celldetective 1.3.7.post2__py3-none-any.whl → 1.3.8.post1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (37) hide show
  1. celldetective/_version.py +1 -1
  2. celldetective/gui/btrack_options.py +8 -8
  3. celldetective/gui/classifier_widget.py +8 -0
  4. celldetective/gui/configure_new_exp.py +1 -1
  5. celldetective/gui/json_readers.py +2 -4
  6. celldetective/gui/plot_signals_ui.py +38 -29
  7. celldetective/gui/process_block.py +1 -0
  8. celldetective/gui/processes/segment_cells.py +50 -23
  9. celldetective/gui/seg_model_loader.py +71 -25
  10. celldetective/gui/signal_annotator2.py +10 -7
  11. celldetective/gui/signal_annotator_options.py +1 -1
  12. celldetective/gui/tableUI.py +252 -20
  13. celldetective/gui/viewers.py +1 -1
  14. celldetective/io.py +28 -20
  15. celldetective/links/zenodo.json +233 -93
  16. celldetective/models/signal_detection/NucCond/classification_loss.png +0 -0
  17. celldetective/models/signal_detection/NucCond/classifier.h5 +0 -0
  18. celldetective/models/signal_detection/NucCond/config_input.json +1 -0
  19. celldetective/models/signal_detection/NucCond/log_classifier.csv +126 -0
  20. celldetective/models/signal_detection/NucCond/log_regressor.csv +282 -0
  21. celldetective/models/signal_detection/NucCond/regression_loss.png +0 -0
  22. celldetective/models/signal_detection/NucCond/regressor.h5 +0 -0
  23. celldetective/models/signal_detection/NucCond/scores.npy +0 -0
  24. celldetective/models/signal_detection/NucCond/test_confusion_matrix.png +0 -0
  25. celldetective/models/signal_detection/NucCond/test_regression.png +0 -0
  26. celldetective/models/signal_detection/NucCond/validation_confusion_matrix.png +0 -0
  27. celldetective/models/signal_detection/NucCond/validation_regression.png +0 -0
  28. celldetective/segmentation.py +48 -1
  29. celldetective/signals.py +43 -13
  30. celldetective/tracking.py +7 -2
  31. celldetective/utils.py +1 -1
  32. {celldetective-1.3.7.post2.dist-info → celldetective-1.3.8.post1.dist-info}/METADATA +1 -1
  33. {celldetective-1.3.7.post2.dist-info → celldetective-1.3.8.post1.dist-info}/RECORD +37 -25
  34. {celldetective-1.3.7.post2.dist-info → celldetective-1.3.8.post1.dist-info}/LICENSE +0 -0
  35. {celldetective-1.3.7.post2.dist-info → celldetective-1.3.8.post1.dist-info}/WHEEL +0 -0
  36. {celldetective-1.3.7.post2.dist-info → celldetective-1.3.8.post1.dist-info}/entry_points.txt +0 -0
  37. {celldetective-1.3.7.post2.dist-info → celldetective-1.3.8.post1.dist-info}/top_level.txt +0 -0
celldetective/signals.py CHANGED
@@ -33,6 +33,7 @@ import time
33
33
  import math
34
34
  import pandas as pd
35
35
  from pandas.api.types import is_numeric_dtype
36
+ from scipy.stats import median_abs_deviation
36
37
 
37
38
  abs_path = os.sep.join([os.path.split(os.path.dirname(os.path.realpath(__file__)))[0],'celldetective'])
38
39
 
@@ -680,11 +681,22 @@ class SignalDetectionModel(object):
680
681
  if 'label' in model_config:
681
682
  self.label = model_config['label']
682
683
 
683
- self.n_channels = self.model_class.layers[0].input_shape[0][-1]
684
- self.model_signal_length = self.model_class.layers[0].input_shape[0][-2]
685
- self.n_classes = self.model_class.layers[-1].output_shape[-1]
684
+ try:
685
+ self.n_channels = self.model_class.layers[0].input_shape[0][-1]
686
+ self.model_signal_length = self.model_class.layers[0].input_shape[0][-2]
687
+ self.n_classes = self.model_class.layers[-1].output_shape[-1]
688
+ model_class_input_shape = self.model_class.layers[0].input_shape[0]
689
+ model_reg_input_shape = self.model_reg.layers[0].input_shape[0]
690
+ except AttributeError:
691
+ self.n_channels = self.model_class.input_shape[-1] #self.model_class.layers[0].input.shape[0][-1]
692
+ self.model_signal_length = self.model_class.input_shape[-2] #self.model_class.layers[0].input[0].shape[0][-2]
693
+ self.n_classes = self.model_class.output_shape[-1] #self.model_class.layers[-1].output[0].shape[-1]
694
+ model_class_input_shape = self.model_class.input_shape
695
+ model_reg_input_shape = self.model_reg.input_shape
696
+ except Exception as e:
697
+ print(e)
686
698
 
687
- assert self.model_class.layers[0].input_shape[0] == self.model_reg.layers[0].input_shape[0], f"mismatch between input shape of classification: {self.model_class.layers[0].input_shape[0]} and regression {self.model_reg.layers[0].input_shape[0]} models... Error."
699
+ assert model_class_input_shape==model_reg_input_shape, f"mismatch between input shape of classification: {self.model_class.layers[0].input_shape[0]} and regression {self.model_reg.layers[0].input_shape[0]} models... Error."
688
700
 
689
701
  return True
690
702
 
@@ -1015,8 +1027,15 @@ class SignalDetectionModel(object):
1015
1027
  # plt.plot(self.x[i,:,0])
1016
1028
  # plt.show()
1017
1029
 
1018
- assert self.x.shape[-1] == self.model_class.layers[0].input_shape[0][-1], f"Shape mismatch between the input shape and the model input shape..."
1019
- assert self.x.shape[-2] == self.model_class.layers[0].input_shape[0][-2], f"Shape mismatch between the input shape and the model input shape..."
1030
+ try:
1031
+ n_channels = self.model_class.layers[0].input_shape[0][-1]
1032
+ model_signal_length = self.model_class.layers[0].input_shape[0][-2]
1033
+ except AttributeError:
1034
+ n_channels = self.model_class.input_shape[-1]
1035
+ model_signal_length = self.model_class.input_shape[-2]
1036
+
1037
+ assert self.x.shape[-1] == n_channels, f"Shape mismatch between the input shape and the model input shape..."
1038
+ assert self.x.shape[-2] == model_signal_length, f"Shape mismatch between the input shape and the model input shape..."
1020
1039
 
1021
1040
  self.class_predictions_one_hot = self.model_class.predict(self.x)
1022
1041
  self.class_predictions = self.class_predictions_one_hot.argmax(axis=1)
@@ -1072,8 +1091,15 @@ class SignalDetectionModel(object):
1072
1091
  normalization_values=self.normalization_values, normalization_clip=self.normalization_clip,
1073
1092
  )
1074
1093
 
1075
- assert self.x.shape[-1] == self.model_reg.layers[0].input_shape[0][-1], f"Shape mismatch between the input shape and the model input shape..."
1076
- assert self.x.shape[-2] == self.model_reg.layers[0].input_shape[0][-2], f"Shape mismatch between the input shape and the model input shape..."
1094
+ try:
1095
+ n_channels = self.model_reg.layers[0].input_shape[0][-1]
1096
+ model_signal_length = self.model_reg.layers[0].input_shape[0][-2]
1097
+ except AttributeError:
1098
+ n_channels = self.model_reg.input_shape[-1]
1099
+ model_signal_length = self.model_reg.input_shape[-2]
1100
+
1101
+ assert self.x.shape[-1] == n_channels, f"Shape mismatch between the input shape and the model input shape..."
1102
+ assert self.x.shape[-2] == model_signal_length, f"Shape mismatch between the input shape and the model input shape..."
1077
1103
 
1078
1104
  if np.any(self.class_predictions==0):
1079
1105
  self.time_predictions = self.model_reg.predict(self.x[self.class_predictions==0])*self.model_signal_length
@@ -2749,7 +2775,7 @@ def sliding_msd_drift(x, y, timeline, window, mode='bi', n_points_migration=7,
2749
2775
 
2750
2776
  return s_diffusion, s_velocity
2751
2777
 
2752
- def columnwise_mean(matrix, min_nbr_values = 1):
2778
+ def columnwise_mean(matrix, min_nbr_values = 1, projection='mean'):
2753
2779
 
2754
2780
  """
2755
2781
  Calculate the column-wise mean and standard deviation of non-NaN elements in the input matrix.
@@ -2788,12 +2814,16 @@ def columnwise_mean(matrix, min_nbr_values = 1):
2788
2814
  values = matrix[:,k]
2789
2815
  values = values[values==values]
2790
2816
  if len(values[values==values])>min_nbr_values:
2791
- mean_line[k] = np.nanmean(values)
2792
- mean_line_std[k] = np.nanstd(values)
2817
+ if projection=='mean':
2818
+ mean_line[k] = np.nanmean(values)
2819
+ mean_line_std[k] = np.nanstd(values)
2820
+ elif projection=='median':
2821
+ mean_line[k] = np.nanmedian(values)
2822
+ mean_line_std[k] = median_abs_deviation(values, center=np.nanmedian, nan_policy='omit')
2793
2823
  return mean_line, mean_line_std
2794
2824
 
2795
2825
 
2796
- def mean_signal(df, signal_name, class_col, time_col=None, class_value=[0], return_matrix=False, forced_max_duration=None, min_nbr_values=2,conflict_mode='mean'):
2826
+ def mean_signal(df, signal_name, class_col, time_col=None, class_value=[0], return_matrix=False, forced_max_duration=None, min_nbr_values=2,conflict_mode='mean', projection='mean'):
2797
2827
 
2798
2828
  """
2799
2829
  Calculate the mean and standard deviation of a specified signal for tracks of a given class in the input DataFrame.
@@ -2884,7 +2914,7 @@ def mean_signal(df, signal_name, class_col, time_col=None, class_value=[0], retu
2884
2914
  signal_matrix[trackid,timeline_shifted.astype(int)] = signal
2885
2915
  trackid+=1
2886
2916
 
2887
- mean_signal, std_signal = columnwise_mean(signal_matrix, min_nbr_values=min_nbr_values)
2917
+ mean_signal, std_signal = columnwise_mean(signal_matrix, min_nbr_values=min_nbr_values, projection=projection)
2888
2918
  actual_timeline = np.linspace(-max_duration, max_duration, 2*max_duration+1)
2889
2919
  if return_matrix:
2890
2920
  return mean_signal, std_signal, actual_timeline, signal_matrix
celldetective/tracking.py CHANGED
@@ -441,9 +441,14 @@ def interpolate_per_track(group_df):
441
441
 
442
442
  """
443
443
 
444
- interpolated_group = group_df.interpolate(method='linear',limit_direction="both")
444
+ for c in list(group_df.columns):
445
+ group_df_new_dtype = group_df[c].infer_objects(copy=False)
446
+ if group_df_new_dtype.dtype!='O':
447
+ group_df[c] = group_df_new_dtype.interpolate(method='linear',limit_direction="both")
448
+
449
+ #interpolated_group = group_df.interpolate(method='linear',limit_direction="both")
445
450
 
446
- return interpolated_group
451
+ return group_df
447
452
 
448
453
  def interpolate_nan_properties(trajectories, track_label="TRACK_ID"):
449
454
 
celldetective/utils.py CHANGED
@@ -1794,7 +1794,7 @@ def ConfigSectionMap(path,section):
1794
1794
 
1795
1795
  """
1796
1796
 
1797
- Config = configparser.ConfigParser()
1797
+ Config = configparser.ConfigParser(interpolation=None)
1798
1798
  Config.read(path)
1799
1799
  dict1 = {}
1800
1800
  try:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: celldetective
3
- Version: 1.3.7.post2
3
+ Version: 1.3.8.post1
4
4
  Summary: description
5
5
  Home-page: http://github.com/remyeltorro/celldetective
6
6
  Author: Rémy Torro
@@ -1,48 +1,48 @@
1
1
  celldetective/__init__.py,sha256=bi3SGTMo6s2qQBsJAaKy-a4xaGcTQVW8zsqaiX5XKeY,139
2
2
  celldetective/__main__.py,sha256=bxTlSvbKhqn3LW_azd2baDCnDsgb37PAP9DfuAJ1_5M,1844
3
- celldetective/_version.py,sha256=QojA4USQVyeAOFEXyKi6_Tkyk9eWJ-uv_dEuoZP2-EM,28
3
+ celldetective/_version.py,sha256=Gwdlkn6lk8YInJKr89NJRcSacpWsCYBBBhoLN4FGb2Y,28
4
4
  celldetective/events.py,sha256=UkjY_-THo6WviWWCLnDbma7jWOd_O9a60C4IOX2htG8,8254
5
5
  celldetective/extra_properties.py,sha256=y556D6EMjLGhtjDqRoOTRGa85XxTIe0K1Asb26VZXmo,5643
6
6
  celldetective/filters.py,sha256=DT3MyqNBSj3EMtb74oZUirdonKcwcowjtehTT72mrrk,4181
7
- celldetective/io.py,sha256=mO9PfQrAYjUbjTqtLG9NpUkmB3BVYP2qWoReeKXC9Lk,123142
7
+ celldetective/io.py,sha256=kD8jvaZJHndlYXM-NwVjesKs8tRQNYiZJCH5VHmk2uA,123067
8
8
  celldetective/measure.py,sha256=IfmyRaGzYjlTKh6uVBdn4qLEm6LgXQstb5NlB_Blc8I,58291
9
9
  celldetective/neighborhood.py,sha256=s-zVsfGnPlqs6HlDJCXRh21lLiPKbA_S1JC6uZvfG_0,56712
10
10
  celldetective/preprocessing.py,sha256=Wlt_PJua97CpMuWe_M65znUmz_yjYPqWIcs2ZK_RLgk,44109
11
11
  celldetective/relative_measurements.py,sha256=-GWig0lC5UWAcJSPlo9Sp45khGj80fxuQfFk-bdBca0,30117
12
- celldetective/segmentation.py,sha256=ONuAioeU4qGX7n_LoUVQuv8iHHD9N0D8Bjv2kDdMOrk,29411
13
- celldetective/signals.py,sha256=XJkh518PgE00TVMwIZXD3LcpuLtK4K29WPelUQOXmAM,110274
14
- celldetective/tracking.py,sha256=JM-0HXYsTfy7qcNHLxfTp0em_D3iV9xkfggQTdMP5TU,40030
15
- celldetective/utils.py,sha256=MP2bGjb_XUIhT397TJQjcggJPgpGksyRcHJpu9VTW8Q,108422
12
+ celldetective/segmentation.py,sha256=ul8E-cjjaWxaMZfjAtbrH7joUjxbZSeb77GL3Alp5Os,30779
13
+ celldetective/signals.py,sha256=nMyyGUpla8D2sUYKY1zjbWsAueVPI_gUalY0KXfWteI,111595
14
+ celldetective/tracking.py,sha256=VBJLd-1EeJarOVPBNEomhVBh9UYAMdSnH0tmUiUoTrY,40242
15
+ celldetective/utils.py,sha256=lX9W8H7y4z8B5DajUDqAoXlycJbIIzOmX7O-2b7eb04,108440
16
16
  celldetective/datasets/segmentation_annotations/blank,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
17
  celldetective/datasets/signal_annotations/blank,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
18
  celldetective/gui/InitWindow.py,sha256=TPKWYczhPHvPKWg654sXnE9xCEx6U-oWX0_OJgLTWbU,15044
19
19
  celldetective/gui/__init__.py,sha256=2_r2xfOj4_2xj0yBkCTIfzlF94AHKm-j6Pvpd7DddQc,989
20
20
  celldetective/gui/about.py,sha256=FJZrj6C-p6uqp_3UaprKosuW-Sw9_HPNQAvFbis9Gdk,1749
21
21
  celldetective/gui/analyze_block.py,sha256=h0sp7Tk3hZFM8w0yTidwIjZX4WRI-lQF3JCFObrLCPo,2761
22
- celldetective/gui/btrack_options.py,sha256=tY0XiDcsI4KDgwZtcaP7HWLJ_isxamM-7sFX-m5Dcwk,44662
23
- celldetective/gui/classifier_widget.py,sha256=UyElqL9Rq5cKcM6i8ZLGCqkMqqnSDaw6i_hRoV_7WSE,19817
24
- celldetective/gui/configure_new_exp.py,sha256=sRBGhMoQUP8-XchmfV6VvuFHceS4Q8qPY2ua7DQOaHI,20754
22
+ celldetective/gui/btrack_options.py,sha256=ZXaJuCdqB_BK1CFRbgZErlAlXMbzDF2DP7opLSd6III,44682
23
+ celldetective/gui/classifier_widget.py,sha256=nHWmaWXse2CxxRFmR4mA0JRADr5i0MsWldaqJQIQ-i8,19992
24
+ celldetective/gui/configure_new_exp.py,sha256=N4SdL-4Xo0XbTAkCtt1ywr74HmHc5eaPlHGv1XgxAX0,20772
25
25
  celldetective/gui/control_panel.py,sha256=1TWUCvEif19ZLy4pDUupPrGzIKnG6Tg6kWGp_R8OSG4,22045
26
26
  celldetective/gui/generic_signal_plot.py,sha256=Gv4KhA5vhbgVSj5jteE42T0aNCoQZtmIAUkEsMi6JNA,36309
27
27
  celldetective/gui/gui_utils.py,sha256=n9JVXBantJK3RFt8fQ7HJYKdCC4ezBMBwlgT5QT2I9o,39343
28
- celldetective/gui/json_readers.py,sha256=Su3angSobroeGrrumGgQcs3Cr_9l9p52-Hfm3qneVcI,3664
28
+ celldetective/gui/json_readers.py,sha256=SkI_bR1MlAKd8NLBmQUVjJfZ7mKiU_FEjgC4dUwBACk,3698
29
29
  celldetective/gui/layouts.py,sha256=XsqiHR58DXsG5SSD5S8KOtUv4yw-y-s2_wZx_XsHeJs,52013
30
30
  celldetective/gui/measurement_options.py,sha256=cfiC4lq-XqY4Sa4Vkw5mys7JKaa9tE2BgeN8_k-SIDY,40355
31
31
  celldetective/gui/neighborhood_options.py,sha256=FBNDvlzMPKp8s0Grxds90pCPHG1s27XrpMN0HV2gf0I,19839
32
32
  celldetective/gui/plot_measurements.py,sha256=n0pDUcYcsKlSMaUaBSVplGziuWp_7jKaeXdREs-MqyI,50848
33
- celldetective/gui/plot_signals_ui.py,sha256=-yKpmmWi0CDKazn3v49ArvykdQbtGIXx0ZwQ4yO8-eY,16641
34
- celldetective/gui/process_block.py,sha256=l16GS_xTeSqWIxYZj1lc4EwC3WOhZsE4k-GOTBKZR0o,71188
33
+ celldetective/gui/plot_signals_ui.py,sha256=u7b36pmjF8sf0Ctb9KCrnRcvAD3vlNaaIVkX3-rHCA0,17332
34
+ celldetective/gui/process_block.py,sha256=3v4q5kAq5uY6w0f3zyImXi_iTp8Qv2EFvzNjTEvqG9E,71210
35
35
  celldetective/gui/retrain_segmentation_model_options.py,sha256=7iawDN4kwq56Z-dX9kQe9tLW8B3YMrIW_D85LMAAYwk,23906
36
36
  celldetective/gui/retrain_signal_model_options.py,sha256=GCa0WKKsgmH2CFDHAKxPGbHtCE19p1_bbcWNasyZw5o,22482
37
- celldetective/gui/seg_model_loader.py,sha256=vWvPMU6nkTiQfI-x2WjQHrdJGFdV4a4Ne-4YIOq_YZ8,18153
37
+ celldetective/gui/seg_model_loader.py,sha256=b1BiHuAf_ZqroE4jSEVCo7ASQv-xyWMPWU799alpbNM,19727
38
38
  celldetective/gui/signal_annotator.py,sha256=9l_qbIO9V862eGk6mVOCXo0jsG8Z3WP9kx7wCBFGvKU,89014
39
- celldetective/gui/signal_annotator2.py,sha256=1OTGc6wKUDHitpRUOHuDMSoJbubLvh1sGR2YRN7oDeU,106289
40
- celldetective/gui/signal_annotator_options.py,sha256=ztFFgA70SJ0QkntxYGsgDNCvSuSR5GjF7_J6pYVYc1g,11020
39
+ celldetective/gui/signal_annotator2.py,sha256=qBDPk3UHmMoY4_i5KJt3Nr8kxjLOkYay_xNc6xrn_pE,106340
40
+ celldetective/gui/signal_annotator_options.py,sha256=ekxy7Qtw5EGqXa82KdZezaSlmprSAGMW2ZZoE1SObRM,11013
41
41
  celldetective/gui/styles.py,sha256=SZy_ACkA6QB_4ANyY1V0m1QF66C0SVGssOrwW1Qt1Aw,5076
42
42
  celldetective/gui/survival_ui.py,sha256=J4ZYjX8ne0wT0ruQu9WL3WfLnRIAQalkaAR8ngb7PkI,14170
43
- celldetective/gui/tableUI.py,sha256=89TB_U2l4rhYCpEr3RicratMOp74Spx3ioBeM5lnbHA,51021
43
+ celldetective/gui/tableUI.py,sha256=Yz_pHk1ERXRb0QsBPrvLEwAGpvVlawgn1b6uzz5wL_0,58022
44
44
  celldetective/gui/thresholds_gui.py,sha256=VjCVBCDsNh_LoXfEqUn32nsYQwO9-Elh3Gl1RBv7acc,48756
45
- celldetective/gui/viewers.py,sha256=mne5GLFAjv-vxMABXP7I9VhrJGtPnZj560HLdlwDZSU,47806
45
+ celldetective/gui/viewers.py,sha256=HDLB6j1FJwgKR6dQwzeHmcDvDMbDIYwD2svd-VZhJFE,47806
46
46
  celldetective/gui/workers.py,sha256=P4qUMXuCtGcggGmJr3VitAPSfRG30wkJ1B0pfcdGbKg,4225
47
47
  celldetective/gui/help/DL-segmentation-strategy.json,sha256=PZD9xXjrwbX3TiudHJPuvcyZD28o4k-fVgeTd7dBKzI,1583
48
48
  celldetective/gui/help/Threshold-vs-DL.json,sha256=rrFnZT2DhyS7g1nIDWeUV8-HH7M2Sv8D7sDCGBU1M_0,934
@@ -57,7 +57,7 @@ celldetective/gui/help/track-postprocessing.json,sha256=VaGd8EEkA33OL-EI3NXWZ8yH
57
57
  celldetective/gui/help/tracking.json,sha256=yIAoOToqCSQ_XF4gwEZCcyXcvQ3mROju263ZPDvlUyY,776
58
58
  celldetective/gui/processes/downloader.py,sha256=SuMTuM82QOZBqLfj36I14fhZ2k3NmLp0PBcGUHxnpXI,3287
59
59
  celldetective/gui/processes/measure_cells.py,sha256=1nJNHhLKHBL7kVsmmPbWv0NHcar0D8Gihjj_AD1UxnI,12851
60
- celldetective/gui/processes/segment_cells.py,sha256=4epeD6LnMIrnqLcErHFako9L6miEEWS-PQJweT0GQuk,10727
60
+ celldetective/gui/processes/segment_cells.py,sha256=AVdRGuDnoQcrevk7itiEu5xluBeqaqXRSFVZAd7q91g,11313
61
61
  celldetective/gui/processes/track_cells.py,sha256=og23iqc7WyVbpqsdygltVjejLGUVIb5ocxAForGnhl0,9947
62
62
  celldetective/gui/processes/train_segmentation_model.py,sha256=bvcPG19hBjhNY9hd6Ch5_wk2FOJYQg97Azoz4RKeP-0,10776
63
63
  celldetective/gui/processes/train_signal_model.py,sha256=qqqkq9gdvNyvycYkmzWgRXWvsbEozyzNWP_POGvnlIs,3816
@@ -70,7 +70,7 @@ celldetective/icons/splash0.png,sha256=qVXsrYUinm5g6-vbHcqwyjh8SIqs9lEqPWnPa1Wij
70
70
  celldetective/icons/survival2.png,sha256=8zsualD7d9VPAecoFA4Om9TFARErqpJzMg6U7XANXf4,4479
71
71
  celldetective/icons/vignette_signals2.png,sha256=hsVOdQDpEfMGM45aaSeacEm3lvxbquRKKYutiS9qoS0,20743
72
72
  celldetective/icons/vignette_signals2.svg,sha256=muGNcQudV1jG-bmFd9FwV-Wb8PcrRV5osdZ7pHR7Ekk,5947
73
- celldetective/links/zenodo.json,sha256=puCKI6vQi_L_7H70Nii_UzIqRcYVWUQGRKpTulyoHPo,30549
73
+ celldetective/links/zenodo.json,sha256=Y1C0KFQ5K9rx8jXMLVbisU5Obg3389KK4MIpid3uWX8,34441
74
74
  celldetective/models/pair_signal_detection/blank,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
75
75
  celldetective/models/segmentation_effectors/blank,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
76
76
  celldetective/models/segmentation_effectors/ricm_bf_all_last/config_input.json,sha256=Sr5AiyJkg_EoAUFSZbUH_FE-jQHTwNR3tiUZdmvPlaA,7068
@@ -81,6 +81,18 @@ celldetective/models/segmentation_effectors/test-transfer/test-transfer,sha256=e
81
81
  celldetective/models/segmentation_generic/blank,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
82
82
  celldetective/models/segmentation_targets/blank,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
83
83
  celldetective/models/signal_detection/blank,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
84
+ celldetective/models/signal_detection/NucCond/classification_loss.png,sha256=iiZUE9cNm8MaeIHEKKxTeNSZAZi5_UgRD5GzmAPYfWk,15127
85
+ celldetective/models/signal_detection/NucCond/classifier.h5,sha256=edsY5wxTUtHICrNAIyLZYgMUfoZJLTU4W5U_lNASznk,8536576
86
+ celldetective/models/signal_detection/NucCond/config_input.json,sha256=6OSt4t5cq0VKsxglJF6KbcSlFsTatLd6J2RPDnkGxho,197
87
+ celldetective/models/signal_detection/NucCond/log_classifier.csv,sha256=d1gX2DkQPc8qFJIFFZvFPkpQuAEPQHD_3IbcgU0cruI,24955
88
+ celldetective/models/signal_detection/NucCond/log_regressor.csv,sha256=_Q5vt6V9Z_vZEmgM3pXgPBKUQlClNIRHDRt7iWry6dY,39505
89
+ celldetective/models/signal_detection/NucCond/regression_loss.png,sha256=iiZUE9cNm8MaeIHEKKxTeNSZAZi5_UgRD5GzmAPYfWk,15127
90
+ celldetective/models/signal_detection/NucCond/regressor.h5,sha256=cwbrYA83hiPFPa4kX5dLbD3CR0iZR_5tqF12wgy_nwM,8524608
91
+ celldetective/models/signal_detection/NucCond/scores.npy,sha256=i5pB9u-WlALazRlvC4JKraSBPpcHYmgPy-3RmxDFXIs,17018045
92
+ celldetective/models/signal_detection/NucCond/test_confusion_matrix.png,sha256=8AxrYmmIxvEWiYXseYuSIxfCFenXvF48jmaVDEhJPWc,89815
93
+ celldetective/models/signal_detection/NucCond/test_regression.png,sha256=yotitWM4xfbVSE_heem0jY6LgkMo81GtlzeuGm3foKc,80188
94
+ celldetective/models/signal_detection/NucCond/validation_confusion_matrix.png,sha256=fElTDMs8FmcJUs0zwReZ35sd8PLvabJbpcV_82ajapk,85586
95
+ celldetective/models/signal_detection/NucCond/validation_regression.png,sha256=_27_LeFoCNvdv-1j4eLADuSyCYeJL8ncWAQbitc5s84,60411
84
96
  celldetective/models/tracking_configs/biased_motion.json,sha256=RZa-ZCP4jbFtMVz-M4lf1LtqmAvBrUxIhhudNiU1jtY,1782
85
97
  celldetective/models/tracking_configs/mcf7.json,sha256=iDjb8i6yxs0GleW39dvY3Ld5bZJatlXJrwI8PG3vCT0,1780
86
98
  celldetective/models/tracking_configs/no_z_motion.json,sha256=b4RWOJ0w6Y2e0vJYwKMyOexedeL2eA8fEDbSzbNmB4A,2702
@@ -106,9 +118,9 @@ tests/test_segmentation.py,sha256=k1b_zIZdlytEdJcHjAUQEO3gTBAHtv5WvrwQN2xD4kc,34
106
118
  tests/test_signals.py,sha256=No4cah6KxplhDcKXnU8RrA7eDla4hWw6ccf7xGnBokU,3599
107
119
  tests/test_tracking.py,sha256=8hebWSqEIuttD1ABn-6dKCT7EXKRR7-4RwyFWi1WPFo,8800
108
120
  tests/test_utils.py,sha256=NKRCAC1d89aBK5cWjTb7-pInYow901RrT-uBlIdz4KI,3692
109
- celldetective-1.3.7.post2.dist-info/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
110
- celldetective-1.3.7.post2.dist-info/METADATA,sha256=yQ90jJFslqc6fKQXMmPSMz2AjUrYitWm26KEGA_PxzA,10753
111
- celldetective-1.3.7.post2.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
112
- celldetective-1.3.7.post2.dist-info/entry_points.txt,sha256=2NU6_EOByvPxqBbCvjwxlVlvnQreqZ3BKRCVIKEv3dg,62
113
- celldetective-1.3.7.post2.dist-info/top_level.txt,sha256=6rsIKKfGMKgud7HPuATcpq6EhdXwcg_yknBVWn9x4C4,20
114
- celldetective-1.3.7.post2.dist-info/RECORD,,
121
+ celldetective-1.3.8.post1.dist-info/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
122
+ celldetective-1.3.8.post1.dist-info/METADATA,sha256=AZ3aJ7r1LW6e83-wvt7fTY0QqhlWrGYvpWKd8pUebno,10753
123
+ celldetective-1.3.8.post1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
124
+ celldetective-1.3.8.post1.dist-info/entry_points.txt,sha256=2NU6_EOByvPxqBbCvjwxlVlvnQreqZ3BKRCVIKEv3dg,62
125
+ celldetective-1.3.8.post1.dist-info/top_level.txt,sha256=6rsIKKfGMKgud7HPuATcpq6EhdXwcg_yknBVWn9x4C4,20
126
+ celldetective-1.3.8.post1.dist-info/RECORD,,