105
|
+
{"TRACK_ID": 0.0, "FRAME": 1, "POSITION_X": 15, "POSITION_Y": 10},
|
|
106
|
+
{"TRACK_ID": 0.0, "FRAME": 2, "POSITION_X": 20, "POSITION_Y": 5},
|
|
107
|
+
{"TRACK_ID": 0.0, "FRAME": 3, "POSITION_X": 25, "POSITION_Y": 0},
|
|
108
|
+
{"TRACK_ID": 1.0, "FRAME": 1, "POSITION_X": 5, "POSITION_Y": 20},
|
|
109
|
+
{"TRACK_ID": 1.0, "FRAME": 2, "POSITION_X": 10, "POSITION_Y": 25},
|
|
110
|
+
{"TRACK_ID": 2.0, "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 25},
|
|
111
|
+
{"TRACK_ID": 2.0, "FRAME": 1, "POSITION_X": 5, "POSITION_Y": 25},
|
|
112
|
+
{"TRACK_ID": 2.0, "FRAME": 2, "POSITION_X": 0, "POSITION_Y": 25},
|
|
113
|
+
]
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
def test_interpolate_tracks_as_expected(self):
|
|
117
|
+
self.interpolated_tracks = interpolate_time_gaps(self.tracks)
|
|
118
|
+
# We use allclose because interpolation returns floats and strict equality might fail on some platforms
|
|
119
|
+
self.assertTrue(
|
|
120
|
+
np.allclose(
|
|
121
|
+
self.interpolated_tracks.to_numpy().astype(float),
|
|
122
|
+
self.tracks_real_intep.to_numpy().astype(float),
|
|
123
|
+
equal_nan=True,
|
|
124
|
+
)
|
|
125
|
+
)
|
|
126
|
+
|
|
92
127
|
|
|
93
128
|
class TestTrackExtrapolation(unittest.TestCase):
|
|
94
129
|
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
130
|
+
@classmethod
|
|
131
|
+
def setUpClass(self):
|
|
132
|
+
|
|
133
|
+
self.tracks = pd.DataFrame(
|
|
134
|
+
[
|
|
135
|
+
{"TRACK_ID": 0.0, "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 15},
|
|
136
|
+
{"TRACK_ID": 0.0, "FRAME": 1, "POSITION_X": 15, "POSITION_Y": 10},
|
|
137
|
+
{"TRACK_ID": 0.0, "FRAME": 2, "POSITION_X": 20, "POSITION_Y": 5},
|
|
138
|
+
{"TRACK_ID": 0.0, "FRAME": 3, "POSITION_X": 25, "POSITION_Y": 0},
|
|
139
|
+
{"TRACK_ID": 1.0, "FRAME": 1, "POSITION_X": 5, "POSITION_Y": 20},
|
|
140
|
+
{"TRACK_ID": 1.0, "FRAME": 2, "POSITION_X": 10, "POSITION_Y": 25},
|
|
141
|
+
{"TRACK_ID": 2.0, "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 25},
|
|
142
|
+
{"TRACK_ID": 2.0, "FRAME": 1, "POSITION_X": 5, "POSITION_Y": 25},
|
|
143
|
+
{"TRACK_ID": 2.0, "FRAME": 2, "POSITION_X": 0, "POSITION_Y": 25},
|
|
144
|
+
]
|
|
145
|
+
)
|
|
146
|
+
self.tracks_pre_extrapol = pd.DataFrame(
|
|
147
|
+
[
|
|
148
|
+
{"TRACK_ID": 0.0, "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 15},
|
|
149
|
+
{"TRACK_ID": 0.0, "FRAME": 1, "POSITION_X": 15, "POSITION_Y": 10},
|
|
150
|
+
{"TRACK_ID": 0.0, "FRAME": 2, "POSITION_X": 20, "POSITION_Y": 5},
|
|
151
|
+
{"TRACK_ID": 0.0, "FRAME": 3, "POSITION_X": 25, "POSITION_Y": 0},
|
|
152
|
+
{"TRACK_ID": 1.0, "FRAME": 0, "POSITION_X": 5, "POSITION_Y": 20},
|
|
153
|
+
{"TRACK_ID": 1.0, "FRAME": 1, "POSITION_X": 5, "POSITION_Y": 20},
|
|
154
|
+
{"TRACK_ID": 1.0, "FRAME": 2, "POSITION_X": 10, "POSITION_Y": 25},
|
|
155
|
+
{"TRACK_ID": 2.0, "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 25},
|
|
156
|
+
{"TRACK_ID": 2.0, "FRAME": 1, "POSITION_X": 5, "POSITION_Y": 25},
|
|
157
|
+
{"TRACK_ID": 2.0, "FRAME": 2, "POSITION_X": 0, "POSITION_Y": 25},
|
|
158
|
+
]
|
|
159
|
+
)
|
|
160
|
+
self.tracks_post_extrapol = pd.DataFrame(
|
|
161
|
+
[
|
|
162
|
+
{"TRACK_ID": 0.0, "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 15},
|
|
163
|
+
{"TRACK_ID": 0.0, "FRAME": 1, "POSITION_X": 15, "POSITION_Y": 10},
|
|
164
|
+
{"TRACK_ID": 0.0, "FRAME": 2, "POSITION_X": 20, "POSITION_Y": 5},
|
|
165
|
+
{"TRACK_ID": 0.0, "FRAME": 3, "POSITION_X": 25, "POSITION_Y": 0},
|
|
166
|
+
{"TRACK_ID": 1.0, "FRAME": 1, "POSITION_X": 5, "POSITION_Y": 20},
|
|
167
|
+
{"TRACK_ID": 1.0, "FRAME": 2, "POSITION_X": 10, "POSITION_Y": 25},
|
|
168
|
+
{"TRACK_ID": 1.0, "FRAME": 3, "POSITION_X": 10, "POSITION_Y": 25},
|
|
169
|
+
{"TRACK_ID": 2.0, "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 25},
|
|
170
|
+
{"TRACK_ID": 2.0, "FRAME": 1, "POSITION_X": 5, "POSITION_Y": 25},
|
|
171
|
+
{"TRACK_ID": 2.0, "FRAME": 2, "POSITION_X": 0, "POSITION_Y": 25},
|
|
172
|
+
{"TRACK_ID": 2.0, "FRAME": 3, "POSITION_X": 0, "POSITION_Y": 25},
|
|
173
|
+
]
|
|
174
|
+
)
|
|
175
|
+
|
|
176
|
+
self.tracks_full_extrapol = pd.DataFrame(
|
|
177
|
+
[
|
|
178
|
+
{"TRACK_ID": 0.0, "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 15},
|
|
179
|
+
{"TRACK_ID": 0.0, "FRAME": 1, "POSITION_X": 15, "POSITION_Y": 10},
|
|
180
|
+
{"TRACK_ID": 0.0, "FRAME": 2, "POSITION_X": 20, "POSITION_Y": 5},
|
|
181
|
+
{"TRACK_ID": 0.0, "FRAME": 3, "POSITION_X": 25, "POSITION_Y": 0},
|
|
182
|
+
{"TRACK_ID": 1.0, "FRAME": 0, "POSITION_X": 5, "POSITION_Y": 20},
|
|
183
|
+
{"TRACK_ID": 1.0, "FRAME": 1, "POSITION_X": 5, "POSITION_Y": 20},
|
|
184
|
+
{"TRACK_ID": 1.0, "FRAME": 2, "POSITION_X": 10, "POSITION_Y": 25},
|
|
185
|
+
{"TRACK_ID": 1.0, "FRAME": 3, "POSITION_X": 10, "POSITION_Y": 25},
|
|
186
|
+
{"TRACK_ID": 2.0, "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 25},
|
|
187
|
+
{"TRACK_ID": 2.0, "FRAME": 1, "POSITION_X": 5, "POSITION_Y": 25},
|
|
188
|
+
{"TRACK_ID": 2.0, "FRAME": 2, "POSITION_X": 0, "POSITION_Y": 25},
|
|
189
|
+
{"TRACK_ID": 2.0, "FRAME": 3, "POSITION_X": 0, "POSITION_Y": 25},
|
|
190
|
+
]
|
|
191
|
+
)
|
|
192
|
+
|
|
193
|
+
def test_pre_extrapolate(self):
|
|
194
|
+
self.extrapolated_tracks = extrapolate_tracks(self.tracks, post=False, pre=True)
|
|
195
|
+
self.assertTrue(
|
|
196
|
+
np.array_equal(
|
|
197
|
+
self.extrapolated_tracks.to_numpy(),
|
|
198
|
+
self.tracks_pre_extrapol.to_numpy(),
|
|
199
|
+
equal_nan=True,
|
|
200
|
+
)
|
|
201
|
+
)
|
|
202
|
+
|
|
203
|
+
def test_post_extrapolate(self):
|
|
204
|
+
self.extrapolated_tracks = extrapolate_tracks(self.tracks, post=True, pre=False)
|
|
205
|
+
self.assertTrue(
|
|
206
|
+
np.array_equal(
|
|
207
|
+
self.extrapolated_tracks.to_numpy(),
|
|
208
|
+
self.tracks_post_extrapol.to_numpy(),
|
|
209
|
+
equal_nan=True,
|
|
210
|
+
)
|
|
211
|
+
)
|
|
212
|
+
|
|
213
|
+
def test_full_extrapolate(self):
|
|
214
|
+
self.extrapolated_tracks = extrapolate_tracks(self.tracks, post=True, pre=True)
|
|
215
|
+
self.assertTrue(
|
|
216
|
+
np.array_equal(
|
|
217
|
+
self.extrapolated_tracks.to_numpy(),
|
|
218
|
+
self.tracks_full_extrapol.to_numpy(),
|
|
219
|
+
equal_nan=True,
|
|
220
|
+
)
|
|
221
|
+
)
|
|
222
|
+
|
|
223
|
+
|
|
224
|
+
class TestTrackInterpolationNaN(unittest.TestCase):
|
|
225
|
+
@classmethod
|
|
226
|
+
def setUpClass(self):
|
|
227
|
+
self.tracks = pd.DataFrame(
|
|
228
|
+
[
|
|
229
|
+
{"TRACK_ID": 0.0, "FRAME": 0, "POSITION_X": np.nan, "POSITION_Y": 15},
|
|
230
|
+
{"TRACK_ID": 0.0, "FRAME": 1, "POSITION_X": 15, "POSITION_Y": 10},
|
|
231
|
+
{"TRACK_ID": 0.0, "FRAME": 2, "POSITION_X": 20, "POSITION_Y": np.nan},
|
|
232
|
+
{"TRACK_ID": 0.0, "FRAME": 3, "POSITION_X": 25, "POSITION_Y": 0},
|
|
233
|
+
{"TRACK_ID": 1.0, "FRAME": 1, "POSITION_X": 5, "POSITION_Y": 20},
|
|
234
|
+
{
|
|
235
|
+
"TRACK_ID": 1.0,
|
|
236
|
+
"FRAME": 2,
|
|
237
|
+
"POSITION_X": np.nan,
|
|
238
|
+
"POSITION_Y": np.nan,
|
|
239
|
+
},
|
|
240
|
+
{"TRACK_ID": 1.0, "FRAME": 3, "POSITION_X": 15, "POSITION_Y": 30},
|
|
241
|
+
]
|
|
242
|
+
)
|
|
243
|
+
|
|
244
|
+
def test_interpolate_nan(self):
|
|
245
|
+
interpolated = interpolate_nan_properties(self.tracks.copy())
|
|
246
|
+
|
|
247
|
+
# Track 0: Start NaN should be filled by first valid (bfill), End NaN should be filled by last valid (ffill)
|
|
248
|
+
# But `interpolate_per_track` uses limit_direction="both", so it acts as ffill+bfill
|
|
249
|
+
|
|
250
|
+
# Track 0, Frame 0, Pos X: Should be 15 (bfill from next)
|
|
251
|
+
self.assertEqual(
|
|
252
|
+
interpolated.loc[
|
|
253
|
+
(interpolated.TRACK_ID == 0) & (interpolated.FRAME == 0), "POSITION_X"
|
|
254
|
+
].values[0],
|
|
255
|
+
15.0,
|
|
256
|
+
)
|
|
257
|
+
|
|
258
|
+
# Track 0, Frame 2, Pos Y: Should be (10 + 0) / 2 = 5 (linear interp)
|
|
259
|
+
self.assertEqual(
|
|
260
|
+
interpolated.loc[
|
|
261
|
+
(interpolated.TRACK_ID == 0) & (interpolated.FRAME == 2), "POSITION_Y"
|
|
262
|
+
].values[0],
|
|
263
|
+
5.0,
|
|
264
|
+
)
|
|
265
|
+
|
|
266
|
+
# Track 1, Frame 2, Pos X: (5 + 15) / 2 = 10
|
|
267
|
+
self.assertEqual(
|
|
268
|
+
interpolated.loc[
|
|
269
|
+
(interpolated.TRACK_ID == 1) & (interpolated.FRAME == 2), "POSITION_X"
|
|
270
|
+
].values[0],
|
|
271
|
+
10.0,
|
|
272
|
+
)
|
|
273
|
+
|
|
274
|
+
|
|
275
|
+
class TestPhysics(unittest.TestCase):
|
|
276
|
+
@classmethod
|
|
277
|
+
def setUpClass(self):
|
|
278
|
+
# Linear motion: dx=1, dy=0, dt=1 -> v=1
|
|
279
|
+
self.tracks_linear = pd.DataFrame(
|
|
280
|
+
[
|
|
281
|
+
{"TRACK_ID": 0, "FRAME": 0, "POSITION_X": 0, "POSITION_Y": 0},
|
|
282
|
+
{"TRACK_ID": 0, "FRAME": 1, "POSITION_X": 1, "POSITION_Y": 0},
|
|
283
|
+
{"TRACK_ID": 0, "FRAME": 2, "POSITION_X": 2, "POSITION_Y": 0},
|
|
284
|
+
]
|
|
285
|
+
)
|
|
286
|
+
|
|
287
|
+
# Stationary: v=0
|
|
288
|
+
self.tracks_static = pd.DataFrame(
|
|
289
|
+
[
|
|
290
|
+
{"TRACK_ID": 1, "FRAME": 0, "POSITION_X": 10, "POSITION_Y": 10},
|
|
291
|
+
{"TRACK_ID": 1, "FRAME": 1, "POSITION_X": 10, "POSITION_Y": 10},
|
|
292
|
+
]
|
|
293
|
+
)
|
|
294
|
+
|
|
295
|
+
def test_velocity(self):
|
|
296
|
+
v_linear = compute_instantaneous_velocity(self.tracks_linear.copy())
|
|
297
|
+
# First point has NaN velocity ideally or 0 depending on implementation.
|
|
298
|
+
# Looking at code: diff() produces NaN for first element.
|
|
299
|
+
self.assertTrue(np.isnan(v_linear.iloc[0]["velocity"]))
|
|
300
|
+
self.assertTrue(np.allclose(v_linear.iloc[1:]["velocity"], 1.0))
|
|
301
|
+
|
|
302
|
+
v_static = compute_instantaneous_velocity(self.tracks_static.copy())
|
|
303
|
+
self.assertTrue(np.allclose(v_static.iloc[1:]["velocity"], 0.0))
|
|
304
|
+
|
|
305
|
+
def test_diffusion(self):
|
|
306
|
+
# Simple diffusion test
|
|
307
|
+
# Track 0: Linear motion should have diffusion related to displacement
|
|
308
|
+
d_linear = compute_instantaneous_diffusion(self.tracks_linear.copy())
|
|
309
|
+
# Diffusion computation requires 3 points (t-1, t, t+1)
|
|
310
|
+
# So for 3 points, only the middle one (index 1) might have value
|
|
311
|
+
|
|
312
|
+
# We need more points for a meaningful test or check code logic
|
|
313
|
+
# Code: if len(x) > 3: ...
|
|
314
|
+
|
|
315
|
+
tracks_long = pd.DataFrame(
|
|
316
|
+
{
|
|
317
|
+
"TRACK_ID": [0] * 5,
|
|
318
|
+
"FRAME": [0, 1, 2, 3, 4],
|
|
319
|
+
"POSITION_X": [0, 1, 2, 3, 4],
|
|
320
|
+
"POSITION_Y": [0, 0, 0, 0, 0],
|
|
321
|
+
}
|
|
322
|
+
)
|
|
323
|
+
d_long = compute_instantaneous_diffusion(tracks_long)
|
|
324
|
+
self.assertIn("diffusion", d_long.columns)
|
|
325
|
+
# Check that we have some non-nan values
|
|
326
|
+
valid_diff = d_long["diffusion"].dropna()
|
|
327
|
+
self.assertGreater(len(valid_diff), 0)
|
|
328
|
+
|
|
329
|
+
|
|
330
|
+
class TestFirstDetection(unittest.TestCase):
|
|
331
|
+
def test_first_detection_start(self):
|
|
332
|
+
df = pd.DataFrame(
|
|
333
|
+
[
|
|
334
|
+
{
|
|
335
|
+
"TRACK_ID": 0,
|
|
336
|
+
"FRAME": 0,
|
|
337
|
+
"POSITION_X": 10,
|
|
338
|
+
"POSITION_Y": 10,
|
|
339
|
+
"class_id": 1,
|
|
340
|
+
},
|
|
341
|
+
{
|
|
342
|
+
"TRACK_ID": 0,
|
|
343
|
+
"FRAME": 1,
|
|
344
|
+
"POSITION_X": 11,
|
|
345
|
+
"POSITION_Y": 11,
|
|
346
|
+
"class_id": 1,
|
|
347
|
+
},
|
|
348
|
+
]
|
|
349
|
+
)
|
|
350
|
+
# Track starts at frame 0 -> class 2 (invalid/start)
|
|
351
|
+
res = write_first_detection_class(df.copy())
|
|
352
|
+
self.assertEqual(res["class_firstdetection"].iloc[0], 2)
|
|
353
|
+
self.assertEqual(res["t_firstdetection"].iloc[0], -1)
|
|
354
|
+
|
|
355
|
+
def test_first_detection_middle(self):
|
|
356
|
+
df = pd.DataFrame(
|
|
357
|
+
[
|
|
358
|
+
{
|
|
359
|
+
"TRACK_ID": 1,
|
|
360
|
+
"FRAME": 5,
|
|
361
|
+
"POSITION_X": 50,
|
|
362
|
+
"POSITION_Y": 50,
|
|
363
|
+
"class_id": 1,
|
|
364
|
+
},
|
|
365
|
+
{
|
|
366
|
+
"TRACK_ID": 1,
|
|
367
|
+
"FRAME": 6,
|
|
368
|
+
"POSITION_X": 51,
|
|
369
|
+
"POSITION_Y": 51,
|
|
370
|
+
"class_id": 1,
|
|
371
|
+
},
|
|
372
|
+
]
|
|
373
|
+
)
|
|
374
|
+
# Track starts at frame 5 -> class 0 (valid)
|
|
375
|
+
res = write_first_detection_class(df.copy())
|
|
376
|
+
self.assertEqual(res["class_firstdetection"].iloc[0], 0)
|
|
377
|
+
# t_first should be float(t_first) - dt (dt=1) => 5 - 1 = 4.0
|
|
378
|
+
self.assertEqual(res["t_firstdetection"].iloc[0], 4.0)
|
|
379
|
+
|
|
380
|
+
def test_first_detection_edge(self):
|
|
381
|
+
df = pd.DataFrame(
|
|
382
|
+
[
|
|
383
|
+
{
|
|
384
|
+
"TRACK_ID": 2,
|
|
385
|
+
"FRAME": 5,
|
|
386
|
+
"POSITION_X": 5,
|
|
387
|
+
"POSITION_Y": 50,
|
|
388
|
+
"class_id": 1,
|
|
389
|
+
}, # Near edge x=5 < 20
|
|
390
|
+
]
|
|
391
|
+
)
|
|
392
|
+
# Edge threshold default 20
|
|
393
|
+
res = write_first_detection_class(df.copy(), img_shape=(100, 100))
|
|
394
|
+
self.assertEqual(res["class_firstdetection"].iloc[0], 2)
|
|
395
|
+
|
|
396
|
+
|
|
397
|
+
class TestCleanTrajectories(unittest.TestCase):
|
|
398
|
+
def test_clean_pipeline(self):
|
|
399
|
+
# A mix of short tracks, nan gaps, time gaps
|
|
400
|
+
tracks = pd.DataFrame(
|
|
401
|
+
[
|
|
402
|
+
# Short track (length 2)
|
|
403
|
+
{"TRACK_ID": 0, "FRAME": 0, "POSITION_X": 0, "POSITION_Y": 0},
|
|
404
|
+
{"TRACK_ID": 0, "FRAME": 1, "POSITION_X": 1, "POSITION_Y": 1},
|
|
405
|
+
# Good track with gap
|
|
406
|
+
{"TRACK_ID": 1, "FRAME": 0, "POSITION_X": 0, "POSITION_Y": 0},
|
|
407
|
+
{
|
|
408
|
+
"TRACK_ID": 1,
|
|
409
|
+
"FRAME": 2,
|
|
410
|
+
"POSITION_X": 2,
|
|
411
|
+
"POSITION_Y": 2,
|
|
412
|
+
}, # Time gap
|
|
413
|
+
# Track with NaN
|
|
414
|
+
{"TRACK_ID": 2, "FRAME": 0, "POSITION_X": 0, "POSITION_Y": 0},
|
|
415
|
+
{"TRACK_ID": 2, "FRAME": 1, "POSITION_X": np.nan, "POSITION_Y": 1},
|
|
416
|
+
{"TRACK_ID": 2, "FRAME": 2, "POSITION_X": 2, "POSITION_Y": 2},
|
|
417
|
+
]
|
|
418
|
+
)
|
|
419
|
+
|
|
420
|
+
# Clean: min length 3, interpolate time, interpolate nan
|
|
421
|
+
cleaned = clean_trajectories(
|
|
422
|
+
tracks.copy(),
|
|
423
|
+
minimum_tracklength=2,
|
|
424
|
+
interpolate_position_gaps=True,
|
|
425
|
+
interpolate_na=True,
|
|
426
|
+
remove_not_in_first=False,
|
|
427
|
+
remove_not_in_last=False,
|
|
428
|
+
)
|
|
429
|
+
|
|
430
|
+
# Track 0 (len 2) is NOT > 2, so it should be gone.
|
|
431
|
+
self.assertNotIn(0, cleaned["TRACK_ID"].unique())
|
|
432
|
+
|
|
433
|
+
# Track 1 should have frame 1 filled
|
|
434
|
+
self.assertIn(1, cleaned["TRACK_ID"].unique())
|
|
435
|
+
t1 = cleaned[cleaned.TRACK_ID == 1]
|
|
436
|
+
self.assertIn(1.0, t1.FRAME.values) # interpolated frame
|
|
437
|
+
|
|
438
|
+
# Track 2 should have nan filled
|
|
439
|
+
self.assertIn(2, cleaned["TRACK_ID"].unique())
|
|
440
|
+
t2_f1 = cleaned[(cleaned.TRACK_ID == 2) & (cleaned.FRAME == 1)]
|
|
441
|
+
self.assertFalse(np.isnan(t2_f1.POSITION_X.values[0]))
|
|
442
|
+
|
|
443
|
+
|
|
444
|
+
if __name__ == "__main__":
|
|
445
|
+
unittest.main()
|