celldetective 1.3.9.post4__py3-none-any.whl → 1.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- celldetective/__init__.py +0 -3
- celldetective/_version.py +1 -1
- celldetective/events.py +2 -4
- celldetective/extra_properties.py +320 -24
- celldetective/gui/InitWindow.py +33 -45
- celldetective/gui/__init__.py +1 -0
- celldetective/gui/about.py +19 -15
- celldetective/gui/analyze_block.py +34 -19
- celldetective/gui/base_components.py +23 -0
- celldetective/gui/btrack_options.py +26 -34
- celldetective/gui/classifier_widget.py +71 -80
- celldetective/gui/configure_new_exp.py +113 -17
- celldetective/gui/control_panel.py +68 -141
- celldetective/gui/generic_signal_plot.py +9 -12
- celldetective/gui/gui_utils.py +49 -21
- celldetective/gui/json_readers.py +5 -4
- celldetective/gui/layouts.py +246 -22
- celldetective/gui/measurement_options.py +32 -17
- celldetective/gui/neighborhood_options.py +10 -13
- celldetective/gui/plot_measurements.py +21 -17
- celldetective/gui/plot_signals_ui.py +131 -75
- celldetective/gui/process_block.py +180 -123
- celldetective/gui/processes/compute_neighborhood.py +594 -0
- celldetective/gui/processes/measure_cells.py +5 -0
- celldetective/gui/processes/segment_cells.py +27 -6
- celldetective/gui/processes/track_cells.py +6 -0
- celldetective/gui/retrain_segmentation_model_options.py +12 -20
- celldetective/gui/retrain_signal_model_options.py +57 -56
- celldetective/gui/seg_model_loader.py +21 -62
- celldetective/gui/signal_annotator.py +139 -72
- celldetective/gui/signal_annotator2.py +431 -635
- celldetective/gui/signal_annotator_options.py +8 -11
- celldetective/gui/survival_ui.py +49 -95
- celldetective/gui/tableUI.py +28 -25
- celldetective/gui/thresholds_gui.py +617 -1221
- celldetective/gui/viewers.py +106 -39
- celldetective/gui/workers.py +9 -3
- celldetective/io.py +73 -27
- celldetective/measure.py +63 -27
- celldetective/neighborhood.py +342 -268
- celldetective/preprocessing.py +25 -17
- celldetective/relative_measurements.py +50 -29
- celldetective/scripts/analyze_signals.py +4 -1
- celldetective/scripts/measure_relative.py +4 -1
- celldetective/scripts/segment_cells.py +0 -6
- celldetective/scripts/track_cells.py +3 -1
- celldetective/scripts/train_segmentation_model.py +7 -4
- celldetective/signals.py +29 -14
- celldetective/tracking.py +7 -2
- celldetective/utils.py +36 -8
- {celldetective-1.3.9.post4.dist-info → celldetective-1.4.0.dist-info}/METADATA +24 -16
- {celldetective-1.3.9.post4.dist-info → celldetective-1.4.0.dist-info}/RECORD +57 -55
- {celldetective-1.3.9.post4.dist-info → celldetective-1.4.0.dist-info}/WHEEL +1 -1
- tests/test_qt.py +21 -21
- {celldetective-1.3.9.post4.dist-info → celldetective-1.4.0.dist-info}/entry_points.txt +0 -0
- {celldetective-1.3.9.post4.dist-info → celldetective-1.4.0.dist-info/licenses}/LICENSE +0 -0
- {celldetective-1.3.9.post4.dist-info → celldetective-1.4.0.dist-info}/top_level.txt +0 -0
celldetective/__init__.py
CHANGED
celldetective/_version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "1.
|
|
1
|
+
__version__ = "1.4.0"
|
celldetective/events.py
CHANGED
|
@@ -52,7 +52,7 @@ def switch_to_events(classes, event_times, max_times, origin_times=None, left_ce
|
|
|
52
52
|
>>> event_times = [5, 10, 15]
|
|
53
53
|
>>> max_times = [20, 20, 20]
|
|
54
54
|
>>> origin_times = [0, 0, 5]
|
|
55
|
-
>>> events, survival_times =
|
|
55
|
+
>>> events, survival_times = switch_to_events(classes, event_times, max_times, origin_times, FrameToMin=0.5)
|
|
56
56
|
# This would process the events considering left censorship and convert survival times to minutes.
|
|
57
57
|
|
|
58
58
|
"""
|
|
@@ -189,6 +189,7 @@ def compute_survival(df, class_of_interest, t_event, t_reference=None, FrameToMi
|
|
|
189
189
|
assert class_of_interest in cols,"The requested class cannot be found in the dataframe..."
|
|
190
190
|
assert t_event in cols,"The event time cannot be found in the dataframe..."
|
|
191
191
|
left_censored = False
|
|
192
|
+
first_detections = None
|
|
192
193
|
|
|
193
194
|
if not pairs:
|
|
194
195
|
groupby_cols = ['position','TRACK_ID']
|
|
@@ -209,10 +210,7 @@ def compute_survival(df, class_of_interest, t_event, t_reference=None, FrameToMi
|
|
|
209
210
|
assert t_reference in cols,"The reference time cannot be found in the dataframe..."
|
|
210
211
|
first_detections = df.groupby(groupby_cols)[t_reference].max().values
|
|
211
212
|
|
|
212
|
-
|
|
213
|
-
print(f"{classes=} {event_times=} {max_times=} {first_detections=}")
|
|
214
213
|
events, survival_times = switch_to_events(classes, event_times, max_times, origin_times=first_detections, left_censored=left_censored, FrameToMin=FrameToMin, cut_observation_time=cut_observation_time)
|
|
215
|
-
print(f"{events=} {survival_times=}")
|
|
216
214
|
|
|
217
215
|
ks = KaplanMeierFitter()
|
|
218
216
|
if len(events)>0:
|
|
@@ -1,23 +1,45 @@
|
|
|
1
1
|
"""
|
|
2
|
-
Copyright © 2022 Laboratoire Adhesion et Inflammation
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
2
|
+
Copyright © 2022 Laboratoire Adhesion et Inflammation
|
|
3
|
+
Authored by R. Torro, K. Dervanova, L. Limozin
|
|
4
|
+
|
|
5
|
+
This module defines additional measurement functions for use with `regionprops` via `measure_features`.
|
|
6
|
+
|
|
7
|
+
Usage
|
|
8
|
+
-----
|
|
9
|
+
Each function must follow these conventions:
|
|
10
|
+
|
|
11
|
+
- **First argument:** `regionmask` (numpy array)
|
|
12
|
+
A binary mask of the cell of interest, as provided by `regionprops`.
|
|
13
|
+
- **Optional second argument:** `intensity_image` (numpy array)
|
|
14
|
+
An image crop/bounding box associated with the cell (single-channel at a time).
|
|
15
|
+
|
|
16
|
+
Unlike the default `regionprops` from `scikit-image`, the cell image is **not** masked with zeros outside its boundaries.
|
|
17
|
+
This allows thresholding techniques to be used in measurements.
|
|
18
|
+
|
|
19
|
+
Naming Conventions & Indexing
|
|
20
|
+
------------------------------
|
|
21
|
+
- The measurement name is derived from the function name.
|
|
22
|
+
- If a function returns multiple values (e.g., for multichannel images), outputs are labeled sequentially:
|
|
23
|
+
`function-0`, `function-1`, etc.
|
|
24
|
+
- To rename these outputs, use `rename_intensity_column` from `celldetective.utils`.
|
|
25
|
+
- `"intensity"` in function names is automatically replaced with the actual channel name:
|
|
26
|
+
- Example: `"intensity-0"` → `"brightfield_channel"`.
|
|
27
|
+
- **Avoid digits smaller than the number of channels in function names** to prevent indexing conflicts.
|
|
28
|
+
Prefer text-based names instead:
|
|
29
|
+
|
|
30
|
+
.. code-block:: python
|
|
31
|
+
|
|
32
|
+
# Bad practice:
|
|
33
|
+
def intensity2(regionmask, intensity_image):
|
|
34
|
+
pass
|
|
35
|
+
|
|
36
|
+
# Recommended:
|
|
37
|
+
def intensity_two(regionmask, intensity_image):
|
|
38
|
+
pass
|
|
39
|
+
|
|
40
|
+
GUI Integration
|
|
41
|
+
---------------
|
|
42
|
+
New functions are **automatically** added to the list of available measurements in the graphical interface.
|
|
21
43
|
"""
|
|
22
44
|
|
|
23
45
|
import warnings
|
|
@@ -97,6 +119,45 @@ def fraction_of_area_detected_in_intensity(regionmask, intensity_image, target_c
|
|
|
97
119
|
|
|
98
120
|
def area_detected_in_intensity(regionmask, intensity_image, target_channel='adhesion_channel'):
|
|
99
121
|
|
|
122
|
+
"""
|
|
123
|
+
Computes the detected area within the regionmask based on threshold-based segmentation.
|
|
124
|
+
|
|
125
|
+
The function applies a predefined filtering and thresholding pipeline to the intensity image (normalized adhesion channel)
|
|
126
|
+
to detect significant regions. The resulting segmented regions are restricted to the
|
|
127
|
+
`regionmask`, ensuring that only the relevant area is measured.
|
|
128
|
+
|
|
129
|
+
Parameters
|
|
130
|
+
----------
|
|
131
|
+
regionmask : ndarray
|
|
132
|
+
A binary mask (2D array) where nonzero values define the region of interest.
|
|
133
|
+
intensity_image : ndarray
|
|
134
|
+
A 2D array of the same shape as `regionmask`, representing the intensity
|
|
135
|
+
values associated with the region.
|
|
136
|
+
target_channel : str, optional
|
|
137
|
+
Name of the intensity channel used for measurement. Defaults to `'adhesion_channel'`.
|
|
138
|
+
|
|
139
|
+
Returns
|
|
140
|
+
-------
|
|
141
|
+
detected_area : float
|
|
142
|
+
The total area (number of pixels) detected based on intensity-based segmentation.
|
|
143
|
+
|
|
144
|
+
Notes
|
|
145
|
+
-----
|
|
146
|
+
- The segmentation is performed using `segment_frame_from_thresholds()` with predefined parameters:
|
|
147
|
+
|
|
148
|
+
- Thresholding range: `[0.02, 1000]`
|
|
149
|
+
- Filters applied in sequence:
|
|
150
|
+
|
|
151
|
+
- `"subtract"` with value `1` (subtract 1 from intensity values)
|
|
152
|
+
- `"abs"` (take absolute value of intensities)
|
|
153
|
+
- `"gauss"` with sigma `0.8` (apply Gauss filter with sigma `0.8`)
|
|
154
|
+
|
|
155
|
+
- The segmentation includes hole filling.
|
|
156
|
+
- The detected regions are converted to a binary mask (`lbl > 0`).
|
|
157
|
+
- Any pixels outside the `regionmask` are excluded from the measurement.
|
|
158
|
+
|
|
159
|
+
"""
|
|
160
|
+
|
|
100
161
|
instructions = {
|
|
101
162
|
"thresholds": [
|
|
102
163
|
0.02,
|
|
@@ -125,9 +186,46 @@ def area_detected_in_intensity(regionmask, intensity_image, target_channel='adhe
|
|
|
125
186
|
return float(np.sum(lbl))
|
|
126
187
|
|
|
127
188
|
|
|
128
|
-
def area_dark_intensity(regionmask, intensity_image, target_channel='adhesion_channel', fill_holes=True): #, target_channel='adhesion_channel'
|
|
189
|
+
def area_dark_intensity(regionmask, intensity_image, target_channel='adhesion_channel', fill_holes=True, threshold=0.95): #, target_channel='adhesion_channel'
|
|
129
190
|
|
|
130
|
-
|
|
191
|
+
"""
|
|
192
|
+
Computes the absolute area within the regionmask where the intensity is below a given threshold.
|
|
193
|
+
|
|
194
|
+
This function identifies pixels in the region where the intensity is lower than `threshold`.
|
|
195
|
+
If `fill_holes` is `True`, small enclosed holes in the detected dark regions are filled before
|
|
196
|
+
computing the total area.
|
|
197
|
+
|
|
198
|
+
Parameters
|
|
199
|
+
----------
|
|
200
|
+
regionmask : ndarray
|
|
201
|
+
A binary mask (2D array) where nonzero values define the region of interest.
|
|
202
|
+
intensity_image : ndarray
|
|
203
|
+
A 2D array of the same shape as `regionmask`, representing the intensity
|
|
204
|
+
values associated with the region.
|
|
205
|
+
target_channel : str, optional
|
|
206
|
+
Name of the intensity channel used for measurement. Defaults to `'adhesion_channel'`.
|
|
207
|
+
fill_holes : bool, optional
|
|
208
|
+
If `True`, fills enclosed holes in the detected dark intensity regions before computing
|
|
209
|
+
the area. Defaults to `True`.
|
|
210
|
+
threshold : float, optional
|
|
211
|
+
Intensity threshold below which a pixel is considered part of a dark region.
|
|
212
|
+
Defaults to `0.95`.
|
|
213
|
+
|
|
214
|
+
Returns
|
|
215
|
+
-------
|
|
216
|
+
dark_area : float
|
|
217
|
+
The absolute area (number of pixels) where intensity values are below `threshold`, within the regionmask.
|
|
218
|
+
|
|
219
|
+
Notes
|
|
220
|
+
-----
|
|
221
|
+
- The default threshold for defining "dark" intensity regions is `0.95`, but it can be adjusted.
|
|
222
|
+
- If `fill_holes` is `True`, the function applies hole-filling to the detected dark regions
|
|
223
|
+
using `skimage.measure.label` and `fill_label_holes()`.
|
|
224
|
+
- The `target_channel` parameter tells regionprops to only measure this channel.
|
|
225
|
+
|
|
226
|
+
"""
|
|
227
|
+
|
|
228
|
+
subregion = (intensity_image < threshold)*regionmask # under one, under 0.8, under 0.6, whatever value!
|
|
131
229
|
if fill_holes:
|
|
132
230
|
subregion = skm.label(subregion, connectivity=2, background=0)
|
|
133
231
|
subregion = fill_label_holes(subregion)
|
|
@@ -136,9 +234,9 @@ def area_dark_intensity(regionmask, intensity_image, target_channel='adhesion_ch
|
|
|
136
234
|
return float(np.sum(subregion))
|
|
137
235
|
|
|
138
236
|
|
|
139
|
-
def fraction_of_area_dark_intensity(regionmask, intensity_image, target_channel='adhesion_channel', fill_holes=True): #, target_channel='adhesion_channel'
|
|
237
|
+
def fraction_of_area_dark_intensity(regionmask, intensity_image, target_channel='adhesion_channel', fill_holes=True, threshold=0.95): #, target_channel='adhesion_channel'
|
|
140
238
|
|
|
141
|
-
subregion = (intensity_image <
|
|
239
|
+
subregion = (intensity_image < threshold)*regionmask # under one, under 0.8, under 0.6, whatever value!
|
|
142
240
|
if fill_holes:
|
|
143
241
|
subregion = skm.label(subregion, connectivity=2, background=0)
|
|
144
242
|
subregion = fill_label_holes(subregion)
|
|
@@ -147,6 +245,138 @@ def fraction_of_area_dark_intensity(regionmask, intensity_image, target_channel=
|
|
|
147
245
|
return float(np.sum(subregion)) / float(np.sum(regionmask))
|
|
148
246
|
|
|
149
247
|
|
|
248
|
+
def area_dark_intensity_nintyfive(regionmask, intensity_image, target_channel='adhesion_channel', fill_holes=True): #, target_channel='adhesion_channel'
|
|
249
|
+
|
|
250
|
+
subregion = (intensity_image < 0.95)*regionmask # under one, under 0.8, under 0.6, whatever value!
|
|
251
|
+
if fill_holes:
|
|
252
|
+
subregion = skm.label(subregion, connectivity=2, background=0)
|
|
253
|
+
subregion = fill_label_holes(subregion)
|
|
254
|
+
subregion[subregion>0] = 1
|
|
255
|
+
|
|
256
|
+
return float(np.sum(subregion))
|
|
257
|
+
|
|
258
|
+
def area_dark_intensity_ninty(regionmask, intensity_image, target_channel='adhesion_channel', fill_holes=True): #, target_channel='adhesion_channel'
|
|
259
|
+
|
|
260
|
+
subregion = (intensity_image < 0.90)*regionmask # under one, under 0.8, under 0.6, whatever value!
|
|
261
|
+
if fill_holes:
|
|
262
|
+
subregion = skm.label(subregion, connectivity=2, background=0)
|
|
263
|
+
subregion = fill_label_holes(subregion)
|
|
264
|
+
subregion[subregion>0] = 1
|
|
265
|
+
|
|
266
|
+
return float(np.sum(subregion))
|
|
267
|
+
|
|
268
|
+
def mean_dark_intensity_nintyfive(regionmask, intensity_image, target_channel='adhesion_channel', fill_holes=True):
|
|
269
|
+
"""
|
|
270
|
+
Calculate the mean intensity in a dark subregion below 95, handling NaN values.
|
|
271
|
+
|
|
272
|
+
"""
|
|
273
|
+
subregion = (intensity_image < 0.95) * regionmask
|
|
274
|
+
|
|
275
|
+
if fill_holes:
|
|
276
|
+
subregion = skm.label(subregion, connectivity=2, background=0)
|
|
277
|
+
subregion = fill_label_holes(subregion)
|
|
278
|
+
subregion[subregion > 0] = 1
|
|
279
|
+
|
|
280
|
+
|
|
281
|
+
masked_intensity = intensity_image[subregion == 1]
|
|
282
|
+
|
|
283
|
+
return float(np.nanmean(masked_intensity))
|
|
284
|
+
|
|
285
|
+
|
|
286
|
+
def mean_dark_intensity_nintyfive_fillhole_false(regionmask, intensity_image, target_channel='adhesion_channel'):
|
|
287
|
+
"""
|
|
288
|
+
Calculate the mean intensity in a dark subregion below 95, handling NaN values.
|
|
289
|
+
"""
|
|
290
|
+
subregion = (intensity_image < 0.95) * regionmask # Select dark regions within the mask
|
|
291
|
+
|
|
292
|
+
masked_intensity = intensity_image[subregion == 1] # Extract pixel values from the selected region
|
|
293
|
+
|
|
294
|
+
return float(np.nanmean(masked_intensity)) # Compute mean, ignoring NaNs
|
|
295
|
+
|
|
296
|
+
def mean_dark_intensity_ninty_fillhole_false(regionmask, intensity_image, target_channel='adhesion_channel'):
|
|
297
|
+
"""
|
|
298
|
+
Calculate the mean intensity in a dark subregion, handling NaN values.
|
|
299
|
+
"""
|
|
300
|
+
subregion = (intensity_image < 0.90) * regionmask # Select dark regions within the mask
|
|
301
|
+
|
|
302
|
+
masked_intensity = intensity_image[subregion == 1] # Extract pixel values from the selected region
|
|
303
|
+
|
|
304
|
+
return float(np.nanmean(masked_intensity)) # Compute mean, ignoring NaNs
|
|
305
|
+
|
|
306
|
+
|
|
307
|
+
def mean_dark_intensity_ninty(regionmask, intensity_image, target_channel='adhesion_channel', fill_holes=True):
|
|
308
|
+
"""
|
|
309
|
+
Calculate the mean intensity in a dark subregion below 90, handling NaN values.
|
|
310
|
+
|
|
311
|
+
"""
|
|
312
|
+
subregion = (intensity_image < 0.90) * regionmask
|
|
313
|
+
|
|
314
|
+
if fill_holes:
|
|
315
|
+
subregion = skm.label(subregion, connectivity=2, background=0)
|
|
316
|
+
subregion = fill_label_holes(subregion)
|
|
317
|
+
subregion[subregion > 0] = 1
|
|
318
|
+
|
|
319
|
+
|
|
320
|
+
masked_intensity = intensity_image[subregion == 1]
|
|
321
|
+
|
|
322
|
+
return float(np.nanmean(masked_intensity))
|
|
323
|
+
|
|
324
|
+
def mean_dark_intensity_eight_five(regionmask, intensity_image, target_channel='adhesion_channel', fill_holes=True):
|
|
325
|
+
"""
|
|
326
|
+
Calculate the mean intensity in a dark subregion below 85, handling NaN values.
|
|
327
|
+
|
|
328
|
+
"""
|
|
329
|
+
subregion = (intensity_image < 0.85) * regionmask
|
|
330
|
+
|
|
331
|
+
if fill_holes:
|
|
332
|
+
subregion = skm.label(subregion, connectivity=2, background=0)
|
|
333
|
+
subregion = fill_label_holes(subregion)
|
|
334
|
+
subregion[subregion > 0] = 1
|
|
335
|
+
|
|
336
|
+
|
|
337
|
+
masked_intensity = intensity_image[subregion == 1]
|
|
338
|
+
|
|
339
|
+
return float(np.nanmean(masked_intensity))
|
|
340
|
+
|
|
341
|
+
|
|
342
|
+
def mean_dark_intensity_eight_five_fillhole_false(regionmask, intensity_image, target_channel='adhesion_channel'):
|
|
343
|
+
|
|
344
|
+
subregion = (intensity_image < 0.85) * regionmask # Select dark regions within the mask
|
|
345
|
+
|
|
346
|
+
masked_intensity = intensity_image[subregion == 1] # Extract pixel values from the selected region
|
|
347
|
+
|
|
348
|
+
return float(np.nanmean(masked_intensity)) # Compute mean, ignoring NaNs
|
|
349
|
+
|
|
350
|
+
def percentile_zero_one_dark_intensity_ninty(regionmask, intensity_image, target_channel='adhesion_channel'):
|
|
351
|
+
|
|
352
|
+
subregion = (intensity_image < 0.95) * regionmask
|
|
353
|
+
return float(np.nanpercentile(intensity_image[subregion],0.1))
|
|
354
|
+
|
|
355
|
+
|
|
356
|
+
def percentile_one_dark_intensity_ninty(regionmask, intensity_image, target_channel='adhesion_channel'):
|
|
357
|
+
|
|
358
|
+
subregion = (intensity_image < 0.95) * regionmask
|
|
359
|
+
return float(np.nanpercentile(intensity_image[subregion],1))
|
|
360
|
+
|
|
361
|
+
|
|
362
|
+
def percentile_five_dark_intensity_ninty(regionmask, intensity_image, target_channel='adhesion_channel'):
|
|
363
|
+
|
|
364
|
+
subregion = (intensity_image < 0.95) * regionmask
|
|
365
|
+
return float(np.nanpercentile(intensity_image[subregion],5))
|
|
366
|
+
|
|
367
|
+
|
|
368
|
+
def percentile_ten_dark_intensity_ninty(regionmask, intensity_image, target_channel='adhesion_channel'):
|
|
369
|
+
|
|
370
|
+
subregion = (intensity_image < 0.95) * regionmask
|
|
371
|
+
return float(np.nanpercentile(intensity_image[subregion],10))
|
|
372
|
+
|
|
373
|
+
|
|
374
|
+
def percentile_ninty_five_dark_intensity_ninty(regionmask, intensity_image, target_channel='adhesion_channel'):
|
|
375
|
+
|
|
376
|
+
subregion = (intensity_image < 0.95) * regionmask
|
|
377
|
+
return float(np.nanpercentile(intensity_image[subregion],95))
|
|
378
|
+
|
|
379
|
+
|
|
150
380
|
def intensity_percentile_ninety_nine(regionmask, intensity_image):
|
|
151
381
|
return np.nanpercentile(intensity_image[regionmask],99)
|
|
152
382
|
|
|
@@ -183,6 +413,38 @@ def intensity_nanmean(regionmask, intensity_image):
|
|
|
183
413
|
|
|
184
414
|
def intensity_center_of_mass_displacement(regionmask, intensity_image):
|
|
185
415
|
|
|
416
|
+
"""
|
|
417
|
+
Computes the displacement between the geometric centroid and the
|
|
418
|
+
intensity-weighted center of mass of a region.
|
|
419
|
+
|
|
420
|
+
Parameters
|
|
421
|
+
----------
|
|
422
|
+
regionmask : ndarray
|
|
423
|
+
A binary mask (2D array) where nonzero values indicate the region of interest.
|
|
424
|
+
intensity_image : ndarray
|
|
425
|
+
A 2D array of the same shape as `regionmask`, representing the intensity
|
|
426
|
+
values associated with the region.
|
|
427
|
+
|
|
428
|
+
Returns
|
|
429
|
+
-------
|
|
430
|
+
distance : float
|
|
431
|
+
Euclidean distance between the geometric centroid and the intensity-weighted center of mass.
|
|
432
|
+
direction_arctan : float
|
|
433
|
+
Angle (in degrees) of displacement from the geometric centroid to the intensity-weighted center of mass,
|
|
434
|
+
computed using `arctan2(delta_y, delta_x)`.
|
|
435
|
+
delta_x : float
|
|
436
|
+
Difference in x-coordinates (intensity-weighted centroid - geometric centroid).
|
|
437
|
+
delta_y : float
|
|
438
|
+
Difference in y-coordinates (intensity-weighted centroid - geometric centroid).
|
|
439
|
+
|
|
440
|
+
Notes
|
|
441
|
+
-----
|
|
442
|
+
- If the `intensity_image` contains NaN values, it is first processed using `interpolate_nan()`.
|
|
443
|
+
- Negative intensity values are set to zero to prevent misbehavior in center of mass calculation.
|
|
444
|
+
- If the intensity image is entirely zero, all outputs are `NaN`.
|
|
445
|
+
|
|
446
|
+
"""
|
|
447
|
+
|
|
186
448
|
if np.any(intensity_image!=intensity_image):
|
|
187
449
|
intensity_image = interpolate_nan(intensity_image.copy())
|
|
188
450
|
|
|
@@ -247,7 +509,41 @@ def intensity_center_of_mass_displacement_edge(regionmask, intensity_image):
|
|
|
247
509
|
def intensity_radial_gradient(regionmask, intensity_image):
|
|
248
510
|
|
|
249
511
|
"""
|
|
250
|
-
|
|
512
|
+
Determines whether the intensity follows a radial gradient from the center to the edge of the cell.
|
|
513
|
+
|
|
514
|
+
The function fits a linear model to the intensity values as a function of distance from the center
|
|
515
|
+
(computed via the Euclidean distance transform). The slope of the fitted line indicates whether
|
|
516
|
+
the intensity is higher at the center or at the edges.
|
|
517
|
+
|
|
518
|
+
Parameters
|
|
519
|
+
----------
|
|
520
|
+
regionmask : ndarray
|
|
521
|
+
A binary mask (2D array) where nonzero values define the region of interest.
|
|
522
|
+
intensity_image : ndarray
|
|
523
|
+
A 2D array of the same shape as `regionmask`, representing the intensity
|
|
524
|
+
values associated with the region.
|
|
525
|
+
|
|
526
|
+
Returns
|
|
527
|
+
-------
|
|
528
|
+
slope : float
|
|
529
|
+
Slope of the fitted linear model.
|
|
530
|
+
|
|
531
|
+
- If `slope > 0`: Intensity increases towards the edge.
|
|
532
|
+
- If `slope < 0`: Intensity is higher at the center.
|
|
533
|
+
|
|
534
|
+
intercept : float
|
|
535
|
+
Intercept of the fitted linear model.
|
|
536
|
+
r2 : float
|
|
537
|
+
Coefficient of determination (R²), indicating how well the linear model fits the intensity profile.
|
|
538
|
+
|
|
539
|
+
Notes
|
|
540
|
+
-----
|
|
541
|
+
- If the `intensity_image` contains NaN values, they are interpolated using `interpolate_nan()`.
|
|
542
|
+
- The Euclidean distance transform (`distance_transform_edt`) is used to compute the distance
|
|
543
|
+
of each pixel from the edge.
|
|
544
|
+
- The x-values for the linear fit are reversed so that the origin is at the center.
|
|
545
|
+
- A warning suppression is applied to ignore messages about poorly conditioned polynomial fits.
|
|
546
|
+
|
|
251
547
|
"""
|
|
252
548
|
|
|
253
549
|
if np.any(intensity_image!=intensity_image):
|
celldetective/gui/InitWindow.py
CHANGED
|
@@ -1,29 +1,27 @@
|
|
|
1
|
+
import gc
|
|
2
|
+
import json
|
|
1
3
|
import os
|
|
2
|
-
|
|
3
|
-
from PyQt5.QtWidgets import QApplication, QMainWindow
|
|
4
|
-
from PyQt5.QtWidgets import QFileDialog, QDialog, QWidget, QVBoxLayout, QCheckBox, QHBoxLayout, QLabel, QLineEdit, QPushButton, QMessageBox, QMenu, QAction
|
|
5
|
-
from PyQt5.QtCore import Qt, QUrl
|
|
6
|
-
from PyQt5.QtGui import QIcon, QDesktopServices, QIntValidator
|
|
7
|
-
|
|
8
4
|
from glob import glob
|
|
9
|
-
from
|
|
10
|
-
from fonticon_mdi6 import MDI6
|
|
11
|
-
|
|
12
|
-
from celldetective.gui.about import AboutWidget
|
|
13
|
-
from celldetective.io import correct_annotation
|
|
14
|
-
from celldetective.utils import download_zenodo_file
|
|
15
|
-
from celldetective.gui.gui_utils import center_window
|
|
16
|
-
from celldetective.gui import Styles, ControlPanel, ConfigNewExperiment
|
|
5
|
+
from subprocess import Popen, check_output
|
|
17
6
|
|
|
18
|
-
import
|
|
19
|
-
from
|
|
7
|
+
from PyQt5.QtCore import QUrl, Qt
|
|
8
|
+
from PyQt5.QtGui import QDesktopServices, QIntValidator
|
|
9
|
+
from PyQt5.QtWidgets import QAction, QApplication, QCheckBox, QDialog, QFileDialog, QHBoxLayout, QLabel, QLineEdit, \
|
|
10
|
+
QMenu, QPushButton, QVBoxLayout
|
|
11
|
+
from fonticon_mdi6 import MDI6
|
|
20
12
|
from psutil import cpu_count
|
|
21
|
-
import
|
|
13
|
+
from superqt.fonticon import icon
|
|
22
14
|
|
|
15
|
+
from celldetective.gui import ConfigNewExperiment, ControlPanel, CelldetectiveMainWindow, CelldetectiveWidget
|
|
16
|
+
from celldetective.gui.about import AboutWidget
|
|
17
|
+
from celldetective.gui.gui_utils import center_window, generic_message
|
|
23
18
|
from celldetective.gui.processes.downloader import DownloadProcess
|
|
24
19
|
from celldetective.gui.workers import ProgressWindow
|
|
20
|
+
from celldetective.io import correct_annotation, extract_well_name_and_number
|
|
21
|
+
from celldetective.utils import download_zenodo_file, pretty_table
|
|
25
22
|
|
|
26
|
-
|
|
23
|
+
|
|
24
|
+
class AppInitWindow(CelldetectiveMainWindow):
|
|
27
25
|
|
|
28
26
|
"""
|
|
29
27
|
Initial window to set the experiment folder or create a new one.
|
|
@@ -36,7 +34,7 @@ class AppInitWindow(QMainWindow, Styles):
|
|
|
36
34
|
self.parent_window = parent_window
|
|
37
35
|
self.setWindowTitle("celldetective")
|
|
38
36
|
|
|
39
|
-
self.n_threads = min([1,cpu_count()])
|
|
37
|
+
self.n_threads = min([1, cpu_count()])
|
|
40
38
|
|
|
41
39
|
try:
|
|
42
40
|
check_output('nvidia-smi')
|
|
@@ -48,7 +46,6 @@ class AppInitWindow(QMainWindow, Styles):
|
|
|
48
46
|
|
|
49
47
|
self.soft_path = software_location
|
|
50
48
|
self.onlyInt = QIntValidator()
|
|
51
|
-
self.setWindowIcon(QIcon(os.sep.join([self.soft_path,'celldetective','icons','logo.png'])))
|
|
52
49
|
|
|
53
50
|
self._createActions()
|
|
54
51
|
self._createMenuBar()
|
|
@@ -58,9 +55,9 @@ class AppInitWindow(QMainWindow, Styles):
|
|
|
58
55
|
self.geometry = self.screen.availableGeometry()
|
|
59
56
|
self.screen_width, self.screen_height = self.geometry.getRect()[-2:]
|
|
60
57
|
|
|
61
|
-
central_widget =
|
|
58
|
+
central_widget = CelldetectiveWidget()
|
|
62
59
|
self.vertical_layout = QVBoxLayout(central_widget)
|
|
63
|
-
self.vertical_layout.setContentsMargins(15,15,15,15)
|
|
60
|
+
self.vertical_layout.setContentsMargins(15, 15, 15, 15)
|
|
64
61
|
self.vertical_layout.addWidget(QLabel("Experiment folder:"))
|
|
65
62
|
self.create_locate_exp_hbox()
|
|
66
63
|
self.create_buttons_hbox()
|
|
@@ -79,7 +76,7 @@ class AppInitWindow(QMainWindow, Styles):
|
|
|
79
76
|
def create_locate_exp_hbox(self):
|
|
80
77
|
|
|
81
78
|
self.locate_exp_layout = QHBoxLayout()
|
|
82
|
-
self.locate_exp_layout.setContentsMargins(0,5,0,0)
|
|
79
|
+
self.locate_exp_layout.setContentsMargins(0, 5, 0, 0)
|
|
83
80
|
self.experiment_path_selection = QLineEdit()
|
|
84
81
|
self.experiment_path_selection.setAlignment(Qt.AlignLeft)
|
|
85
82
|
self.experiment_path_selection.setEnabled(True)
|
|
@@ -266,7 +263,7 @@ class AppInitWindow(QMainWindow, Styles):
|
|
|
266
263
|
|
|
267
264
|
print('setting memory and threads')
|
|
268
265
|
|
|
269
|
-
self.ThreadsWidget =
|
|
266
|
+
self.ThreadsWidget = CelldetectiveWidget()
|
|
270
267
|
self.ThreadsWidget.setWindowTitle("Threads")
|
|
271
268
|
layout = QVBoxLayout()
|
|
272
269
|
self.ThreadsWidget.setLayout(layout)
|
|
@@ -382,24 +379,21 @@ class AppInitWindow(QMainWindow, Styles):
|
|
|
382
379
|
wells = glob(os.sep.join([self.exp_dir,"W*"]))
|
|
383
380
|
self.number_of_wells = len(wells)
|
|
384
381
|
if self.number_of_wells==0:
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
msgBox.setText("No well was found in the experiment folder.\nPlease respect the W*/ nomenclature...")
|
|
388
|
-
msgBox.setWindowTitle("Error")
|
|
389
|
-
msgBox.setStandardButtons(QMessageBox.Ok)
|
|
390
|
-
returnValue = msgBox.exec()
|
|
391
|
-
if returnValue == QMessageBox.Ok:
|
|
392
|
-
return None
|
|
382
|
+
generic_message("No well was found in the experiment folder.\nPlease respect the W*/ nomenclature...", msg_type="critical")
|
|
383
|
+
return None
|
|
393
384
|
else:
|
|
394
385
|
if self.number_of_wells==1:
|
|
395
386
|
print(f"Found {self.number_of_wells} well...")
|
|
396
387
|
elif self.number_of_wells>1:
|
|
397
388
|
print(f"Found {self.number_of_wells} wells...")
|
|
398
|
-
|
|
389
|
+
|
|
390
|
+
number_pos = {}
|
|
399
391
|
for w in wells:
|
|
400
|
-
|
|
401
|
-
|
|
402
|
-
|
|
392
|
+
well_name, well_nbr = extract_well_name_and_number(w)
|
|
393
|
+
position_folders = glob(os.sep.join([w,f"{well_nbr}*", os.sep]))
|
|
394
|
+
number_pos.update({well_name: len(position_folders)})
|
|
395
|
+
print(f"Number of positions per well:")
|
|
396
|
+
pretty_table(number_pos)
|
|
403
397
|
|
|
404
398
|
with open(os.sep.join([self.soft_path,'celldetective','recent.txt']), 'a+') as f:
|
|
405
399
|
f.write(self.exp_dir+'\n')
|
|
@@ -423,12 +417,6 @@ class AppInitWindow(QMainWindow, Styles):
|
|
|
423
417
|
else:
|
|
424
418
|
return None
|
|
425
419
|
if not os.path.exists(os.sep.join([self.foldername,"config.ini"])):
|
|
426
|
-
|
|
427
|
-
|
|
428
|
-
|
|
429
|
-
msgBox.setWindowTitle("Warning")
|
|
430
|
-
msgBox.setStandardButtons(QMessageBox.Ok)
|
|
431
|
-
returnValue = msgBox.exec()
|
|
432
|
-
if returnValue == QMessageBox.Ok:
|
|
433
|
-
self.experiment_path_selection.setText('')
|
|
434
|
-
return None
|
|
420
|
+
generic_message("No configuration can be found in the selected folder...", msg_type="warning")
|
|
421
|
+
self.experiment_path_selection.setText('')
|
|
422
|
+
return None
|
celldetective/gui/__init__.py
CHANGED
celldetective/gui/about.py
CHANGED
|
@@ -1,44 +1,48 @@
|
|
|
1
|
-
from PyQt5.QtWidgets import
|
|
1
|
+
from PyQt5.QtWidgets import QVBoxLayout, QLabel
|
|
2
2
|
from PyQt5.QtGui import QPixmap
|
|
3
3
|
from PyQt5.QtCore import Qt
|
|
4
|
+
|
|
5
|
+
from celldetective.gui import CelldetectiveWidget
|
|
4
6
|
from celldetective.utils import get_software_location
|
|
5
7
|
import os
|
|
6
8
|
from celldetective.gui.gui_utils import center_window
|
|
7
9
|
from celldetective._version import __version__
|
|
8
10
|
|
|
9
|
-
class AboutWidget(QWidget):
|
|
10
11
|
|
|
12
|
+
class AboutWidget(CelldetectiveWidget):
|
|
13
|
+
|
|
11
14
|
def __init__(self):
|
|
12
|
-
|
|
13
15
|
super().__init__()
|
|
14
16
|
self.setWindowTitle("About celldetective")
|
|
15
|
-
self.
|
|
17
|
+
self.setMaximumWidth(320)
|
|
16
18
|
center_window(self)
|
|
17
|
-
|
|
18
|
-
|
|
19
|
+
|
|
20
|
+
logo = QPixmap(os.sep.join([get_software_location(), 'celldetective', 'icons', 'logo.png']))
|
|
21
|
+
|
|
19
22
|
# Create the layout
|
|
20
23
|
layout = QVBoxLayout(self)
|
|
21
24
|
img_label = QLabel('')
|
|
22
25
|
img_label.setPixmap(logo)
|
|
23
26
|
layout.addWidget(img_label, alignment=Qt.AlignCenter)
|
|
24
|
-
|
|
27
|
+
|
|
25
28
|
self.soft_name = QLabel('celldetective')
|
|
26
29
|
self.soft_name.setStyleSheet("""font-weight: bold;
|
|
27
30
|
font-size: 18px;
|
|
28
31
|
""")
|
|
29
32
|
layout.addWidget(self.soft_name, alignment=Qt.AlignCenter)
|
|
30
|
-
|
|
31
|
-
self.version_lbl = QLabel(f"Version {__version__} <a href=\"https://github.com/remyeltorro/celldetective
|
|
33
|
+
|
|
34
|
+
self.version_lbl = QLabel(f"Version {__version__} <a href=\"https://github.com/remyeltorro/celldetective"
|
|
35
|
+
f"/releases\">(release notes)</a>")
|
|
32
36
|
self.version_lbl.setOpenExternalLinks(True)
|
|
33
37
|
layout.addWidget(self.version_lbl, alignment=Qt.AlignCenter)
|
|
34
|
-
|
|
38
|
+
|
|
35
39
|
self.lab_lbl = QLabel("Developed at Laboratoire Adhésion et Inflammation (LAI) INSERM U1067 CNRS UMR 7333")
|
|
36
40
|
self.lab_lbl.setWordWrap(True)
|
|
37
41
|
layout.addWidget(self.lab_lbl, alignment=Qt.AlignCenter)
|
|
38
|
-
|
|
39
|
-
self.centuri_mention = QLabel(
|
|
42
|
+
|
|
43
|
+
self.centuri_mention = QLabel(
|
|
44
|
+
"The project leading to this publication has received funding from France 2030, the French Government "
|
|
45
|
+
"program managed by the French National Research Agency (ANR-16-CONV-0001) and from Excellence Initiative "
|
|
46
|
+
"of Aix-Marseille University - A*MIDEX')")
|
|
40
47
|
self.centuri_mention.setWordWrap(True)
|
|
41
48
|
layout.addWidget(self.centuri_mention, alignment=Qt.AlignCenter)
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|