celldetective 1.3.7.post1__py3-none-any.whl → 1.3.7.post2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,327 @@
1
+ from multiprocessing import Process
2
+ import time
3
+ import datetime
4
+ import os
5
+ import json
6
+ from celldetective.io import extract_position_name, locate_segmentation_model, auto_load_number_of_frames, load_frames, _check_label_dims, _load_frames_to_segment
7
+ from celldetective.utils import _rescale_labels, _segment_image_with_stardist_model, _segment_image_with_cellpose_model, _prep_stardist_model, _prep_cellpose_model, _get_normalize_kwargs_from_config, extract_experiment_channels, _estimate_scale_factor, _extract_channel_indices_from_config, ConfigSectionMap, _extract_nbr_channels_from_config, _get_img_num_per_channel
8
+ from pathlib import Path, PurePath
9
+ from glob import glob
10
+ from shutil import rmtree
11
+ from tqdm import tqdm
12
+ import numpy as np
13
+ from csbdeep.io import save_tiff_imagej_compatible
14
+ from celldetective.segmentation import segment_frame_from_thresholds
15
+ import gc
16
+ from art import tprint
17
+
18
+ import concurrent.futures
19
+
20
+ class BaseSegmentProcess(Process):
21
+
22
+ def __init__(self, queue=None, process_args=None, *args, **kwargs):
23
+
24
+ super().__init__(*args, **kwargs)
25
+
26
+ self.queue = queue
27
+
28
+ if process_args is not None:
29
+ for key, value in process_args.items():
30
+ setattr(self, key, value)
31
+
32
+ tprint("Segment")
33
+
34
+ # Experiment
35
+ self.locate_experiment_config()
36
+
37
+ print(f"Position: {extract_position_name(self.pos)}...")
38
+ print("Configuration file: ",self.config)
39
+ print(f"Population: {self.mode}...")
40
+
41
+ self.extract_experiment_parameters()
42
+ self.detect_movie_length()
43
+ self.write_folders()
44
+
45
+ def write_folders(self):
46
+
47
+ self.mode = self.mode.lower()
48
+
49
+ if self.mode=="target" or self.mode=="targets":
50
+ self.label_folder = "labels_targets"
51
+ elif self.mode=="effector" or self.mode=="effectors":
52
+ self.label_folder = "labels_effectors"
53
+
54
+ if os.path.exists(self.pos+self.label_folder):
55
+ print('Erasing the previous labels folder...')
56
+ rmtree(self.pos+self.label_folder)
57
+ os.mkdir(self.pos+self.label_folder)
58
+ print(f'Labels folder successfully generated...')
59
+
60
+
61
+ def extract_experiment_parameters(self):
62
+
63
+ self.spatial_calibration = float(ConfigSectionMap(self.config,"MovieSettings")["pxtoum"])
64
+ self.len_movie = float(ConfigSectionMap(self.config,"MovieSettings")["len_movie"])
65
+ self.movie_prefix = ConfigSectionMap(self.config,"MovieSettings")["movie_prefix"]
66
+ self.nbr_channels = _extract_nbr_channels_from_config(self.config)
67
+ self.channel_names, self.channel_indices = extract_experiment_channels(self.config)
68
+
69
+ def locate_experiment_config(self):
70
+
71
+ parent1 = Path(self.pos).parent
72
+ expfolder = parent1.parent
73
+ self.config = PurePath(expfolder,Path("config.ini"))
74
+
75
+ if not os.path.exists(self.config):
76
+ print('The configuration file for the experiment could not be located. Abort.')
77
+ self.abort_process()
78
+
79
+ def detect_movie_length(self):
80
+
81
+ try:
82
+ self.file = glob(self.pos+f"movie/{self.movie_prefix}*.tif")[0]
83
+ except Exception as e:
84
+ print(f'Error {e}.\nMovie could not be found. Check the prefix.')
85
+ self.abort_process()
86
+
87
+ len_movie_auto = auto_load_number_of_frames(self.file)
88
+ if len_movie_auto is not None:
89
+ self.len_movie = len_movie_auto
90
+
91
+ def end_process(self):
92
+
93
+ self.terminate()
94
+ self.queue.put("finished")
95
+
96
+ def abort_process(self):
97
+
98
+ self.terminate()
99
+ self.queue.put("error")
100
+
101
+
102
+ class SegmentCellDLProcess(BaseSegmentProcess):
103
+
104
+ def __init__(self, *args, **kwargs):
105
+
106
+ super().__init__(*args, **kwargs)
107
+
108
+ self.check_gpu()
109
+
110
+ # Model
111
+ self.locate_model_path()
112
+ self.extract_model_input_parameters()
113
+ self.detect_channels()
114
+ self.detect_rescaling()
115
+
116
+ self.write_log()
117
+
118
+ self.sum_done = 0
119
+ self.t0 = time.time()
120
+
121
+ def extract_model_input_parameters(self):
122
+
123
+ self.required_channels = self.input_config["channels"]
124
+ self.normalize_kwargs = _get_normalize_kwargs_from_config(self.input_config)
125
+
126
+ self.model_type = self.input_config['model_type']
127
+ self.required_spatial_calibration = self.input_config['spatial_calibration']
128
+ print(f'Spatial calibration expected by the model: {self.required_spatial_calibration}...')
129
+
130
+ if self.model_type=='cellpose':
131
+ self.diameter = self.input_config['diameter']
132
+ self.cellprob_threshold = self.input_config['cellprob_threshold']
133
+ self.flow_threshold = self.input_config['flow_threshold']
134
+
135
+ def write_log(self):
136
+
137
+ log=f'segmentation model: {self.model_name}\n'
138
+ with open(self.pos+f'log_{self.mode}.txt', 'a') as f:
139
+ f.write(f'{datetime.datetime.now()} SEGMENT \n')
140
+ f.write(log)
141
+
142
+ def detect_channels(self):
143
+
144
+ self.channel_indices = _extract_channel_indices_from_config(self.config, self.required_channels)
145
+ print(f'Required channels: {self.required_channels} located at channel indices {self.channel_indices}.')
146
+ self.img_num_channels = _get_img_num_per_channel(self.channel_indices, int(self.len_movie), self.nbr_channels)
147
+
148
+ def detect_rescaling(self):
149
+
150
+ self.scale = _estimate_scale_factor(self.spatial_calibration, self.required_spatial_calibration)
151
+ print(f"Scale: {self.scale}...")
152
+
153
+ def locate_model_path(self):
154
+
155
+ self.model_complete_path = locate_segmentation_model(self.model_name)
156
+ if self.model_complete_path is None:
157
+ print('Model could not be found. Abort.')
158
+ self.abort_process()
159
+ else:
160
+ print(f'Model path: {self.model_complete_path}...')
161
+
162
+ if not os.path.exists(self.model_complete_path+"config_input.json"):
163
+ print('The configuration for the inputs to the model could not be located. Abort.')
164
+ self.abort_process()
165
+
166
+ with open(self.model_complete_path+"config_input.json") as config_file:
167
+ self.input_config = json.load(config_file)
168
+
169
+ def check_gpu(self):
170
+
171
+ if not self.use_gpu:
172
+ os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
173
+
174
+ def run(self):
175
+
176
+ try:
177
+
178
+ if self.model_type=='stardist':
179
+ model, scale_model = _prep_stardist_model(self.model_name, Path(self.model_complete_path).parent, use_gpu=self.use_gpu, scale=self.scale)
180
+
181
+ elif self.model_type=='cellpose':
182
+ model, scale_model = _prep_cellpose_model(self.model_name, self.model_complete_path, use_gpu=self.use_gpu, n_channels=len(self.required_channels), scale=self.scale)
183
+
184
+ for t in tqdm(range(self.len_movie),desc="frame"):
185
+
186
+ f = _load_frames_to_segment(self.file, self.img_num_channels[:,t], scale_model=scale_model, normalize_kwargs=self.normalize_kwargs)
187
+
188
+ if self.model_type=="stardist":
189
+ Y_pred = _segment_image_with_stardist_model(f, model=model, return_details=False)
190
+
191
+ elif self.model_type=="cellpose":
192
+ Y_pred = _segment_image_with_cellpose_model(f, model=model, diameter=self.diameter, cellprob_threshold=self.cellprob_threshold, flow_threshold=self.flow_threshold)
193
+
194
+ if self.scale is not None:
195
+ Y_pred = _rescale_labels(Y_pred, scale_model=scale_model)
196
+
197
+ Y_pred = _check_label_dims(Y_pred, file=self.file)
198
+
199
+ save_tiff_imagej_compatible(self.pos+os.sep.join([self.label_folder,f"{str(t).zfill(4)}.tif"]), Y_pred, axes='YX')
200
+
201
+ del f;
202
+ del Y_pred;
203
+ gc.collect()
204
+
205
+ # Send signal for progress bar
206
+ self.sum_done+=1/self.len_movie*100
207
+ mean_exec_per_step = (time.time() - self.t0) / (t+1)
208
+ pred_time = (self.len_movie - (t+1)) * mean_exec_per_step
209
+ self.queue.put([self.sum_done, pred_time])
210
+
211
+ except Exception as e:
212
+ print(e)
213
+
214
+ try:
215
+ del model
216
+ except:
217
+ pass
218
+
219
+ gc.collect()
220
+
221
+ # Send end signal
222
+ self.queue.put("finished")
223
+ self.queue.close()
224
+
225
+
226
+ class SegmentCellThresholdProcess(BaseSegmentProcess):
227
+
228
+ def __init__(self, *args, **kwargs):
229
+
230
+ super().__init__(*args, **kwargs)
231
+
232
+ self.equalize = False
233
+
234
+ # Model
235
+ self.load_threshold_config()
236
+ self.extract_threshold_parameters()
237
+ self.detect_channels()
238
+ self.prepare_equalize()
239
+
240
+ self.write_log()
241
+
242
+ self.sum_done = 0
243
+ self.t0 = time.time()
244
+
245
+ def prepare_equalize(self):
246
+
247
+ if self.equalize:
248
+ f_reference = load_frames(self.img_num_channels[:,self.equalize_time], self.file, scale=None, normalize_input=False)
249
+ f_reference = f_reference[:,:,self.threshold_instructions['target_channel']]
250
+ else:
251
+ f_reference = None
252
+
253
+ self.threshold_instructions.update({'equalize_reference': f_reference})
254
+
255
+ def load_threshold_config(self):
256
+
257
+ if os.path.exists(self.threshold_instructions):
258
+ with open(self.threshold_instructions, 'r') as f:
259
+ self.threshold_instructions = json.load(f)
260
+ else:
261
+ print('The configuration path is not valid. Abort.')
262
+ self.abort_process()
263
+
264
+ def extract_threshold_parameters(self):
265
+
266
+ self.required_channels = [self.threshold_instructions['target_channel']]
267
+ if 'equalize_reference' in self.threshold_instructions:
268
+ self.equalize, self.equalize_time = self.threshold_instructions['equalize_reference']
269
+
270
+ def write_log(self):
271
+
272
+ log=f'Threshold segmentation: {self.threshold_instructions}\n'
273
+ with open(self.pos+f'log_{self.mode}.txt', 'a') as f:
274
+ f.write(f'{datetime.datetime.now()} SEGMENT \n')
275
+ f.write(log)
276
+
277
+ def detect_channels(self):
278
+
279
+ self.channel_indices = _extract_channel_indices_from_config(self.config, self.required_channels)
280
+ print(f'Required channels: {self.required_channels} located at channel indices {self.channel_indices}.')
281
+
282
+ self.img_num_channels = _get_img_num_per_channel(np.arange(self.nbr_channels), self.len_movie, self.nbr_channels)
283
+ self.threshold_instructions.update({'target_channel': self.channel_indices[0]})
284
+ self.threshold_instructions.update({'channel_names': self.channel_names})
285
+
286
+ def parallel_job(self, indices):
287
+
288
+ try:
289
+
290
+ for t in tqdm(indices,desc="frame"): #for t in tqdm(range(self.len_movie),desc="frame"):
291
+
292
+ # Load channels at time t
293
+ f = load_frames(self.img_num_channels[:,t], self.file, scale=None, normalize_input=False)
294
+ mask = segment_frame_from_thresholds(f, **self.threshold_instructions)
295
+ save_tiff_imagej_compatible(os.sep.join([self.pos, self.label_folder, f"{str(t).zfill(4)}.tif"]), mask.astype(np.uint16), axes='YX')
296
+
297
+ del f;
298
+ del mask;
299
+ gc.collect()
300
+
301
+ # Send signal for progress bar
302
+ self.sum_done+=1/self.len_movie*100
303
+ mean_exec_per_step = (time.time() - self.t0) / (self.sum_done*self.len_movie / 100 + 1)
304
+ pred_time = (self.len_movie - (self.sum_done*self.len_movie / 100 + 1)) * mean_exec_per_step
305
+ self.queue.put([self.sum_done, pred_time])
306
+
307
+ except Exception as e:
308
+ print(e)
309
+
310
+ return
311
+
312
+ def run(self):
313
+
314
+ self.indices = list(range(self.img_num_channels.shape[1]))
315
+ chunks = np.array_split(self.indices, self.n_threads)
316
+
317
+ with concurrent.futures.ThreadPoolExecutor(max_workers=self.n_threads) as executor:
318
+ results = results = executor.map(self.parallel_job, chunks) #list(map(lambda x: executor.submit(self.parallel_job, x), chunks))
319
+ try:
320
+ for i,return_value in enumerate(results):
321
+ print(f"Thread {i} output check: ",return_value)
322
+ except Exception as e:
323
+ print("Exception: ", e)
324
+
325
+ # Send end signal
326
+ self.queue.put("finished")
327
+ self.queue.close()
@@ -0,0 +1,298 @@
1
+ from multiprocessing import Process
2
+ import time
3
+ import datetime
4
+ import os
5
+ import json
6
+ from celldetective.io import auto_load_number_of_frames, _load_frames_to_measure, locate_labels
7
+ from celldetective.utils import extract_experiment_channels, ConfigSectionMap, _get_img_num_per_channel, _mask_intensity_measurements
8
+ from pathlib import Path, PurePath
9
+ from glob import glob
10
+ from tqdm import tqdm
11
+ import numpy as np
12
+ import gc
13
+ import concurrent.futures
14
+ import datetime
15
+ import os
16
+ import json
17
+ from celldetective.io import interpret_tracking_configuration
18
+ from celldetective.utils import extract_experiment_channels
19
+ from celldetective.measure import drop_tonal_features, measure_features
20
+ from celldetective.tracking import track
21
+ import pandas as pd
22
+ from natsort import natsorted
23
+ from art import tprint
24
+
25
+
26
+ class TrackingProcess(Process):
27
+
28
+ def __init__(self, queue=None, process_args=None, *args, **kwargs):
29
+
30
+ super().__init__(*args, **kwargs)
31
+
32
+ self.queue = queue
33
+
34
+ if process_args is not None:
35
+ for key, value in process_args.items():
36
+ setattr(self, key, value)
37
+
38
+
39
+ tprint("Track")
40
+ self.timestep_dataframes = []
41
+
42
+ # Experiment
43
+ self.prepare_folders()
44
+
45
+ self.locate_experiment_config()
46
+ self.extract_experiment_parameters()
47
+ self.read_tracking_instructions()
48
+ self.detect_movie_and_labels()
49
+ self.detect_channels()
50
+
51
+ self.write_log()
52
+
53
+ if not self.btrack_option:
54
+ self.features = []
55
+ self.channel_names = None
56
+ self.haralick_options = None
57
+
58
+ self.sum_done = 0
59
+ self.t0 = time.time()
60
+
61
+ def read_tracking_instructions(self):
62
+
63
+ instr_path = PurePath(self.expfolder,Path(f"{self.instruction_file}"))
64
+ if os.path.exists(instr_path):
65
+ print(f"Tracking instructions for the {self.mode} population have been successfully loaded...")
66
+ with open(instr_path, 'r') as f:
67
+ self.instructions = json.load(f)
68
+
69
+ self.btrack_config = interpret_tracking_configuration(self.instructions['btrack_config_path'])
70
+
71
+ if 'features' in self.instructions:
72
+ self.features = self.instructions['features']
73
+ else:
74
+ self.features = None
75
+
76
+ if 'mask_channels' in self.instructions:
77
+ self.mask_channels = self.instructions['mask_channels']
78
+ else:
79
+ self.mask_channels = None
80
+
81
+ if 'haralick_options' in self.instructions:
82
+ self.haralick_options = self.instructions['haralick_options']
83
+ else:
84
+ self.haralick_options = None
85
+
86
+ if 'post_processing_options' in self.instructions:
87
+ self.post_processing_options = self.instructions['post_processing_options']
88
+ else:
89
+ self.post_processing_options = None
90
+
91
+ self.btrack_option = True
92
+ if 'btrack_option' in self.instructions:
93
+ self.btrack_option = self.instructions['btrack_option']
94
+ self.search_range = None
95
+ if 'search_range' in self.instructions:
96
+ self.search_range = self.instructions['search_range']
97
+ self.memory = None
98
+ if 'memory' in self.instructions:
99
+ self.memory = self.instructions['memory']
100
+ else:
101
+ print('Tracking instructions could not be located... Using a standard bTrack motion model instead...')
102
+ self.btrack_config = interpret_tracking_configuration(None)
103
+ self.features = None
104
+ self.mask_channels = None
105
+ self.haralick_options = None
106
+ self.post_processing_options = None
107
+ self.btrack_option = True
108
+ self.memory = None
109
+ self.search_range = None
110
+
111
+ if self.features is None:
112
+ self.features = []
113
+
114
+ def detect_channels(self):
115
+ self.img_num_channels = _get_img_num_per_channel(self.channel_indices, self.len_movie, self.nbr_channels)
116
+
117
+ def write_log(self):
118
+
119
+ features_log=f'features: {self.features}'
120
+ mask_channels_log=f'mask_channels: {self.mask_channels}'
121
+ haralick_option_log=f'haralick_options: {self.haralick_options}'
122
+ post_processing_option_log=f'post_processing_options: {self.post_processing_options}'
123
+ log_list=[features_log, mask_channels_log, haralick_option_log, post_processing_option_log]
124
+ log='\n'.join(log_list)
125
+
126
+ with open(self.pos+f'log_{self.mode}.txt', 'a') as f:
127
+ f.write(f'{datetime.datetime.now()} TRACK \n')
128
+ f.write(log+"\n")
129
+
130
+ def prepare_folders(self):
131
+
132
+ if not os.path.exists(self.pos+"output"):
133
+ os.mkdir(self.pos+"output")
134
+
135
+ if not os.path.exists(self.pos+os.sep.join(["output","tables"])):
136
+ os.mkdir(self.pos+os.sep.join(["output","tables"]))
137
+
138
+ if self.mode.lower()=="target" or self.mode.lower()=="targets":
139
+ self.label_folder = "labels_targets"
140
+ self.instruction_file = os.sep.join(["configs", "tracking_instructions_targets.json"])
141
+ self.napari_name = "napari_target_trajectories.npy"
142
+ self.table_name = "trajectories_targets.csv"
143
+
144
+ elif self.mode.lower()=="effector" or self.mode.lower()=="effectors":
145
+ self.label_folder = "labels_effectors"
146
+ self.instruction_file = os.sep.join(["configs","tracking_instructions_effectors.json"])
147
+ self.napari_name = "napari_effector_trajectories.npy"
148
+ self.table_name = "trajectories_effectors.csv"
149
+
150
+ def extract_experiment_parameters(self):
151
+
152
+ self.movie_prefix = ConfigSectionMap(self.config,"MovieSettings")["movie_prefix"]
153
+ self.spatial_calibration = float(ConfigSectionMap(self.config,"MovieSettings")["pxtoum"])
154
+ self.time_calibration = float(ConfigSectionMap(self.config,"MovieSettings")["frametomin"])
155
+ self.len_movie = float(ConfigSectionMap(self.config,"MovieSettings")["len_movie"])
156
+ self.shape_x = int(ConfigSectionMap(self.config,"MovieSettings")["shape_x"])
157
+ self.shape_y = int(ConfigSectionMap(self.config,"MovieSettings")["shape_y"])
158
+
159
+ self.channel_names, self.channel_indices = extract_experiment_channels(self.config)
160
+ self.nbr_channels = len(self.channel_names)
161
+
162
+ def locate_experiment_config(self):
163
+
164
+ parent1 = Path(self.pos).parent
165
+ self.expfolder = parent1.parent
166
+ self.config = PurePath(self.expfolder,Path("config.ini"))
167
+
168
+ if not os.path.exists(self.config):
169
+ print('The configuration file for the experiment was not found...')
170
+ self.abort_process()
171
+
172
+ def detect_movie_and_labels(self):
173
+
174
+ self.label_path = natsorted(glob(self.pos+f"{self.label_folder}"+os.sep+"*.tif"))
175
+ if len(self.label_path)>0:
176
+ print(f"Found {len(self.label_path)} segmented frames...")
177
+ else:
178
+ print(f"No segmented frames have been found. Please run segmentation first. Abort...")
179
+ self.abort_process()
180
+
181
+ try:
182
+ self.file = glob(self.pos+f"movie/{self.movie_prefix}*.tif")[0]
183
+ except IndexError:
184
+ self.file = None
185
+ self.haralick_option = None
186
+ self.features = drop_tonal_features(self.features)
187
+ print('Movie could not be found. Check the prefix.')
188
+
189
+ len_movie_auto = auto_load_number_of_frames(self.file)
190
+ if len_movie_auto is not None:
191
+ self.len_movie = len_movie_auto
192
+
193
+ def parallel_job(self, indices):
194
+
195
+ props = []
196
+
197
+ try:
198
+
199
+ for t in tqdm(indices,desc="frame"):
200
+
201
+ # Load channels at time t
202
+ img = _load_frames_to_measure(self.file, indices=self.img_num_channels[:,t])
203
+ lbl = locate_labels(self.pos, population=self.mode, frames=t)
204
+ if lbl is None:
205
+ continue
206
+
207
+ df_props = measure_features(img, lbl, features = self.features+['centroid'], border_dist=None,
208
+ channels=self.channel_names, haralick_options=self.haralick_options, verbose=False)
209
+ df_props.rename(columns={'centroid-1': 'x', 'centroid-0': 'y'},inplace=True)
210
+ df_props['t'] = int(t)
211
+
212
+ props.append(df_props)
213
+
214
+ self.sum_done+=1/self.len_movie*50
215
+ mean_exec_per_step = (time.time() - self.t0) / (self.sum_done*self.len_movie / 50 + 1)
216
+ pred_time = (self.len_movie - (self.sum_done*self.len_movie / 50 + 1)) * mean_exec_per_step + 30
217
+ self.queue.put([self.sum_done, pred_time])
218
+
219
+
220
+ except Exception as e:
221
+ print(e)
222
+
223
+ return props
224
+
225
+ def run(self):
226
+
227
+ self.indices = list(range(self.img_num_channels.shape[1]))
228
+ chunks = np.array_split(self.indices, self.n_threads)
229
+
230
+ self.timestep_dataframes = []
231
+ with concurrent.futures.ThreadPoolExecutor(max_workers=self.n_threads) as executor:
232
+ results = executor.map(self.parallel_job, chunks)
233
+ try:
234
+ for i,return_value in enumerate(results):
235
+ print(f'Thread {i} completed...')
236
+ #print(f"Thread {i} output check: ",return_value)
237
+ self.timestep_dataframes.extend(return_value)
238
+ except Exception as e:
239
+ print("Exception: ", e)
240
+
241
+ print('Features successfully measured...')
242
+
243
+ df = pd.concat(self.timestep_dataframes)
244
+ df.reset_index(inplace=True, drop=True)
245
+ df = _mask_intensity_measurements(df, self.mask_channels)
246
+
247
+ # do tracking
248
+ if self.btrack_option:
249
+ tracker = 'bTrack'
250
+ else:
251
+ tracker = 'trackpy'
252
+
253
+ # do tracking
254
+ trajectories, napari_data = track(None,
255
+ configuration=self.btrack_config,
256
+ objects=df,
257
+ spatial_calibration=self.spatial_calibration,
258
+ channel_names=self.channel_names,
259
+ return_napari_data=True,
260
+ optimizer_options = {'tm_lim': int(12e4)},
261
+ track_kwargs={'step_size': 100},
262
+ clean_trajectories_kwargs=self.post_processing_options,
263
+ volume=(self.shape_x, self.shape_y),
264
+ btrack_option=self.btrack_option,
265
+ search_range=self.search_range,
266
+ memory=self.memory,
267
+ )
268
+ print(f"Tracking successfully performed...")
269
+
270
+ # out trajectory table, create POSITION_X_um, POSITION_Y_um, TIME_min (new ones)
271
+ # Save napari data
272
+ np.save(self.pos+os.sep.join(['output', 'tables', self.napari_name]), napari_data, allow_pickle=True)
273
+
274
+ trajectories.to_csv(self.pos+os.sep.join(['output', 'tables', self.table_name]), index=False)
275
+ print(f"Trajectory table successfully exported in {os.sep.join(['output', 'tables'])}...")
276
+
277
+ if os.path.exists(self.pos+os.sep.join(['output', 'tables', self.table_name.replace('.csv','.pkl')])):
278
+ os.remove(self.pos+os.sep.join(['output', 'tables', self.table_name.replace('.csv','.pkl')]))
279
+
280
+ del trajectories; del napari_data;
281
+ gc.collect()
282
+
283
+ # Send end signal
284
+ self.queue.put([100, 0])
285
+ time.sleep(1)
286
+
287
+ self.queue.put("finished")
288
+ self.queue.close()
289
+
290
+ def end_process(self):
291
+
292
+ self.terminate()
293
+ self.queue.put("finished")
294
+
295
+ def abort_process(self):
296
+
297
+ self.terminate()
298
+ self.queue.put("error")