celldetective 1.3.4__py3-none-any.whl → 1.3.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- celldetective/_version.py +1 -1
- celldetective/events.py +10 -5
- celldetective/gui/classifier_widget.py +29 -4
- celldetective/gui/control_panel.py +3 -2
- celldetective/gui/generic_signal_plot.py +2 -6
- celldetective/gui/gui_utils.py +34 -6
- celldetective/gui/measurement_options.py +1 -30
- celldetective/gui/neighborhood_options.py +1 -1
- celldetective/gui/plot_signals_ui.py +3 -4
- celldetective/gui/process_block.py +8 -6
- celldetective/gui/signal_annotator.py +4 -2
- celldetective/gui/signal_annotator2.py +141 -191
- celldetective/gui/survival_ui.py +122 -33
- celldetective/gui/tableUI.py +26 -12
- celldetective/io.py +1059 -156
- celldetective/measure.py +151 -53
- celldetective/preprocessing.py +2 -2
- celldetective/relative_measurements.py +6 -9
- celldetective/scripts/measure_cells.py +13 -3
- celldetective/scripts/segment_cells.py +0 -1
- celldetective/signals.py +10 -7
- celldetective/tracking.py +52 -28
- celldetective/utils.py +23 -5
- {celldetective-1.3.4.dist-info → celldetective-1.3.5.dist-info}/METADATA +2 -2
- {celldetective-1.3.4.dist-info → celldetective-1.3.5.dist-info}/RECORD +29 -29
- {celldetective-1.3.4.dist-info → celldetective-1.3.5.dist-info}/LICENSE +0 -0
- {celldetective-1.3.4.dist-info → celldetective-1.3.5.dist-info}/WHEEL +0 -0
- {celldetective-1.3.4.dist-info → celldetective-1.3.5.dist-info}/entry_points.txt +0 -0
- {celldetective-1.3.4.dist-info → celldetective-1.3.5.dist-info}/top_level.txt +0 -0
celldetective/io.py
CHANGED
|
@@ -1,30 +1,65 @@
|
|
|
1
1
|
from natsort import natsorted
|
|
2
|
+
from PyQt5.QtWidgets import QMessageBox
|
|
2
3
|
from glob import glob
|
|
3
4
|
from tifffile import imread, TiffFile
|
|
4
5
|
import numpy as np
|
|
5
6
|
import os
|
|
6
7
|
import pandas as pd
|
|
7
8
|
import napari
|
|
9
|
+
import json
|
|
10
|
+
|
|
8
11
|
import gc
|
|
9
12
|
from tqdm import tqdm
|
|
13
|
+
import threading
|
|
14
|
+
import concurrent.futures
|
|
15
|
+
|
|
10
16
|
from csbdeep.utils import normalize_mi_ma
|
|
17
|
+
from csbdeep.io import save_tiff_imagej_compatible
|
|
18
|
+
|
|
11
19
|
import skimage.io as skio
|
|
20
|
+
from skimage.measure import regionprops_table, label
|
|
21
|
+
|
|
12
22
|
from scipy.ndimage import zoom
|
|
13
23
|
from btrack.datasets import cell_config
|
|
14
24
|
from magicgui import magicgui
|
|
15
|
-
from csbdeep.io import save_tiff_imagej_compatible
|
|
16
25
|
from pathlib import Path, PurePath
|
|
17
26
|
from shutil import copyfile, rmtree
|
|
18
|
-
|
|
19
|
-
import
|
|
20
|
-
from
|
|
21
|
-
|
|
22
|
-
from celldetective.utils import interpolate_nan
|
|
23
|
-
import concurrent.futures
|
|
24
|
-
from tifffile import imwrite
|
|
27
|
+
|
|
28
|
+
from celldetective.utils import ConfigSectionMap, extract_experiment_channels, _extract_labels_from_config, get_zenodo_files, download_zenodo_file, interpolate_nan
|
|
29
|
+
from celldetective.utils import _estimate_scale_factor, _extract_channel_indices_from_config, _extract_channel_indices, _extract_nbr_channels_from_config, _get_img_num_per_channel, normalize_per_channel
|
|
30
|
+
|
|
25
31
|
from stardist import fill_label_holes
|
|
26
32
|
|
|
33
|
+
|
|
27
34
|
def extract_experiment_from_well(well_path):
|
|
35
|
+
|
|
36
|
+
"""
|
|
37
|
+
Extracts the experiment directory path from a given well directory path.
|
|
38
|
+
|
|
39
|
+
Parameters
|
|
40
|
+
----------
|
|
41
|
+
well_path : str
|
|
42
|
+
The file system path to a well directory. The path should end with the well folder,
|
|
43
|
+
but it does not need to include a trailing separator.
|
|
44
|
+
|
|
45
|
+
Returns
|
|
46
|
+
-------
|
|
47
|
+
str
|
|
48
|
+
The path to the experiment directory, which is assumed to be two levels above the well directory.
|
|
49
|
+
|
|
50
|
+
Notes
|
|
51
|
+
-----
|
|
52
|
+
- This function expects the well directory to be organized such that the experiment directory is
|
|
53
|
+
two levels above it in the file system hierarchy.
|
|
54
|
+
- If the input path does not end with a file separator (`os.sep`), one is appended before processing.
|
|
55
|
+
|
|
56
|
+
Example
|
|
57
|
+
-------
|
|
58
|
+
>>> well_path = "/path/to/experiment/plate/well"
|
|
59
|
+
>>> extract_experiment_from_well(well_path)
|
|
60
|
+
'/path/to/experiment'
|
|
61
|
+
"""
|
|
62
|
+
|
|
28
63
|
if not well_path.endswith(os.sep):
|
|
29
64
|
well_path += os.sep
|
|
30
65
|
exp_path_blocks = well_path.split(os.sep)[:-2]
|
|
@@ -32,6 +67,35 @@ def extract_experiment_from_well(well_path):
|
|
|
32
67
|
return experiment
|
|
33
68
|
|
|
34
69
|
def extract_well_from_position(pos_path):
|
|
70
|
+
|
|
71
|
+
"""
|
|
72
|
+
Extracts the well directory path from a given position directory path.
|
|
73
|
+
|
|
74
|
+
Parameters
|
|
75
|
+
----------
|
|
76
|
+
pos_path : str
|
|
77
|
+
The file system path to a position directory. The path should end with the position folder,
|
|
78
|
+
but it does not need to include a trailing separator.
|
|
79
|
+
|
|
80
|
+
Returns
|
|
81
|
+
-------
|
|
82
|
+
str
|
|
83
|
+
The path to the well directory, which is assumed to be two levels above the position directory,
|
|
84
|
+
with a trailing separator appended.
|
|
85
|
+
|
|
86
|
+
Notes
|
|
87
|
+
-----
|
|
88
|
+
- This function expects the position directory to be organized such that the well directory is
|
|
89
|
+
two levels above it in the file system hierarchy.
|
|
90
|
+
- If the input path does not end with a file separator (`os.sep`), one is appended before processing.
|
|
91
|
+
|
|
92
|
+
Example
|
|
93
|
+
-------
|
|
94
|
+
>>> pos_path = "/path/to/experiment/plate/well/position"
|
|
95
|
+
>>> extract_well_from_position(pos_path)
|
|
96
|
+
'/path/to/experiment/plate/well/'
|
|
97
|
+
"""
|
|
98
|
+
|
|
35
99
|
if not pos_path.endswith(os.sep):
|
|
36
100
|
pos_path += os.sep
|
|
37
101
|
well_path_blocks = pos_path.split(os.sep)[:-2]
|
|
@@ -39,14 +103,92 @@ def extract_well_from_position(pos_path):
|
|
|
39
103
|
return well_path
|
|
40
104
|
|
|
41
105
|
def extract_experiment_from_position(pos_path):
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
106
|
+
|
|
107
|
+
"""
|
|
108
|
+
Extracts the experiment directory path from a given position directory path.
|
|
109
|
+
|
|
110
|
+
Parameters
|
|
111
|
+
----------
|
|
112
|
+
pos_path : str
|
|
113
|
+
The file system path to a position directory. The path should end with the position folder,
|
|
114
|
+
but it does not need to include a trailing separator.
|
|
115
|
+
|
|
116
|
+
Returns
|
|
117
|
+
-------
|
|
118
|
+
str
|
|
119
|
+
The path to the experiment directory, which is assumed to be three levels above the position directory.
|
|
120
|
+
|
|
121
|
+
Notes
|
|
122
|
+
-----
|
|
123
|
+
- This function expects the position directory to be organized hierarchically such that the experiment directory
|
|
124
|
+
is three levels above it in the file system hierarchy.
|
|
125
|
+
- If the input path does not end with a file separator (`os.sep`), one is appended before processing.
|
|
126
|
+
|
|
127
|
+
Example
|
|
128
|
+
-------
|
|
129
|
+
>>> pos_path = "/path/to/experiment/plate/well/position"
|
|
130
|
+
>>> extract_experiment_from_position(pos_path)
|
|
131
|
+
'/path/to/experiment'
|
|
132
|
+
"""
|
|
133
|
+
|
|
134
|
+
pos_path = pos_path.replace(os.sep, '/')
|
|
135
|
+
if not pos_path.endswith('/'):
|
|
136
|
+
pos_path += '/'
|
|
137
|
+
exp_path_blocks = pos_path.split('/')[:-3]
|
|
45
138
|
experiment = os.sep.join(exp_path_blocks)
|
|
139
|
+
|
|
46
140
|
return experiment
|
|
47
141
|
|
|
48
142
|
def collect_experiment_metadata(pos_path=None, well_path=None):
|
|
49
143
|
|
|
144
|
+
"""
|
|
145
|
+
Collects and organizes metadata for an experiment based on a given position or well directory path.
|
|
146
|
+
|
|
147
|
+
Parameters
|
|
148
|
+
----------
|
|
149
|
+
pos_path : str, optional
|
|
150
|
+
The file system path to a position directory. If provided, it will be used to extract metadata.
|
|
151
|
+
This parameter takes precedence over `well_path`.
|
|
152
|
+
well_path : str, optional
|
|
153
|
+
The file system path to a well directory. If `pos_path` is not provided, this path will be used to extract metadata.
|
|
154
|
+
|
|
155
|
+
Returns
|
|
156
|
+
-------
|
|
157
|
+
dict
|
|
158
|
+
A dictionary containing the following metadata:
|
|
159
|
+
- `"pos_path"`: The path to the position directory (or `None` if not provided).
|
|
160
|
+
- `"position"`: The same as `pos_path`.
|
|
161
|
+
- `"pos_name"`: The name of the position (or `0` if `pos_path` is not provided).
|
|
162
|
+
- `"well_path"`: The path to the well directory.
|
|
163
|
+
- `"well_name"`: The name of the well.
|
|
164
|
+
- `"well_nbr"`: The numerical identifier of the well.
|
|
165
|
+
- `"experiment"`: The path to the experiment directory.
|
|
166
|
+
- `"antibody"`: The antibody associated with the well.
|
|
167
|
+
- `"concentration"`: The concentration associated with the well.
|
|
168
|
+
- `"cell_type"`: The cell type associated with the well.
|
|
169
|
+
- `"pharmaceutical_agent"`: The pharmaceutical agent associated with the well.
|
|
170
|
+
|
|
171
|
+
Notes
|
|
172
|
+
-----
|
|
173
|
+
- At least one of `pos_path` or `well_path` must be provided.
|
|
174
|
+
- The function determines the experiment path by navigating the directory structure and extracts metadata for the
|
|
175
|
+
corresponding well and position.
|
|
176
|
+
- The metadata is derived using helper functions like `extract_experiment_from_position`, `extract_well_from_position`,
|
|
177
|
+
and `get_experiment_*` family of functions.
|
|
178
|
+
|
|
179
|
+
Example
|
|
180
|
+
-------
|
|
181
|
+
>>> pos_path = "/path/to/experiment/plate/well/position"
|
|
182
|
+
>>> metadata = collect_experiment_metadata(pos_path=pos_path)
|
|
183
|
+
>>> metadata["well_name"]
|
|
184
|
+
'W1'
|
|
185
|
+
|
|
186
|
+
>>> well_path = "/path/to/experiment/plate/well"
|
|
187
|
+
>>> metadata = collect_experiment_metadata(well_path=well_path)
|
|
188
|
+
>>> metadata["concentration"]
|
|
189
|
+
10.0
|
|
190
|
+
"""
|
|
191
|
+
|
|
50
192
|
if pos_path is not None:
|
|
51
193
|
if not pos_path.endswith(os.sep):
|
|
52
194
|
pos_path += os.sep
|
|
@@ -109,6 +251,38 @@ def get_experiment_wells(experiment):
|
|
|
109
251
|
|
|
110
252
|
def get_config(experiment):
|
|
111
253
|
|
|
254
|
+
"""
|
|
255
|
+
Retrieves the path to the configuration file for a given experiment.
|
|
256
|
+
|
|
257
|
+
Parameters
|
|
258
|
+
----------
|
|
259
|
+
experiment : str
|
|
260
|
+
The file system path to the experiment directory.
|
|
261
|
+
|
|
262
|
+
Returns
|
|
263
|
+
-------
|
|
264
|
+
str
|
|
265
|
+
The full path to the configuration file (`config.ini`) within the experiment directory.
|
|
266
|
+
|
|
267
|
+
Raises
|
|
268
|
+
------
|
|
269
|
+
AssertionError
|
|
270
|
+
If the `config.ini` file does not exist in the specified experiment directory.
|
|
271
|
+
|
|
272
|
+
Notes
|
|
273
|
+
-----
|
|
274
|
+
- The function ensures that the provided experiment path ends with the appropriate file separator (`os.sep`)
|
|
275
|
+
before appending `config.ini` to locate the configuration file.
|
|
276
|
+
- The configuration file is expected to be named `config.ini` and located at the root of the experiment directory.
|
|
277
|
+
|
|
278
|
+
Example
|
|
279
|
+
-------
|
|
280
|
+
>>> experiment = "/path/to/experiment"
|
|
281
|
+
>>> config_path = get_config(experiment)
|
|
282
|
+
>>> print(config_path)
|
|
283
|
+
'/path/to/experiment/config.ini'
|
|
284
|
+
"""
|
|
285
|
+
|
|
112
286
|
if not experiment.endswith(os.sep):
|
|
113
287
|
experiment += os.sep
|
|
114
288
|
|
|
@@ -120,7 +294,42 @@ def get_config(experiment):
|
|
|
120
294
|
|
|
121
295
|
def get_spatial_calibration(experiment):
|
|
122
296
|
|
|
123
|
-
|
|
297
|
+
"""
|
|
298
|
+
Retrieves the spatial calibration factor for an experiment.
|
|
299
|
+
|
|
300
|
+
Parameters
|
|
301
|
+
----------
|
|
302
|
+
experiment : str
|
|
303
|
+
The file system path to the experiment directory.
|
|
304
|
+
|
|
305
|
+
Returns
|
|
306
|
+
-------
|
|
307
|
+
float
|
|
308
|
+
The spatial calibration factor (pixels to micrometers conversion), extracted from the experiment's configuration file.
|
|
309
|
+
|
|
310
|
+
Raises
|
|
311
|
+
------
|
|
312
|
+
AssertionError
|
|
313
|
+
If the configuration file (`config.ini`) does not exist in the specified experiment directory.
|
|
314
|
+
KeyError
|
|
315
|
+
If the "pxtoum" key is not found under the "MovieSettings" section in the configuration file.
|
|
316
|
+
ValueError
|
|
317
|
+
If the retrieved "pxtoum" value cannot be converted to a float.
|
|
318
|
+
|
|
319
|
+
Notes
|
|
320
|
+
-----
|
|
321
|
+
- The function retrieves the calibration factor by first locating the configuration file for the experiment using `get_config()`.
|
|
322
|
+
- It expects the configuration file to have a section named `MovieSettings` containing the key `pxtoum`.
|
|
323
|
+
- This factor defines the conversion from pixels to micrometers for spatial measurements.
|
|
324
|
+
|
|
325
|
+
Example
|
|
326
|
+
-------
|
|
327
|
+
>>> experiment = "/path/to/experiment"
|
|
328
|
+
>>> calibration = get_spatial_calibration(experiment)
|
|
329
|
+
>>> print(calibration)
|
|
330
|
+
0.325 # pixels-to-micrometers conversion factor
|
|
331
|
+
"""
|
|
332
|
+
|
|
124
333
|
config = get_config(experiment)
|
|
125
334
|
PxToUm = float(ConfigSectionMap(config, "MovieSettings")["pxtoum"])
|
|
126
335
|
|
|
@@ -129,6 +338,42 @@ def get_spatial_calibration(experiment):
|
|
|
129
338
|
|
|
130
339
|
def get_temporal_calibration(experiment):
|
|
131
340
|
|
|
341
|
+
"""
|
|
342
|
+
Retrieves the temporal calibration factor for an experiment.
|
|
343
|
+
|
|
344
|
+
Parameters
|
|
345
|
+
----------
|
|
346
|
+
experiment : str
|
|
347
|
+
The file system path to the experiment directory.
|
|
348
|
+
|
|
349
|
+
Returns
|
|
350
|
+
-------
|
|
351
|
+
float
|
|
352
|
+
The temporal calibration factor (frames to minutes conversion), extracted from the experiment's configuration file.
|
|
353
|
+
|
|
354
|
+
Raises
|
|
355
|
+
------
|
|
356
|
+
AssertionError
|
|
357
|
+
If the configuration file (`config.ini`) does not exist in the specified experiment directory.
|
|
358
|
+
KeyError
|
|
359
|
+
If the "frametomin" key is not found under the "MovieSettings" section in the configuration file.
|
|
360
|
+
ValueError
|
|
361
|
+
If the retrieved "frametomin" value cannot be converted to a float.
|
|
362
|
+
|
|
363
|
+
Notes
|
|
364
|
+
-----
|
|
365
|
+
- The function retrieves the calibration factor by locating the configuration file for the experiment using `get_config()`.
|
|
366
|
+
- It expects the configuration file to have a section named `MovieSettings` containing the key `frametomin`.
|
|
367
|
+
- This factor defines the conversion from frames to minutes for temporal measurements.
|
|
368
|
+
|
|
369
|
+
Example
|
|
370
|
+
-------
|
|
371
|
+
>>> experiment = "/path/to/experiment"
|
|
372
|
+
>>> calibration = get_temporal_calibration(experiment)
|
|
373
|
+
>>> print(calibration)
|
|
374
|
+
0.5 # frames-to-minutes conversion factor
|
|
375
|
+
"""
|
|
376
|
+
|
|
132
377
|
config = get_config(experiment)
|
|
133
378
|
FrameToMin = float(ConfigSectionMap(config, "MovieSettings")["frametomin"])
|
|
134
379
|
|
|
@@ -137,6 +382,46 @@ def get_temporal_calibration(experiment):
|
|
|
137
382
|
|
|
138
383
|
def get_experiment_concentrations(experiment, dtype=str):
|
|
139
384
|
|
|
385
|
+
"""
|
|
386
|
+
Retrieves the concentrations associated with each well in an experiment.
|
|
387
|
+
|
|
388
|
+
Parameters
|
|
389
|
+
----------
|
|
390
|
+
experiment : str
|
|
391
|
+
The file system path to the experiment directory.
|
|
392
|
+
dtype : type, optional
|
|
393
|
+
The data type to which the concentrations should be converted (default is `str`).
|
|
394
|
+
|
|
395
|
+
Returns
|
|
396
|
+
-------
|
|
397
|
+
numpy.ndarray
|
|
398
|
+
An array of concentrations for each well, converted to the specified data type.
|
|
399
|
+
|
|
400
|
+
Raises
|
|
401
|
+
------
|
|
402
|
+
AssertionError
|
|
403
|
+
If the configuration file (`config.ini`) does not exist in the specified experiment directory.
|
|
404
|
+
KeyError
|
|
405
|
+
If the "concentrations" key is not found under the "Labels" section in the configuration file.
|
|
406
|
+
ValueError
|
|
407
|
+
If the retrieved concentrations cannot be converted to the specified data type.
|
|
408
|
+
|
|
409
|
+
Notes
|
|
410
|
+
-----
|
|
411
|
+
- The function retrieves the configuration file using `get_config()` and expects a section `Labels` containing
|
|
412
|
+
a key `concentrations`.
|
|
413
|
+
- The concentrations are assumed to be comma-separated values.
|
|
414
|
+
- If the number of wells does not match the number of concentrations, the function generates a default set
|
|
415
|
+
of values ranging from 0 to the number of wells minus 1.
|
|
416
|
+
- The resulting concentrations are converted to the specified `dtype` before being returned.
|
|
417
|
+
|
|
418
|
+
Example
|
|
419
|
+
-------
|
|
420
|
+
>>> experiment = "/path/to/experiment"
|
|
421
|
+
>>> concentrations = get_experiment_concentrations(experiment, dtype=float)
|
|
422
|
+
>>> print(concentrations)
|
|
423
|
+
[0.1, 0.2, 0.5, 1.0]
|
|
424
|
+
"""
|
|
140
425
|
|
|
141
426
|
config = get_config(experiment)
|
|
142
427
|
wells = get_experiment_wells(experiment)
|
|
@@ -150,6 +435,48 @@ def get_experiment_concentrations(experiment, dtype=str):
|
|
|
150
435
|
|
|
151
436
|
|
|
152
437
|
def get_experiment_cell_types(experiment, dtype=str):
|
|
438
|
+
|
|
439
|
+
"""
|
|
440
|
+
Retrieves the cell types associated with each well in an experiment.
|
|
441
|
+
|
|
442
|
+
Parameters
|
|
443
|
+
----------
|
|
444
|
+
experiment : str
|
|
445
|
+
The file system path to the experiment directory.
|
|
446
|
+
dtype : type, optional
|
|
447
|
+
The data type to which the cell types should be converted (default is `str`).
|
|
448
|
+
|
|
449
|
+
Returns
|
|
450
|
+
-------
|
|
451
|
+
numpy.ndarray
|
|
452
|
+
An array of cell types for each well, converted to the specified data type.
|
|
453
|
+
|
|
454
|
+
Raises
|
|
455
|
+
------
|
|
456
|
+
AssertionError
|
|
457
|
+
If the configuration file (`config.ini`) does not exist in the specified experiment directory.
|
|
458
|
+
KeyError
|
|
459
|
+
If the "cell_types" key is not found under the "Labels" section in the configuration file.
|
|
460
|
+
ValueError
|
|
461
|
+
If the retrieved cell types cannot be converted to the specified data type.
|
|
462
|
+
|
|
463
|
+
Notes
|
|
464
|
+
-----
|
|
465
|
+
- The function retrieves the configuration file using `get_config()` and expects a section `Labels` containing
|
|
466
|
+
a key `cell_types`.
|
|
467
|
+
- The cell types are assumed to be comma-separated values.
|
|
468
|
+
- If the number of wells does not match the number of cell types, the function generates a default set
|
|
469
|
+
of values ranging from 0 to the number of wells minus 1.
|
|
470
|
+
- The resulting cell types are converted to the specified `dtype` before being returned.
|
|
471
|
+
|
|
472
|
+
Example
|
|
473
|
+
-------
|
|
474
|
+
>>> experiment = "/path/to/experiment"
|
|
475
|
+
>>> cell_types = get_experiment_cell_types(experiment, dtype=str)
|
|
476
|
+
>>> print(cell_types)
|
|
477
|
+
['TypeA', 'TypeB', 'TypeC', 'TypeD']
|
|
478
|
+
"""
|
|
479
|
+
|
|
153
480
|
config = get_config(experiment)
|
|
154
481
|
wells = get_experiment_wells(experiment)
|
|
155
482
|
nbr_of_wells = len(wells)
|
|
@@ -163,6 +490,44 @@ def get_experiment_cell_types(experiment, dtype=str):
|
|
|
163
490
|
|
|
164
491
|
def get_experiment_antibodies(experiment, dtype=str):
|
|
165
492
|
|
|
493
|
+
"""
|
|
494
|
+
Retrieve the list of antibodies used in an experiment.
|
|
495
|
+
|
|
496
|
+
This function extracts antibody labels for the wells in the given experiment
|
|
497
|
+
based on the configuration file. If the number of wells does not match the
|
|
498
|
+
number of antibody labels provided in the configuration, it generates a
|
|
499
|
+
sequence of default numeric labels.
|
|
500
|
+
|
|
501
|
+
Parameters
|
|
502
|
+
----------
|
|
503
|
+
experiment : str
|
|
504
|
+
The identifier or name of the experiment to retrieve antibodies for.
|
|
505
|
+
dtype : type, optional
|
|
506
|
+
The data type to which the antibody labels should be cast. Default is `str`.
|
|
507
|
+
|
|
508
|
+
Returns
|
|
509
|
+
-------
|
|
510
|
+
numpy.ndarray
|
|
511
|
+
An array of antibody labels with the specified data type. If no antibodies
|
|
512
|
+
are specified or there is a mismatch, numeric labels are generated instead.
|
|
513
|
+
|
|
514
|
+
Notes
|
|
515
|
+
-----
|
|
516
|
+
- The function assumes the experiment's configuration can be loaded using
|
|
517
|
+
`get_config` and that the antibodies are listed under the "Labels" section
|
|
518
|
+
with the key `"antibodies"`.
|
|
519
|
+
- A mismatch between the number of wells and antibody labels will result in
|
|
520
|
+
numeric labels generated using `numpy.linspace`.
|
|
521
|
+
|
|
522
|
+
Examples
|
|
523
|
+
--------
|
|
524
|
+
>>> get_experiment_antibodies("path/to/experiment1")
|
|
525
|
+
array(['A1', 'A2', 'A3'], dtype='<U2')
|
|
526
|
+
|
|
527
|
+
>>> get_experiment_antibodies("path/to/experiment2", dtype=int)
|
|
528
|
+
array([0, 1, 2])
|
|
529
|
+
"""
|
|
530
|
+
|
|
166
531
|
config = get_config(experiment)
|
|
167
532
|
wells = get_experiment_wells(experiment)
|
|
168
533
|
nbr_of_wells = len(wells)
|
|
@@ -175,6 +540,48 @@ def get_experiment_antibodies(experiment, dtype=str):
|
|
|
175
540
|
|
|
176
541
|
|
|
177
542
|
def get_experiment_pharmaceutical_agents(experiment, dtype=str):
|
|
543
|
+
|
|
544
|
+
"""
|
|
545
|
+
Retrieves the antibodies associated with each well in an experiment.
|
|
546
|
+
|
|
547
|
+
Parameters
|
|
548
|
+
----------
|
|
549
|
+
experiment : str
|
|
550
|
+
The file system path to the experiment directory.
|
|
551
|
+
dtype : type, optional
|
|
552
|
+
The data type to which the antibodies should be converted (default is `str`).
|
|
553
|
+
|
|
554
|
+
Returns
|
|
555
|
+
-------
|
|
556
|
+
numpy.ndarray
|
|
557
|
+
An array of antibodies for each well, converted to the specified data type.
|
|
558
|
+
|
|
559
|
+
Raises
|
|
560
|
+
------
|
|
561
|
+
AssertionError
|
|
562
|
+
If the configuration file (`config.ini`) does not exist in the specified experiment directory.
|
|
563
|
+
KeyError
|
|
564
|
+
If the "antibodies" key is not found under the "Labels" section in the configuration file.
|
|
565
|
+
ValueError
|
|
566
|
+
If the retrieved antibody values cannot be converted to the specified data type.
|
|
567
|
+
|
|
568
|
+
Notes
|
|
569
|
+
-----
|
|
570
|
+
- The function retrieves the configuration file using `get_config()` and expects a section `Labels` containing
|
|
571
|
+
a key `antibodies`.
|
|
572
|
+
- The antibody names are assumed to be comma-separated values.
|
|
573
|
+
- If the number of wells does not match the number of antibodies, the function generates a default set
|
|
574
|
+
of values ranging from 0 to the number of wells minus 1.
|
|
575
|
+
- The resulting antibody names are converted to the specified `dtype` before being returned.
|
|
576
|
+
|
|
577
|
+
Example
|
|
578
|
+
-------
|
|
579
|
+
>>> experiment = "/path/to/experiment"
|
|
580
|
+
>>> antibodies = get_experiment_antibodies(experiment, dtype=str)
|
|
581
|
+
>>> print(antibodies)
|
|
582
|
+
['AntibodyA', 'AntibodyB', 'AntibodyC', 'AntibodyD']
|
|
583
|
+
"""
|
|
584
|
+
|
|
178
585
|
config = get_config(experiment)
|
|
179
586
|
wells = get_experiment_wells(experiment)
|
|
180
587
|
nbr_of_wells = len(wells)
|
|
@@ -485,59 +892,61 @@ def get_position_movie_path(pos, prefix=''):
|
|
|
485
892
|
|
|
486
893
|
def load_experiment_tables(experiment, population='targets', well_option='*', position_option='*',
|
|
487
894
|
return_pos_info=False, load_pickle=False):
|
|
895
|
+
|
|
488
896
|
"""
|
|
489
|
-
|
|
490
|
-
optionally returning position information alongside the aggregated data table.
|
|
897
|
+
Load tabular data for an experiment, optionally including position-level information.
|
|
491
898
|
|
|
492
|
-
This function
|
|
493
|
-
|
|
494
|
-
to gather metadata such as movie prefix, concentrations, cell types, antibodies, and
|
|
495
|
-
pharmaceutical agents. Users can specify which wells and positions to include in the
|
|
496
|
-
aggregation through pattern matching, and whether to include detailed position information
|
|
497
|
-
in the output.
|
|
899
|
+
This function retrieves and processes tables associated with positions in an experiment.
|
|
900
|
+
It supports filtering by wells and positions, and can load either CSV data or pickle files.
|
|
498
901
|
|
|
499
902
|
Parameters
|
|
500
903
|
----------
|
|
501
904
|
experiment : str
|
|
502
|
-
|
|
905
|
+
Path to the experiment folder to load data for.
|
|
503
906
|
population : str, optional
|
|
504
|
-
The population
|
|
505
|
-
well_option : str, optional
|
|
506
|
-
|
|
507
|
-
position_option : str, optional
|
|
508
|
-
|
|
907
|
+
The population to extract from the position tables (`'targets'` or `'effectors'`). Default is `'targets'`.
|
|
908
|
+
well_option : str or list, optional
|
|
909
|
+
Specifies which wells to include. Default is `'*'`, meaning all wells.
|
|
910
|
+
position_option : str or list, optional
|
|
911
|
+
Specifies which positions to include within selected wells. Default is `'*'`, meaning all positions.
|
|
509
912
|
return_pos_info : bool, optional
|
|
510
|
-
If True
|
|
511
|
-
|
|
913
|
+
If `True`, also returns a DataFrame containing position-level metadata. Default is `False`.
|
|
914
|
+
load_pickle : bool, optional
|
|
915
|
+
If `True`, loads pre-processed pickle files for the positions instead of raw data. Default is `False`.
|
|
512
916
|
|
|
513
917
|
Returns
|
|
514
918
|
-------
|
|
515
|
-
pandas.DataFrame or
|
|
516
|
-
|
|
517
|
-
|
|
518
|
-
|
|
519
|
-
|
|
520
|
-
|
|
521
|
-
|
|
522
|
-
------
|
|
523
|
-
FileNotFoundError
|
|
524
|
-
If the experiment directory does not exist or specified files within the directory cannot be found.
|
|
525
|
-
ValueError
|
|
526
|
-
If the specified well or position patterns do not match any directories.
|
|
919
|
+
df : pandas.DataFrame or None
|
|
920
|
+
A DataFrame containing aggregated data for the specified wells and positions, or `None` if no data is found.
|
|
921
|
+
The DataFrame includes metadata such as well and position identifiers, concentrations, antibodies, and other
|
|
922
|
+
experimental parameters.
|
|
923
|
+
df_pos_info : pandas.DataFrame, optional
|
|
924
|
+
A DataFrame with metadata for each position, including file paths and experimental details. Returned only
|
|
925
|
+
if `return_pos_info=True`.
|
|
527
926
|
|
|
528
927
|
Notes
|
|
529
928
|
-----
|
|
530
|
-
-
|
|
531
|
-
|
|
532
|
-
-
|
|
533
|
-
|
|
534
|
-
|
|
929
|
+
- The function assumes the experiment's configuration includes details about movie prefixes, concentrations,
|
|
930
|
+
cell types, antibodies, and pharmaceutical agents.
|
|
931
|
+
- Wells and positions can be filtered using `well_option` and `position_option`, respectively. If filtering
|
|
932
|
+
fails or is invalid, those specific wells/positions are skipped.
|
|
933
|
+
- Position-level metadata is assembled into `df_pos_info` and includes paths to data and movies.
|
|
535
934
|
|
|
536
935
|
Examples
|
|
537
936
|
--------
|
|
538
|
-
|
|
539
|
-
# This will load and aggregate tables for the 'targets' population within well 'W1' and positions matching '1-*'.
|
|
937
|
+
Load all data for an experiment:
|
|
540
938
|
|
|
939
|
+
>>> df = load_experiment_tables("path/to/experiment1")
|
|
940
|
+
|
|
941
|
+
Load data for specific wells and positions, including position metadata:
|
|
942
|
+
|
|
943
|
+
>>> df, df_pos_info = load_experiment_tables(
|
|
944
|
+
... "experiment_01", well_option=["A1", "B1"], position_option=[0, 1], return_pos_info=True
|
|
945
|
+
... )
|
|
946
|
+
|
|
947
|
+
Use pickle files for faster loading:
|
|
948
|
+
|
|
949
|
+
>>> df = load_experiment_tables("experiment_01", load_pickle=True)
|
|
541
950
|
"""
|
|
542
951
|
|
|
543
952
|
config = get_config(experiment)
|
|
@@ -630,7 +1039,6 @@ def load_experiment_tables(experiment, population='targets', well_option='*', po
|
|
|
630
1039
|
return df
|
|
631
1040
|
|
|
632
1041
|
|
|
633
|
-
|
|
634
1042
|
def locate_stack(position, prefix='Aligned'):
|
|
635
1043
|
|
|
636
1044
|
"""
|
|
@@ -694,35 +1102,52 @@ def locate_stack(position, prefix='Aligned'):
|
|
|
694
1102
|
def locate_labels(position, population='target', frames=None):
|
|
695
1103
|
|
|
696
1104
|
"""
|
|
1105
|
+
Locate and load label images for a given position and population in an experiment.
|
|
697
1106
|
|
|
698
|
-
|
|
1107
|
+
This function retrieves and optionally loads labeled images (e.g., targets or effectors)
|
|
1108
|
+
for a specified position in an experiment. It supports loading all frames, a specific
|
|
1109
|
+
frame, or a list of frames.
|
|
699
1110
|
|
|
700
1111
|
Parameters
|
|
701
1112
|
----------
|
|
702
1113
|
position : str
|
|
703
|
-
|
|
1114
|
+
Path to the position directory containing label images.
|
|
704
1115
|
population : str, optional
|
|
705
|
-
The population for
|
|
706
|
-
|
|
707
|
-
|
|
1116
|
+
The population to load labels for. Options are `'target'` (or `'targets'`) and
|
|
1117
|
+
`'effector'` (or `'effectors'`). Default is `'target'`.
|
|
1118
|
+
frames : int, list of int, numpy.ndarray, or None, optional
|
|
1119
|
+
Specifies which frames to load:
|
|
1120
|
+
- `None`: Load all frames (default).
|
|
1121
|
+
- `int`: Load a single frame, identified by its index.
|
|
1122
|
+
- `list` or `numpy.ndarray`: Load multiple specific frames.
|
|
708
1123
|
|
|
709
1124
|
Returns
|
|
710
1125
|
-------
|
|
711
|
-
|
|
712
|
-
|
|
1126
|
+
numpy.ndarray or list of numpy.ndarray
|
|
1127
|
+
If `frames` is `None` or a single integer, returns a NumPy array of the corresponding
|
|
1128
|
+
labels. If `frames` is a list or array, returns a list of NumPy arrays for each frame.
|
|
1129
|
+
If a frame is not found, `None` is returned for that frame.
|
|
713
1130
|
|
|
714
1131
|
Notes
|
|
715
1132
|
-----
|
|
716
|
-
|
|
717
|
-
|
|
718
|
-
|
|
719
|
-
|
|
1133
|
+
- The function assumes label images are stored in subdirectories named `"labels_targets"`
|
|
1134
|
+
or `"labels_effectors"`, with filenames formatted as `####.tif` (e.g., `0001.tif`).
|
|
1135
|
+
- Frame indices are zero-padded to four digits for matching.
|
|
1136
|
+
- If `frames` is invalid or a frame is not found, `None` is returned for that frame.
|
|
720
1137
|
|
|
721
1138
|
Examples
|
|
722
1139
|
--------
|
|
723
|
-
|
|
724
|
-
# Locate and load labels for the target population.
|
|
1140
|
+
Load all label images for a position:
|
|
725
1141
|
|
|
1142
|
+
>>> labels = locate_labels("/path/to/position", population="target")
|
|
1143
|
+
|
|
1144
|
+
Load a single frame (frame index 3):
|
|
1145
|
+
|
|
1146
|
+
>>> label = locate_labels("/path/to/position", population="effector", frames=3)
|
|
1147
|
+
|
|
1148
|
+
Load multiple specific frames:
|
|
1149
|
+
|
|
1150
|
+
>>> labels = locate_labels("/path/to/position", population="target", frames=[0, 1, 2])
|
|
726
1151
|
"""
|
|
727
1152
|
|
|
728
1153
|
if not position.endswith(os.sep):
|
|
@@ -791,7 +1216,7 @@ def fix_missing_labels(position, population='target', prefix='Aligned'):
|
|
|
791
1216
|
position += os.sep
|
|
792
1217
|
|
|
793
1218
|
stack = locate_stack(position, prefix=prefix)
|
|
794
|
-
template = np.zeros((stack[0].shape[0], stack[0].shape[1]))
|
|
1219
|
+
template = np.zeros((stack[0].shape[0], stack[0].shape[1]),dtype=int)
|
|
795
1220
|
all_frames = np.arange(len(stack))
|
|
796
1221
|
|
|
797
1222
|
if population.lower() == "target" or population.lower() == "targets":
|
|
@@ -913,37 +1338,52 @@ def load_tracking_data(position, prefix="Aligned", population="target"):
|
|
|
913
1338
|
|
|
914
1339
|
|
|
915
1340
|
def auto_load_number_of_frames(stack_path):
|
|
916
|
-
|
|
1341
|
+
|
|
917
1342
|
"""
|
|
1343
|
+
Automatically determine the number of frames in a TIFF image stack.
|
|
918
1344
|
|
|
919
|
-
|
|
1345
|
+
This function extracts the number of frames (time slices) from the metadata of a TIFF file
|
|
1346
|
+
or infers it from the stack dimensions when metadata is unavailable. It is robust to
|
|
1347
|
+
variations in metadata structure and handles multi-channel images.
|
|
920
1348
|
|
|
921
1349
|
Parameters
|
|
922
1350
|
----------
|
|
923
1351
|
stack_path : str
|
|
924
|
-
|
|
1352
|
+
Path to the TIFF image stack file.
|
|
925
1353
|
|
|
926
1354
|
Returns
|
|
927
1355
|
-------
|
|
928
1356
|
int or None
|
|
929
|
-
The
|
|
1357
|
+
The number of frames in the image stack. Returns `None` if the path is `None`
|
|
1358
|
+
or the frame count cannot be determined.
|
|
930
1359
|
|
|
931
1360
|
Notes
|
|
932
1361
|
-----
|
|
933
|
-
|
|
934
|
-
|
|
935
|
-
|
|
936
|
-
|
|
937
|
-
|
|
1362
|
+
- The function attempts to extract the `frames` or `slices` attributes from the
|
|
1363
|
+
TIFF metadata, specifically the `ImageDescription` tag.
|
|
1364
|
+
- If metadata extraction fails, the function reads the image stack and infers
|
|
1365
|
+
the number of frames based on the stack dimensions.
|
|
1366
|
+
- Multi-channel stacks are handled by assuming the number of channels is specified
|
|
1367
|
+
in the metadata under the `channels` attribute.
|
|
938
1368
|
|
|
939
1369
|
Examples
|
|
940
1370
|
--------
|
|
941
|
-
|
|
942
|
-
# Automatically estimate the number of frames in the stack.
|
|
1371
|
+
Automatically detect the number of frames in a TIFF stack:
|
|
943
1372
|
|
|
944
|
-
""
|
|
1373
|
+
>>> frames = auto_load_number_of_frames("experiment_stack.tif")
|
|
1374
|
+
Automatically detected stack length: 120...
|
|
945
1375
|
|
|
946
|
-
|
|
1376
|
+
Handle a single-frame TIFF:
|
|
1377
|
+
|
|
1378
|
+
>>> frames = auto_load_number_of_frames("single_frame_stack.tif")
|
|
1379
|
+
Automatically detected stack length: 1...
|
|
1380
|
+
|
|
1381
|
+
Handle invalid or missing paths gracefully:
|
|
1382
|
+
|
|
1383
|
+
>>> frames = auto_load_number_of_frames(None)
|
|
1384
|
+
>>> print(frames)
|
|
1385
|
+
None
|
|
1386
|
+
"""
|
|
947
1387
|
|
|
948
1388
|
if stack_path is None:
|
|
949
1389
|
return None
|
|
@@ -1000,6 +1440,47 @@ def auto_load_number_of_frames(stack_path):
|
|
|
1000
1440
|
|
|
1001
1441
|
|
|
1002
1442
|
def parse_isotropic_radii(string):
|
|
1443
|
+
|
|
1444
|
+
"""
|
|
1445
|
+
Parse a string representing isotropic radii into a structured list.
|
|
1446
|
+
|
|
1447
|
+
This function extracts integer values and ranges (denoted by square brackets)
|
|
1448
|
+
from a string input and returns them as a list. Single values are stored as integers,
|
|
1449
|
+
while ranges are represented as lists of two integers.
|
|
1450
|
+
|
|
1451
|
+
Parameters
|
|
1452
|
+
----------
|
|
1453
|
+
string : str
|
|
1454
|
+
The input string containing radii and ranges, separated by commas or spaces.
|
|
1455
|
+
Ranges should be enclosed in square brackets, e.g., `[1 2]`.
|
|
1456
|
+
|
|
1457
|
+
Returns
|
|
1458
|
+
-------
|
|
1459
|
+
list
|
|
1460
|
+
A list of parsed radii where:
|
|
1461
|
+
- Single integers are included as `int`.
|
|
1462
|
+
- Ranges are included as two-element lists `[start, end]`.
|
|
1463
|
+
|
|
1464
|
+
Examples
|
|
1465
|
+
--------
|
|
1466
|
+
Parse a string with single radii and ranges:
|
|
1467
|
+
|
|
1468
|
+
>>> parse_isotropic_radii("1, [2 3], 4")
|
|
1469
|
+
[1, [2, 3], 4]
|
|
1470
|
+
|
|
1471
|
+
Handle inputs with mixed delimiters:
|
|
1472
|
+
|
|
1473
|
+
>>> parse_isotropic_radii("5 [6 7], 8")
|
|
1474
|
+
[5, [6, 7], 8]
|
|
1475
|
+
|
|
1476
|
+
Notes
|
|
1477
|
+
-----
|
|
1478
|
+
- The function splits the input string by commas or spaces.
|
|
1479
|
+
- It identifies ranges using square brackets and assumes that ranges are always
|
|
1480
|
+
two consecutive values.
|
|
1481
|
+
- Non-integer sections of the string are ignored.
|
|
1482
|
+
"""
|
|
1483
|
+
|
|
1003
1484
|
sections = re.split(',| ', string)
|
|
1004
1485
|
radii = []
|
|
1005
1486
|
for k, s in enumerate(sections):
|
|
@@ -1061,6 +1542,53 @@ def get_tracking_configs_list(return_path=False):
|
|
|
1061
1542
|
|
|
1062
1543
|
def interpret_tracking_configuration(config):
|
|
1063
1544
|
|
|
1545
|
+
"""
|
|
1546
|
+
Interpret and resolve the path for a tracking configuration file.
|
|
1547
|
+
|
|
1548
|
+
This function determines the appropriate configuration file path based on the input.
|
|
1549
|
+
If the input is a string representing an existing path or a known configuration name,
|
|
1550
|
+
it resolves to the correct file path. If the input is invalid or `None`, a default
|
|
1551
|
+
configuration is returned.
|
|
1552
|
+
|
|
1553
|
+
Parameters
|
|
1554
|
+
----------
|
|
1555
|
+
config : str or None
|
|
1556
|
+
The input configuration, which can be:
|
|
1557
|
+
- A string representing the full path to a configuration file.
|
|
1558
|
+
- A short name of a configuration file without the `.json` extension.
|
|
1559
|
+
- `None` to use a default configuration.
|
|
1560
|
+
|
|
1561
|
+
Returns
|
|
1562
|
+
-------
|
|
1563
|
+
str
|
|
1564
|
+
The resolved path to the configuration file.
|
|
1565
|
+
|
|
1566
|
+
Notes
|
|
1567
|
+
-----
|
|
1568
|
+
- If `config` is a string and the specified path exists, it is returned as-is.
|
|
1569
|
+
- If `config` is a name, the function searches in the `tracking_configs` directory
|
|
1570
|
+
within the `celldetective` models folder.
|
|
1571
|
+
- If the file or name is not found, or if `config` is `None`, the function falls
|
|
1572
|
+
back to a default configuration using `cell_config()`.
|
|
1573
|
+
|
|
1574
|
+
Examples
|
|
1575
|
+
--------
|
|
1576
|
+
Resolve a full path:
|
|
1577
|
+
|
|
1578
|
+
>>> interpret_tracking_configuration("/path/to/config.json")
|
|
1579
|
+
'/path/to/config.json'
|
|
1580
|
+
|
|
1581
|
+
Resolve a named configuration:
|
|
1582
|
+
|
|
1583
|
+
>>> interpret_tracking_configuration("default_tracking")
|
|
1584
|
+
'/path/to/celldetective/models/tracking_configs/default_tracking.json'
|
|
1585
|
+
|
|
1586
|
+
Handle `None` to return the default configuration:
|
|
1587
|
+
|
|
1588
|
+
>>> interpret_tracking_configuration(None)
|
|
1589
|
+
'/path/to/default/config.json'
|
|
1590
|
+
"""
|
|
1591
|
+
|
|
1064
1592
|
if isinstance(config, str):
|
|
1065
1593
|
if os.path.exists(config):
|
|
1066
1594
|
return config
|
|
@@ -1180,6 +1708,61 @@ def get_pair_signal_models_list(return_path=False):
|
|
|
1180
1708
|
|
|
1181
1709
|
def locate_signal_model(name, path=None, pairs=False):
|
|
1182
1710
|
|
|
1711
|
+
"""
|
|
1712
|
+
Locate a signal detection model by name, either locally or from Zenodo.
|
|
1713
|
+
|
|
1714
|
+
This function searches for a signal detection model with the specified name in the local
|
|
1715
|
+
`celldetective` directory. If the model is not found locally, it attempts to download
|
|
1716
|
+
the model from Zenodo.
|
|
1717
|
+
|
|
1718
|
+
Parameters
|
|
1719
|
+
----------
|
|
1720
|
+
name : str
|
|
1721
|
+
The name of the signal detection model to locate.
|
|
1722
|
+
path : str, optional
|
|
1723
|
+
An additional directory path to search for the model. If provided, this directory
|
|
1724
|
+
is also scanned for matching models. Default is `None`.
|
|
1725
|
+
pairs : bool, optional
|
|
1726
|
+
If `True`, searches for paired signal detection models in the `pair_signal_detection`
|
|
1727
|
+
subdirectory. If `False`, searches in the `signal_detection` subdirectory. Default is `False`.
|
|
1728
|
+
|
|
1729
|
+
Returns
|
|
1730
|
+
-------
|
|
1731
|
+
str or None
|
|
1732
|
+
The full path to the located model directory if found, or `None` if the model is not available
|
|
1733
|
+
locally or on Zenodo.
|
|
1734
|
+
|
|
1735
|
+
Notes
|
|
1736
|
+
-----
|
|
1737
|
+
- The function first searches in the `celldetective/models/signal_detection` or
|
|
1738
|
+
`celldetective/models/pair_signal_detection` directory based on the `pairs` argument.
|
|
1739
|
+
- If a `path` is specified, it is searched in addition to the default directories.
|
|
1740
|
+
- If the model is not found locally, the function queries Zenodo for the model. If available,
|
|
1741
|
+
the model is downloaded to the appropriate `celldetective` subdirectory.
|
|
1742
|
+
|
|
1743
|
+
Examples
|
|
1744
|
+
--------
|
|
1745
|
+
Search for a signal detection model locally:
|
|
1746
|
+
|
|
1747
|
+
>>> locate_signal_model("example_model")
|
|
1748
|
+
'path/to/celldetective/models/signal_detection/example_model/'
|
|
1749
|
+
|
|
1750
|
+
Search for a paired signal detection model:
|
|
1751
|
+
|
|
1752
|
+
>>> locate_signal_model("paired_model", pairs=True)
|
|
1753
|
+
'path/to/celldetective/models/pair_signal_detection/paired_model/'
|
|
1754
|
+
|
|
1755
|
+
Include an additional search path:
|
|
1756
|
+
|
|
1757
|
+
>>> locate_signal_model("custom_model", path="/additional/models/")
|
|
1758
|
+
'/additional/models/custom_model/'
|
|
1759
|
+
|
|
1760
|
+
Handle a model available only on Zenodo:
|
|
1761
|
+
|
|
1762
|
+
>>> locate_signal_model("remote_model")
|
|
1763
|
+
'path/to/celldetective/models/signal_detection/remote_model/'
|
|
1764
|
+
"""
|
|
1765
|
+
|
|
1183
1766
|
main_dir = os.sep.join([os.path.split(os.path.dirname(os.path.realpath(__file__)))[0], "celldetective"])
|
|
1184
1767
|
modelpath = os.sep.join([main_dir, "models", "signal_detection", os.sep])
|
|
1185
1768
|
if pairs:
|
|
@@ -1206,6 +1789,48 @@ def locate_signal_model(name, path=None, pairs=False):
|
|
|
1206
1789
|
return match
|
|
1207
1790
|
|
|
1208
1791
|
def locate_pair_signal_model(name, path=None):
|
|
1792
|
+
|
|
1793
|
+
"""
|
|
1794
|
+
Locate a pair signal detection model by name.
|
|
1795
|
+
|
|
1796
|
+
This function searches for a pair signal detection model in the default
|
|
1797
|
+
`celldetective` directory and optionally in an additional user-specified path.
|
|
1798
|
+
|
|
1799
|
+
Parameters
|
|
1800
|
+
----------
|
|
1801
|
+
name : str
|
|
1802
|
+
The name of the pair signal detection model to locate.
|
|
1803
|
+
path : str, optional
|
|
1804
|
+
An additional directory path to search for the model. If provided, this directory
|
|
1805
|
+
is also scanned for matching models. Default is `None`.
|
|
1806
|
+
|
|
1807
|
+
Returns
|
|
1808
|
+
-------
|
|
1809
|
+
str or None
|
|
1810
|
+
The full path to the located model directory if found, or `None` if no matching
|
|
1811
|
+
model is located.
|
|
1812
|
+
|
|
1813
|
+
Notes
|
|
1814
|
+
-----
|
|
1815
|
+
- The function first searches in the default `celldetective/models/pair_signal_detection`
|
|
1816
|
+
directory.
|
|
1817
|
+
- If a `path` is specified, it is searched in addition to the default directory.
|
|
1818
|
+
- The function prints the search path and model name during execution.
|
|
1819
|
+
|
|
1820
|
+
Examples
|
|
1821
|
+
--------
|
|
1822
|
+
Locate a model in the default directory:
|
|
1823
|
+
|
|
1824
|
+
>>> locate_pair_signal_model("example_model")
|
|
1825
|
+
'path/to/celldetective/models/pair_signal_detection/example_model/'
|
|
1826
|
+
|
|
1827
|
+
Include an additional search directory:
|
|
1828
|
+
|
|
1829
|
+
>>> locate_pair_signal_model("custom_model", path="/additional/models/")
|
|
1830
|
+
'/additional/models/custom_model/'
|
|
1831
|
+
"""
|
|
1832
|
+
|
|
1833
|
+
|
|
1209
1834
|
main_dir = os.sep.join([os.path.split(os.path.dirname(os.path.realpath(__file__)))[0], "celldetective"])
|
|
1210
1835
|
modelpath = os.sep.join([main_dir, "models", "pair_signal_detection", os.sep])
|
|
1211
1836
|
print(f'Looking for {name} in {modelpath}')
|
|
@@ -1215,74 +1840,118 @@ def locate_pair_signal_model(name, path=None):
|
|
|
1215
1840
|
path += os.sep
|
|
1216
1841
|
models += glob(path + f'*{os.sep}')
|
|
1217
1842
|
|
|
1218
|
-
def relabel_segmentation(labels,
|
|
1843
|
+
def relabel_segmentation(labels, df, exclude_nans=True, column_labels={'track': "TRACK_ID", 'frame': 'FRAME', 'y': 'POSITION_Y', 'x': 'POSITION_X', 'label': 'class_id'}, threads=1):
|
|
1219
1844
|
|
|
1220
1845
|
"""
|
|
1846
|
+
Relabel the segmentation labels with the tracking IDs from the tracks.
|
|
1221
1847
|
|
|
1222
|
-
|
|
1848
|
+
The function reassigns the mask value for each cell with the associated `TRACK_ID`, if it exists
|
|
1849
|
+
in the trajectory table (`df`). If no track uses the cell mask, a new track with a single point
|
|
1850
|
+
is generated on the fly (max of `TRACK_ID` values + i, for i=0 to N such cells). It supports
|
|
1851
|
+
multithreaded processing for faster execution on large datasets.
|
|
1223
1852
|
|
|
1224
1853
|
Parameters
|
|
1225
1854
|
----------
|
|
1226
|
-
labels : ndarray
|
|
1227
|
-
|
|
1228
|
-
|
|
1229
|
-
|
|
1230
|
-
|
|
1231
|
-
|
|
1855
|
+
labels : np.ndarray
|
|
1856
|
+
A (TYX) array where each frame contains a 2D segmentation mask. Each unique
|
|
1857
|
+
non-zero integer represents a labeled object.
|
|
1858
|
+
df : pandas.DataFrame
|
|
1859
|
+
A DataFrame containing tracking information with columns
|
|
1860
|
+
specified in `column_labels`. Must include at least frame, track ID, and object ID.
|
|
1861
|
+
exclude_nans : bool, optional
|
|
1862
|
+
Whether to exclude rows in `df` with NaN values in the column specified by
|
|
1863
|
+
`column_labels['label']`. Default is `True`.
|
|
1232
1864
|
column_labels : dict, optional
|
|
1233
|
-
A dictionary specifying the column
|
|
1234
|
-
|
|
1865
|
+
A dictionary specifying the column names in `df`. Default is:
|
|
1866
|
+
- `'track'`: Track ID column name (`"TRACK_ID"`)
|
|
1867
|
+
- `'frame'`: Frame column name (`"FRAME"`)
|
|
1868
|
+
- `'y'`: Y-coordinate column name (`"POSITION_Y"`)
|
|
1869
|
+
- `'x'`: X-coordinate column name (`"POSITION_X"`)
|
|
1870
|
+
- `'label'`: Object ID column name (`"class_id"`)
|
|
1871
|
+
threads : int, optional
|
|
1872
|
+
Number of threads to use for multithreaded processing. Default is `1`.
|
|
1235
1873
|
|
|
1236
1874
|
Returns
|
|
1237
1875
|
-------
|
|
1238
|
-
ndarray
|
|
1239
|
-
|
|
1876
|
+
np.ndarray
|
|
1877
|
+
A new (TYX) array with the same shape as `labels`, where objects are relabeled
|
|
1878
|
+
according to their tracking identity in `df`.
|
|
1240
1879
|
|
|
1241
1880
|
Notes
|
|
1242
1881
|
-----
|
|
1243
|
-
|
|
1244
|
-
|
|
1245
|
-
|
|
1246
|
-
|
|
1882
|
+
- For frames where labeled objects in `labels` do not match any entries in the `df`,
|
|
1883
|
+
new track IDs are generated for the unmatched labels.
|
|
1884
|
+
- The relabeling process maintains synchronization across threads using a shared
|
|
1885
|
+
counter for generating unique track IDs.
|
|
1247
1886
|
|
|
1248
1887
|
Examples
|
|
1249
1888
|
--------
|
|
1250
|
-
|
|
1251
|
-
... 'y': 'y', 'x': 'x', 'label': 'class_id'})
|
|
1252
|
-
# Relabel the segmentation labels based on the provided tracking data and properties.
|
|
1253
|
-
|
|
1254
|
-
"""
|
|
1889
|
+
Relabel segmentation using tracking data:
|
|
1255
1890
|
|
|
1891
|
+
>>> labels = np.random.randint(0, 5, (10, 100, 100))
|
|
1892
|
+
>>> df = pd.DataFrame({
|
|
1893
|
+
... "TRACK_ID": [1, 2, 1, 2],
|
|
1894
|
+
... "FRAME": [0, 0, 1, 1],
|
|
1895
|
+
... "class_id": [1, 2, 1, 2],
|
|
1896
|
+
... })
|
|
1897
|
+
>>> new_labels = relabel_segmentation(labels, df, threads=2)
|
|
1898
|
+
Done.
|
|
1256
1899
|
|
|
1257
|
-
|
|
1258
|
-
if data.shape[1]==4:
|
|
1259
|
-
df = pd.DataFrame(data,columns=[column_labels['track'],column_labels['frame'],column_labels['y'],column_labels['x']])
|
|
1260
|
-
else:
|
|
1261
|
-
df = pd.DataFrame(data,columns=[column_labels['track'],column_labels['frame'],'z', column_labels['y'],column_labels['x']])
|
|
1262
|
-
df = df.drop(columns=['z'])
|
|
1900
|
+
Use custom column labels and exclude rows with NaNs:
|
|
1263
1901
|
|
|
1264
|
-
|
|
1902
|
+
>>> column_labels = {
|
|
1903
|
+
... 'track': "track_id",
|
|
1904
|
+
... 'frame': "time",
|
|
1905
|
+
... 'label': "object_id"
|
|
1906
|
+
... }
|
|
1907
|
+
>>> new_labels = relabel_segmentation(labels, df, column_labels=column_labels, exclude_nans=True)
|
|
1908
|
+
Done.
|
|
1909
|
+
"""
|
|
1910
|
+
|
|
1911
|
+
n_threads = threads
|
|
1265
1912
|
df = df.sort_values(by=[column_labels['track'],column_labels['frame']])
|
|
1266
|
-
|
|
1913
|
+
if exclude_nans:
|
|
1914
|
+
df = df.dropna(subset=column_labels['label'])
|
|
1267
1915
|
|
|
1268
1916
|
new_labels = np.zeros_like(labels)
|
|
1917
|
+
shared_data = {"s": 0}
|
|
1269
1918
|
|
|
1270
1919
|
def rewrite_labels(indices):
|
|
1271
1920
|
|
|
1921
|
+
all_track_ids = df[column_labels['track']].unique()
|
|
1922
|
+
|
|
1272
1923
|
for t in tqdm(indices):
|
|
1273
1924
|
|
|
1274
1925
|
f = int(t)
|
|
1275
1926
|
cells = df.loc[df[column_labels['frame']] == f, [column_labels['track'], column_labels['label']]].to_numpy()
|
|
1276
|
-
tracks_at_t = cells[:,0]
|
|
1277
|
-
identities = cells[:,1]
|
|
1927
|
+
tracks_at_t = list(cells[:,0])
|
|
1928
|
+
identities = list(cells[:,1])
|
|
1929
|
+
|
|
1930
|
+
labels_at_t = list(np.unique(labels[f]))
|
|
1931
|
+
if 0 in labels_at_t:
|
|
1932
|
+
labels_at_t.remove(0)
|
|
1933
|
+
labels_not_in_df = [lbl for lbl in labels_at_t if lbl not in identities]
|
|
1934
|
+
for lbl in labels_not_in_df:
|
|
1935
|
+
with threading.Lock(): # Synchronize access to `shared_data["s"]`
|
|
1936
|
+
track_id = max(all_track_ids) + shared_data["s"]
|
|
1937
|
+
shared_data["s"] += 1
|
|
1938
|
+
tracks_at_t.append(track_id)
|
|
1939
|
+
identities.append(lbl)
|
|
1278
1940
|
|
|
1279
1941
|
# exclude NaN
|
|
1942
|
+
tracks_at_t = np.array(tracks_at_t)
|
|
1943
|
+
identities = np.array(identities)
|
|
1944
|
+
|
|
1280
1945
|
tracks_at_t = tracks_at_t[identities == identities]
|
|
1281
1946
|
identities = identities[identities == identities]
|
|
1282
1947
|
|
|
1283
1948
|
for k in range(len(identities)):
|
|
1949
|
+
|
|
1950
|
+
# need routine to check values from labels not in class_id of this frame and add new track id
|
|
1951
|
+
|
|
1284
1952
|
loc_i, loc_j = np.where(labels[f] == identities[k])
|
|
1285
|
-
|
|
1953
|
+
track_id = tracks_at_t[k]
|
|
1954
|
+
new_labels[f, loc_i, loc_j] = round(track_id)
|
|
1286
1955
|
|
|
1287
1956
|
# Multithreading
|
|
1288
1957
|
indices = list(df[column_labels['frame']].unique())
|
|
@@ -1296,90 +1965,308 @@ def relabel_segmentation(labels, data, properties, column_labels={'track': "trac
|
|
|
1296
1965
|
return new_labels
|
|
1297
1966
|
|
|
1298
1967
|
|
|
1299
|
-
def
|
|
1968
|
+
def control_tracks(position, prefix="Aligned", population="target", relabel=True, flush_memory=True, threads=1):
|
|
1300
1969
|
|
|
1301
1970
|
"""
|
|
1302
|
-
|
|
1971
|
+
Controls the tracking of cells or objects within a given position by locating the relevant image stack and label data,
|
|
1972
|
+
and then visualizing and managing the tracks in the Napari viewer.
|
|
1303
1973
|
|
|
1304
1974
|
Parameters
|
|
1305
1975
|
----------
|
|
1306
1976
|
position : str
|
|
1307
|
-
The path to the position
|
|
1308
|
-
|
|
1309
|
-
|
|
1310
|
-
|
|
1311
|
-
|
|
1977
|
+
The path to the directory containing the position's data. The function will ensure the path uses forward slashes.
|
|
1978
|
+
|
|
1979
|
+
prefix : str, optional, default="Aligned"
|
|
1980
|
+
The prefix of the file names for the image stack and labels. This parameter helps locate the relevant data files.
|
|
1981
|
+
|
|
1982
|
+
population : str, optional, default="target"
|
|
1983
|
+
The population to be tracked, typically either "target" or "effectors". This is used to identify the group of interest for tracking.
|
|
1984
|
+
|
|
1985
|
+
relabel : bool, optional, default=True
|
|
1986
|
+
If True, will relabel the tracks, potentially assigning new track IDs to the detected objects.
|
|
1987
|
+
|
|
1988
|
+
flush_memory : bool, optional, default=True
|
|
1989
|
+
If True, will flush memory after processing to free up resources.
|
|
1990
|
+
|
|
1991
|
+
threads : int, optional, default=1
|
|
1992
|
+
The number of threads to use for processing. This can speed up the task in multi-threaded environments.
|
|
1312
1993
|
|
|
1313
1994
|
Returns
|
|
1314
1995
|
-------
|
|
1315
1996
|
None
|
|
1316
|
-
|
|
1317
|
-
|
|
1318
|
-
Examples
|
|
1319
|
-
--------
|
|
1320
|
-
>>> control_tracking_btrack("path/to/position", population="target")
|
|
1321
|
-
# Executes napari for visualization of target trajectories.
|
|
1997
|
+
The function performs visualization and management of tracks in the Napari viewer. It does not return any value.
|
|
1322
1998
|
|
|
1999
|
+
Notes
|
|
2000
|
+
-----
|
|
2001
|
+
- This function assumes that the necessary data for tracking (stack and labels) are located in the specified position directory.
|
|
2002
|
+
- The `locate_stack_and_labels` function is used to retrieve the image stack and labels from the specified directory.
|
|
2003
|
+
- The tracks are visualized using the `view_tracks_in_napari` function, which handles the display in the Napari viewer.
|
|
2004
|
+
- The function can be used for tracking biological entities (e.g., cells) and their movement across time frames in an image stack.
|
|
2005
|
+
|
|
2006
|
+
Example
|
|
2007
|
+
-------
|
|
2008
|
+
>>> control_tracks("/path/to/data/position_1", prefix="Aligned", population="target", relabel=True, flush_memory=True, threads=4)
|
|
1323
2009
|
"""
|
|
2010
|
+
|
|
2011
|
+
if not position.endswith(os.sep):
|
|
2012
|
+
position += os.sep
|
|
1324
2013
|
|
|
1325
|
-
|
|
1326
|
-
|
|
2014
|
+
position = position.replace('\\','/')
|
|
2015
|
+
stack, labels = locate_stack_and_labels(position, prefix=prefix, population=population)
|
|
2016
|
+
|
|
2017
|
+
view_tracks_in_napari(position, population, labels=labels, stack=stack, relabel=relabel,
|
|
1327
2018
|
flush_memory=flush_memory, threads=threads)
|
|
1328
2019
|
|
|
1329
2020
|
|
|
1330
|
-
def
|
|
1331
|
-
|
|
2021
|
+
def tracks_to_btrack(df, exclude_nans=False):
|
|
2022
|
+
|
|
1332
2023
|
"""
|
|
1333
|
-
|
|
1334
|
-
|
|
2024
|
+
Converts a dataframe of tracked objects into the bTrack output format.
|
|
2025
|
+
The function prepares tracking data, properties, and an empty graph structure for further processing.
|
|
1335
2026
|
|
|
1336
2027
|
Parameters
|
|
1337
2028
|
----------
|
|
1338
|
-
|
|
1339
|
-
|
|
1340
|
-
|
|
1341
|
-
|
|
1342
|
-
|
|
1343
|
-
|
|
1344
|
-
|
|
1345
|
-
The stack of images to visualize. The default is None.
|
|
1346
|
-
labels : ndarray, optional
|
|
1347
|
-
The segmentation labels to visualize. The default is None.
|
|
1348
|
-
relabel : bool, optional
|
|
1349
|
-
Specify whether to relabel the segmentation labels using the provided data. The default is True.
|
|
2029
|
+
df : pandas.DataFrame
|
|
2030
|
+
A dataframe containing tracking information. The dataframe must have columns for `TRACK_ID`,
|
|
2031
|
+
`FRAME`, `POSITION_Y`, `POSITION_X`, and `class_id` (among others).
|
|
2032
|
+
|
|
2033
|
+
exclude_nans : bool, optional, default=False
|
|
2034
|
+
If True, rows with NaN values in the `class_id` column will be excluded from the dataset.
|
|
2035
|
+
If False, the dataframe will retain all rows, including those with NaN in `class_id`.
|
|
1350
2036
|
|
|
2037
|
+
Returns
|
|
2038
|
+
-------
|
|
2039
|
+
data : numpy.ndarray
|
|
2040
|
+
A 2D numpy array containing the tracking data with columns `[TRACK_ID, FRAME, z, POSITION_Y, POSITION_X]`.
|
|
2041
|
+
The `z` column is set to zero for all rows.
|
|
2042
|
+
|
|
2043
|
+
properties : dict
|
|
2044
|
+
A dictionary where keys are property names (e.g., 'FRAME', 'state', 'generation', etc.) and values are numpy arrays
|
|
2045
|
+
containing the corresponding values from the dataframe.
|
|
2046
|
+
|
|
2047
|
+
graph : dict
|
|
2048
|
+
An empty dictionary intended to store graph-related information for the tracking data. It can be extended
|
|
2049
|
+
later to represent relationships between different tracking objects.
|
|
2050
|
+
|
|
1351
2051
|
Notes
|
|
1352
2052
|
-----
|
|
1353
|
-
|
|
1354
|
-
|
|
1355
|
-
|
|
2053
|
+
- The function assumes that the dataframe contains specific columns: `TRACK_ID`, `FRAME`, `POSITION_Y`, `POSITION_X`,
|
|
2054
|
+
and `class_id`. These columns are used to construct the tracking data and properties.
|
|
2055
|
+
- The `z` coordinate is set to 0 for all tracks since the function does not process 3D data.
|
|
2056
|
+
- This function is useful for transforming tracking data into a format that can be used by tracking graph algorithms.
|
|
1356
2057
|
|
|
1357
|
-
|
|
1358
|
-
|
|
1359
|
-
>>>
|
|
1360
|
-
|
|
2058
|
+
Example
|
|
2059
|
+
-------
|
|
2060
|
+
>>> data, properties, graph = tracks_to_btrack(df, exclude_nans=True)
|
|
2061
|
+
"""
|
|
2062
|
+
|
|
2063
|
+
graph = {}
|
|
2064
|
+
if exclude_nans:
|
|
2065
|
+
df.dropna(subset='class_id',inplace=True)
|
|
2066
|
+
|
|
2067
|
+
df["z"] = 0.
|
|
2068
|
+
data = df[["TRACK_ID","FRAME","z","POSITION_Y","POSITION_X"]].to_numpy()
|
|
2069
|
+
|
|
2070
|
+
df['dummy'] = False
|
|
2071
|
+
prop_cols = ['FRAME','state','generation','root','parent','dummy','class_id']
|
|
2072
|
+
properties = {}
|
|
2073
|
+
for col in prop_cols:
|
|
2074
|
+
properties.update({col: df[col].to_numpy()})
|
|
2075
|
+
|
|
2076
|
+
return data, properties, graph
|
|
2077
|
+
|
|
2078
|
+
def tracks_to_napari(df, exclude_nans=False):
|
|
2079
|
+
|
|
2080
|
+
data, properties, graph = tracks_to_btrack(df, exclude_nans=exclude_nans)
|
|
2081
|
+
vertices = data[:, [1,-2,-1]]
|
|
2082
|
+
if data.shape[1]==4:
|
|
2083
|
+
tracks = data
|
|
2084
|
+
else:
|
|
2085
|
+
tracks = data[:,[0,1,3,4]]
|
|
2086
|
+
return vertices, tracks, properties, graph
|
|
1361
2087
|
|
|
2088
|
+
|
|
2089
|
+
def view_tracks_in_napari(position, population, stack=None, labels=None, relabel=True, flush_memory=True, threads=1):
|
|
2090
|
+
|
|
2091
|
+
"""
|
|
2092
|
+
Updated
|
|
1362
2093
|
"""
|
|
1363
2094
|
|
|
2095
|
+
df, df_path = get_position_table(position, population=population, return_path=True)
|
|
2096
|
+
if df is None:
|
|
2097
|
+
print('Please compute trajectories first... Abort...')
|
|
2098
|
+
return None
|
|
2099
|
+
shared_data = {"df": df, "path": df_path, "position": position, "population": population, 'selected_frame': None}
|
|
2100
|
+
|
|
1364
2101
|
if (labels is not None) * relabel:
|
|
1365
2102
|
print('Replacing the cell mask labels with the track ID...')
|
|
1366
|
-
labels = relabel_segmentation(labels,
|
|
2103
|
+
labels = relabel_segmentation(labels, df, exclude_nans=True, threads=threads)
|
|
1367
2104
|
|
|
1368
|
-
vertices =
|
|
2105
|
+
vertices, tracks, properties, graph = tracks_to_napari(df, exclude_nans=True)
|
|
1369
2106
|
|
|
1370
2107
|
viewer = napari.Viewer()
|
|
1371
2108
|
if stack is not None:
|
|
1372
2109
|
viewer.add_image(stack, channel_axis=-1, colormap=["gray"] * stack.shape[-1])
|
|
1373
2110
|
if labels is not None:
|
|
1374
|
-
viewer.add_labels(labels.astype(int), name='segmentation', opacity=0.4)
|
|
2111
|
+
labels_layer = viewer.add_labels(labels.astype(int), name='segmentation', opacity=0.4)
|
|
1375
2112
|
viewer.add_points(vertices, size=4, name='points', opacity=0.3)
|
|
1376
|
-
|
|
1377
|
-
|
|
1378
|
-
|
|
1379
|
-
viewer.
|
|
2113
|
+
viewer.add_tracks(tracks, properties=properties, graph=graph, name='tracks')
|
|
2114
|
+
|
|
2115
|
+
def lock_controls(layer, widgets=(), locked=True):
|
|
2116
|
+
qctrl = viewer.window.qt_viewer.controls.widgets[layer]
|
|
2117
|
+
for wdg in widgets:
|
|
2118
|
+
try:
|
|
2119
|
+
getattr(qctrl, wdg).setEnabled(not locked)
|
|
2120
|
+
except:
|
|
2121
|
+
pass
|
|
2122
|
+
|
|
2123
|
+
label_widget_list = ['paint_button', 'erase_button', 'fill_button', 'polygon_button', 'transform_button']
|
|
2124
|
+
lock_controls(viewer.layers['segmentation'], label_widget_list)
|
|
2125
|
+
|
|
2126
|
+
point_widget_list = ['addition_button', 'delete_button', 'select_button', 'transform_button']
|
|
2127
|
+
lock_controls(viewer.layers['points'], point_widget_list)
|
|
2128
|
+
|
|
2129
|
+
track_widget_list = ['transform_button']
|
|
2130
|
+
lock_controls(viewer.layers['tracks'], track_widget_list)
|
|
2131
|
+
|
|
2132
|
+
# Initialize selected frame
|
|
2133
|
+
selected_frame = viewer.dims.current_step[0]
|
|
2134
|
+
shared_data['selected_frame'] = selected_frame
|
|
2135
|
+
|
|
2136
|
+
def export_modifications():
|
|
2137
|
+
|
|
2138
|
+
from celldetective.tracking import write_first_detection_class, clean_trajectories
|
|
2139
|
+
from celldetective.utils import velocity_per_track
|
|
2140
|
+
|
|
2141
|
+
df = shared_data['df']
|
|
2142
|
+
position = shared_data['position']
|
|
2143
|
+
population = shared_data['population']
|
|
2144
|
+
df = velocity_per_track(df, window_size=3, mode='bi')
|
|
2145
|
+
df = write_first_detection_class(df, img_shape=labels[0].shape)
|
|
2146
|
+
|
|
2147
|
+
experiment = extract_experiment_from_position(position)
|
|
2148
|
+
instruction_file = "/".join([experiment,"configs", f"tracking_instructions_{population}.json"])
|
|
2149
|
+
print(f"{instruction_file=}")
|
|
2150
|
+
if os.path.exists(instruction_file):
|
|
2151
|
+
print('Tracking configuration file found...')
|
|
2152
|
+
with open(instruction_file, 'r') as f:
|
|
2153
|
+
instructions = json.load(f)
|
|
2154
|
+
if 'post_processing_options' in instructions:
|
|
2155
|
+
post_processing_options = instructions['post_processing_options']
|
|
2156
|
+
print(f'Applying the following track postprocessing: {post_processing_options}...')
|
|
2157
|
+
df = clean_trajectories(df.copy(),**post_processing_options)
|
|
2158
|
+
unnamed_cols = [c for c in list(df.columns) if c.startswith('Unnamed')]
|
|
2159
|
+
df = df.drop(unnamed_cols, axis=1)
|
|
2160
|
+
print(f"{list(df.columns)=}")
|
|
2161
|
+
df.to_csv(shared_data['path'], index=False)
|
|
2162
|
+
print('Done...')
|
|
2163
|
+
|
|
2164
|
+
@magicgui(call_button='Export the modified\ntracks...')
|
|
2165
|
+
def export_table_widget():
|
|
2166
|
+
return export_modifications()
|
|
2167
|
+
|
|
2168
|
+
def label_changed(event):
|
|
2169
|
+
|
|
2170
|
+
value = viewer.layers['segmentation'].selected_label
|
|
2171
|
+
if value != 0:
|
|
2172
|
+
selected_frame = viewer.dims.current_step[0]
|
|
2173
|
+
shared_data['selected_frame'] = selected_frame
|
|
2174
|
+
|
|
2175
|
+
|
|
2176
|
+
viewer.layers['segmentation'].events.selected_label.connect(label_changed)
|
|
2177
|
+
|
|
2178
|
+
viewer.window.add_dock_widget(export_table_widget, area='right')
|
|
2179
|
+
|
|
2180
|
+
@labels_layer.mouse_double_click_callbacks.append
|
|
2181
|
+
def on_second_click_of_double_click(layer, event):
|
|
2182
|
+
|
|
2183
|
+
df = shared_data['df']
|
|
2184
|
+
position = shared_data['position']
|
|
2185
|
+
population = shared_data['population']
|
|
2186
|
+
|
|
2187
|
+
frame, x, y = event.position
|
|
2188
|
+
try:
|
|
2189
|
+
value_under = viewer.layers['segmentation'].data[int(frame), int(x), int(y)] #labels[0,int(y),int(x)]
|
|
2190
|
+
if value_under==0:
|
|
2191
|
+
return None
|
|
2192
|
+
except:
|
|
2193
|
+
print('Invalid mask value...')
|
|
2194
|
+
return None
|
|
2195
|
+
|
|
2196
|
+
target_track_id = viewer.layers['segmentation'].selected_label
|
|
2197
|
+
|
|
2198
|
+
msgBox = QMessageBox()
|
|
2199
|
+
msgBox.setIcon(QMessageBox.Question)
|
|
2200
|
+
msgBox.setText(f"Do you want to propagate track {target_track_id} to the cell under the mouse, track {value_under}?")
|
|
2201
|
+
msgBox.setWindowTitle("Info")
|
|
2202
|
+
msgBox.setStandardButtons(QMessageBox.Yes | QMessageBox.No)
|
|
2203
|
+
returnValue = msgBox.exec()
|
|
2204
|
+
if returnValue == QMessageBox.No:
|
|
2205
|
+
return None
|
|
2206
|
+
else:
|
|
2207
|
+
|
|
2208
|
+
if target_track_id not in df['TRACK_ID'].unique() and target_track_id in np.unique(viewer.layers['segmentation'].data[shared_data['selected_frame']]):
|
|
2209
|
+
# the selected cell in frame -1 is not in the table... we can add it to DataFrame
|
|
2210
|
+
current_labelm1 = viewer.layers['segmentation'].data[shared_data['selected_frame']]
|
|
2211
|
+
original_labelm1 = locate_labels(position, population=population, frames=shared_data['selected_frame'])
|
|
2212
|
+
original_labelm1[current_labelm1!=target_track_id] = 0
|
|
2213
|
+
props = regionprops_table(original_labelm1, intensity_image=None, properties=['centroid', 'label'])
|
|
2214
|
+
props = pd.DataFrame(props)
|
|
2215
|
+
new_cell = props[['centroid-1', 'centroid-0','label']].copy()
|
|
2216
|
+
new_cell.rename(columns={'centroid-1': 'POSITION_X', 'centroid-0': 'POSITION_Y', 'label': 'class_id'},inplace=True)
|
|
2217
|
+
new_cell['FRAME'] = shared_data['selected_frame']
|
|
2218
|
+
new_cell['TRACK_ID'] = target_track_id
|
|
2219
|
+
df = pd.concat([df, new_cell], ignore_index=True)
|
|
2220
|
+
|
|
2221
|
+
if value_under not in df['TRACK_ID'].unique():
|
|
2222
|
+
# the cell to add is not currently part of DataFrame, need to add measurement
|
|
2223
|
+
|
|
2224
|
+
current_label = viewer.layers['segmentation'].data[int(frame)]
|
|
2225
|
+
original_label = locate_labels(position, population=population, frames=int(frame))
|
|
2226
|
+
|
|
2227
|
+
new_datapoint = {'TRACK_ID': value_under, 'FRAME': frame, 'POSITION_X': np.nan, 'POSITION_Y': np.nan, 'class_id': np.nan}
|
|
2228
|
+
|
|
2229
|
+
original_label[current_label!=value_under] = 0
|
|
2230
|
+
|
|
2231
|
+
props = regionprops_table(original_label, intensity_image=None, properties=['centroid', 'label'])
|
|
2232
|
+
props = pd.DataFrame(props)
|
|
2233
|
+
|
|
2234
|
+
new_cell = props[['centroid-1', 'centroid-0','label']].copy()
|
|
2235
|
+
new_cell.rename(columns={'centroid-1': 'POSITION_X', 'centroid-0': 'POSITION_Y', 'label': 'class_id'},inplace=True)
|
|
2236
|
+
new_cell['FRAME'] = int(frame)
|
|
2237
|
+
new_cell['TRACK_ID'] = value_under
|
|
2238
|
+
df = pd.concat([df, new_cell], ignore_index=True)
|
|
2239
|
+
|
|
2240
|
+
relabel = np.amax(df['TRACK_ID'].unique()) + 1
|
|
2241
|
+
for f in viewer.layers['segmentation'].data[int(frame):]:
|
|
2242
|
+
if target_track_id!=0:
|
|
2243
|
+
f[np.where(f==target_track_id)] = relabel
|
|
2244
|
+
f[np.where(f==value_under)] = target_track_id
|
|
2245
|
+
|
|
2246
|
+
if target_track_id!=0:
|
|
2247
|
+
df.loc[(df['FRAME']>=frame)&(df['TRACK_ID']==target_track_id),'TRACK_ID'] = relabel
|
|
2248
|
+
df.loc[(df['FRAME']>=frame)&(df['TRACK_ID']==value_under),'TRACK_ID'] = target_track_id
|
|
2249
|
+
df = df.loc[~(df['TRACK_ID']==0),:]
|
|
2250
|
+
df = df.sort_values(by=['TRACK_ID','FRAME'])
|
|
2251
|
+
|
|
2252
|
+
vertices, tracks, properties, graph = tracks_to_napari(df, exclude_nans=True)
|
|
2253
|
+
|
|
2254
|
+
viewer.layers['tracks'].data = tracks
|
|
2255
|
+
viewer.layers['tracks'].properties = properties
|
|
2256
|
+
viewer.layers['tracks'].graph = graph
|
|
2257
|
+
|
|
2258
|
+
viewer.layers['points'].data = vertices
|
|
2259
|
+
|
|
2260
|
+
viewer.layers['segmentation'].refresh()
|
|
2261
|
+
viewer.layers['tracks'].refresh()
|
|
2262
|
+
viewer.layers['points'].refresh()
|
|
2263
|
+
|
|
2264
|
+
shared_data['df'] = df
|
|
2265
|
+
|
|
1380
2266
|
viewer.show(block=True)
|
|
1381
2267
|
|
|
1382
2268
|
if flush_memory:
|
|
2269
|
+
|
|
1383
2270
|
# temporary fix for slight napari memory leak
|
|
1384
2271
|
for i in range(10000):
|
|
1385
2272
|
try:
|
|
@@ -1394,6 +2281,7 @@ def view_on_napari_btrack(data, properties, graph, stack=None, labels=None, rela
|
|
|
1394
2281
|
|
|
1395
2282
|
|
|
1396
2283
|
def load_napari_data(position, prefix="Aligned", population="target", return_stack=True):
|
|
2284
|
+
|
|
1397
2285
|
"""
|
|
1398
2286
|
Load the necessary data for visualization in napari.
|
|
1399
2287
|
|
|
@@ -1417,6 +2305,10 @@ def load_napari_data(position, prefix="Aligned", population="target", return_sta
|
|
|
1417
2305
|
# Load the necessary data for visualization of target trajectories.
|
|
1418
2306
|
|
|
1419
2307
|
"""
|
|
2308
|
+
|
|
2309
|
+
if not position.endswith(os.sep):
|
|
2310
|
+
position += os.sep
|
|
2311
|
+
|
|
1420
2312
|
position = position.replace('\\','/')
|
|
1421
2313
|
if population.lower()=="target" or population.lower()=="targets":
|
|
1422
2314
|
if os.path.exists(position+os.sep.join(['output','tables','napari_target_trajectories.npy'])):
|
|
@@ -1428,6 +2320,7 @@ def load_napari_data(position, prefix="Aligned", population="target", return_sta
|
|
|
1428
2320
|
napari_data = np.load(position+os.sep.join(['output', 'tables', 'napari_effector_trajectories.npy']), allow_pickle=True)
|
|
1429
2321
|
else:
|
|
1430
2322
|
napari_data = None
|
|
2323
|
+
|
|
1431
2324
|
if napari_data is not None:
|
|
1432
2325
|
data = napari_data.item()['data']
|
|
1433
2326
|
properties = napari_data.item()['properties']
|
|
@@ -1444,9 +2337,6 @@ def load_napari_data(position, prefix="Aligned", population="target", return_sta
|
|
|
1444
2337
|
return data, properties, graph, labels, stack
|
|
1445
2338
|
|
|
1446
2339
|
|
|
1447
|
-
from skimage.measure import label
|
|
1448
|
-
|
|
1449
|
-
|
|
1450
2340
|
def auto_correct_masks(masks, bbox_factor = 1.75, min_area=9, fill_labels=False):
|
|
1451
2341
|
|
|
1452
2342
|
"""
|
|
@@ -1621,7 +2511,7 @@ def control_segmentation_napari(position, prefix='Aligned', population="target",
|
|
|
1621
2511
|
squares = np.array(squares)
|
|
1622
2512
|
squares = squares[test_in_frame]
|
|
1623
2513
|
nbr_squares = len(squares)
|
|
1624
|
-
print(f"Found {nbr_squares}
|
|
2514
|
+
print(f"Found {nbr_squares} ROIs...")
|
|
1625
2515
|
if nbr_squares > 0:
|
|
1626
2516
|
# deactivate field of view mode
|
|
1627
2517
|
fov_export = False
|
|
@@ -1710,6 +2600,19 @@ def control_segmentation_napari(position, prefix='Aligned', population="target",
|
|
|
1710
2600
|
viewer.add_labels(labels.astype(int), name='segmentation', opacity=0.4)
|
|
1711
2601
|
viewer.window.add_dock_widget(save_widget, area='right')
|
|
1712
2602
|
viewer.window.add_dock_widget(export_widget, area='right')
|
|
2603
|
+
|
|
2604
|
+
def lock_controls(layer, widgets=(), locked=True):
|
|
2605
|
+
qctrl = viewer.window.qt_viewer.controls.widgets[layer]
|
|
2606
|
+
for wdg in widgets:
|
|
2607
|
+
try:
|
|
2608
|
+
getattr(qctrl, wdg).setEnabled(not locked)
|
|
2609
|
+
except:
|
|
2610
|
+
pass
|
|
2611
|
+
|
|
2612
|
+
label_widget_list = ['polygon_button', 'transform_button']
|
|
2613
|
+
lock_controls(viewer.layers['segmentation'], label_widget_list)
|
|
2614
|
+
|
|
2615
|
+
|
|
1713
2616
|
viewer.show(block=True)
|
|
1714
2617
|
|
|
1715
2618
|
if flush_memory:
|