celldetective 1.2.2__py3-none-any.whl → 1.2.2.post2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (29) hide show
  1. celldetective/__main__.py +2 -404
  2. celldetective/gui/InitWindow.py +400 -0
  3. celldetective/gui/help/DL-segmentation-strategy.json +41 -0
  4. celldetective/gui/help/Threshold-vs-DL.json +26 -0
  5. celldetective/gui/help/cell-populations.json +11 -0
  6. celldetective/gui/help/exp-structure.json +36 -0
  7. celldetective/gui/help/feature-btrack.json +11 -0
  8. celldetective/gui/help/neighborhood.json +16 -0
  9. celldetective/gui/help/prefilter-for-segmentation.json +16 -0
  10. celldetective/gui/help/preprocessing.json +51 -0
  11. celldetective/gui/help/propagate-classification.json +16 -0
  12. celldetective/gui/help/track-postprocessing.json +46 -0
  13. celldetective/gui/help/tracking.json +11 -0
  14. celldetective/io.py +60 -23
  15. celldetective/utils.py +5 -4
  16. celldetective-1.2.2.post2.dist-info/METADATA +214 -0
  17. {celldetective-1.2.2.dist-info → celldetective-1.2.2.post2.dist-info}/RECORD +22 -15
  18. tests/test_qt.py +101 -0
  19. celldetective/models/segmentation_effectors/primNK_cfse/config_input.json +0 -29
  20. celldetective/models/segmentation_effectors/primNK_cfse/cp-cfse-transfer +0 -0
  21. celldetective/models/segmentation_effectors/primNK_cfse/training_instructions.json +0 -37
  22. celldetective/models/segmentation_effectors/ricm-bimodal/config_input.json +0 -130
  23. celldetective/models/segmentation_effectors/ricm-bimodal/ricm-bimodal +0 -0
  24. celldetective/models/segmentation_effectors/ricm-bimodal/training_instructions.json +0 -37
  25. celldetective-1.2.2.dist-info/METADATA +0 -312
  26. {celldetective-1.2.2.dist-info → celldetective-1.2.2.post2.dist-info}/LICENSE +0 -0
  27. {celldetective-1.2.2.dist-info → celldetective-1.2.2.post2.dist-info}/WHEEL +0 -0
  28. {celldetective-1.2.2.dist-info → celldetective-1.2.2.post2.dist-info}/entry_points.txt +0 -0
  29. {celldetective-1.2.2.dist-info → celldetective-1.2.2.post2.dist-info}/top_level.txt +0 -0
@@ -1,29 +0,0 @@
1
- {
2
- "channels": [
3
- "effector_fluo_channel",
4
- "None"
5
- ],
6
- "diameter": 30.0,
7
- "cellprob_threshold": 0.0,
8
- "flow_threshold": 0.4,
9
- "normalization_percentile": [
10
- true,
11
- true
12
- ],
13
- "normalization_clip": [
14
- true,
15
- true
16
- ],
17
- "normalization_values": [
18
- [
19
- 0.5,
20
- 99.0
21
- ],
22
- [
23
- 1.0,
24
- 99.0
25
- ]
26
- ],
27
- "model_type": "cellpose",
28
- "spatial_calibration": 0.21783999999999998
29
- }
@@ -1,37 +0,0 @@
1
- {
2
- "model_name": "cp-cfse-transfer",
3
- "model_type": "cellpose",
4
- "pretrained": "/home/limozin/Documents/GitHub/celldetective/celldetective/models/segmentation_generic/CP_cyto2",
5
- "spatial_calibration": 0.21783999999999998,
6
- "channel_option": [
7
- "effector_fluo_channel",
8
- "None"
9
- ],
10
- "normalization_percentile": [
11
- true,
12
- true
13
- ],
14
- "normalization_clip": [
15
- true,
16
- true
17
- ],
18
- "normalization_values": [
19
- [
20
- 0.5,
21
- 99.0
22
- ],
23
- [
24
- 1.0,
25
- 99.0
26
- ]
27
- ],
28
- "ds": [
29
- "/home/limozin/Desktop/primNK_w_MCF7/dataset"
30
- ],
31
- "augmentation_factor": 1.5,
32
- "validation_split": 0.2,
33
- "learning_rate": 0.001,
34
- "batch_size": 8,
35
- "epochs": 3000,
36
- "target_directory": "/home/limozin/Documents/GitHub/celldetective/celldetective/models/segmentation_effectors"
37
- }
@@ -1,130 +0,0 @@
1
- {
2
- "channels": [
3
- "adhesion_channel",
4
- "brightfield_channel"
5
- ],
6
- "diameter": 30.0,
7
- "cellprob_threshold": 0.0,
8
- "flow_threshold": 0.4,
9
- "normalization_percentile": [
10
- false,
11
- true
12
- ],
13
- "normalization_clip": [
14
- true,
15
- true
16
- ],
17
- "normalization_values": [
18
- [
19
- 0.75,
20
- 1.25
21
- ],
22
- [
23
- 1.0,
24
- 99.0
25
- ]
26
- ],
27
- "model_type": "cellpose",
28
- "spatial_calibration": 0.2,
29
- "dataset": {
30
- "train": [
31
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Marie_100_0109.tif",
32
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/StaticRICM-Dom-20191016-Her2-10nM-C7b21_200_0057.tif",
33
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/StaticRICM-Dom-20191016-Her2-10nM-C7b21_200_0058.tif",
34
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/AdhesionDalia-26-08_209_0022.tif",
35
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/AdhesionDalia-26-08_2015_0039.tif",
36
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Exp20190619_700_0024.tif",
37
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia-2021-04-27_C7b21NF-incub-with-cells-test_605_0037.tif",
38
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia08052020_102_0039.tif",
39
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_200_0034.tif",
40
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia08052020_103_0011.tif",
41
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Marie_701_0004.tif",
42
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_201_0035.tif",
43
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia08052020_100_0016.tif",
44
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia-2021-04-27_C7b21NF-incub-with-cells-test_202_0020.tif",
45
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dominique20191016_303_0016.tif",
46
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Marie_502_0000.tif",
47
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/20231213_RICM_2C11_PP2_normed_201_0000.tif",
48
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia08052020_105_0031.tif",
49
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/AdhesionDalia-26-08_2012_0039.tif",
50
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia-2021-04-27_C7b21NF-incub-with-cells-test_608_0028.tif",
51
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_2012_0027.tif",
52
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia08052020_101_0021.tif",
53
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia-2021-04-27_C7b21NF-incub-with-cells-test_302_0039.tif",
54
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia08052020_104_0036.tif",
55
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Marie_801_0036.tif",
56
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_502_0036.tif",
57
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Marie_808_0173.tif",
58
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_5011_0006.tif",
59
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/StaticRICM-Dom-20191016-Her2-10nM-C7b21_800_0019.tif",
60
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dominique20191016_302_0039.tif",
61
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Exp20190619_400_0061.tif",
62
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/20231213_RICM_2C11_PP2_normed_106_0117.tif",
63
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_402_0039.tif",
64
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/20231213_RICM_2C11_PP2_normed_305_0158.tif",
65
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/20231213_RICM_2C11_PP2_normed_308_0191.tif",
66
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/StaticRICM-Dom-20191016-Her2-10nM-C7b21_800_0050.tif",
67
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Marie_500_0127.tif",
68
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/20231213_RICM_2C11_PP2_normed_300_0009.tif",
69
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Marie_701_0082.tif",
70
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/StaticRICM-Dom-20191016-Her2-10nM-C7b21_800_0000.tif",
71
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_303_0019.tif",
72
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/StaticRICM-Dom-20191016-Her2-10nM-C7b21_800_0002.tif",
73
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Exp20190619_700_0009.tif",
74
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Marie_701_0055.tif",
75
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia08052020_104_0019.tif",
76
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/20231213_RICM_2C11_PP2_normed_600_0108.tif",
77
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/StaticRICM-Dom-20191016-Her2-10nM-C7b21_800_0021.tif",
78
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/20231213_RICM_2C11_PP2_normed_600_0193_roi_491_996_143_708.tif",
79
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/20231213_RICM_2C11_PP2_normed_106_0000.tif",
80
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_2014_0038.tif",
81
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia-2021-04-27_C7b21NF-incub-with-cells-test_604_0033.tif",
82
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_303_0025.tif",
83
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia08052020_105_0038.tif",
84
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia-2021-04-27_C7b21NF-incub-with-cells-test_201_0039.tif",
85
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/20231213_RICM_2C11_PP2_normed_406_0202.tif",
86
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia08052020_105_0028.tif",
87
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Marie_600_0172.tif",
88
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/20231213_RICM_2C11_PP2_normed_600_0193.tif",
89
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_3011_0036.tif",
90
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_203_0024.tif",
91
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_209_0020.tif",
92
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/20231213_RICM_2C11_PP2_normed_100_0181.tif",
93
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_201_0034.tif",
94
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_704_0010.tif",
95
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_2014_0034.tif",
96
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_303_0021.tif",
97
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Exp20190619_700_0023.tif",
98
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Marie_600_0019.tif",
99
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Marie_808_0016.tif",
100
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dominique20191016_303_0039.tif",
101
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia08052020_103_0034.tif",
102
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia08052020_101_0038.tif",
103
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Marie_100_0007.tif",
104
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia-2021-04-27_C7b21NF-incub-with-cells-test_607_0035.tif",
105
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Marie_200_0006.tif",
106
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_206_0030.tif"
107
- ],
108
- "validation": [
109
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia-2021-04-27_C7b21NF-incub-with-cells-test_6011_0026.tif",
110
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia08052020_100_0035.tif",
111
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/AdhesionDalia-26-08_208_0020.tif",
112
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia08052020_102_0031.tif",
113
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia-2021-04-27_C7b21NF-incub-with-cells-test_200_0039.tif",
114
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Marie_502_0150.tif",
115
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dominique20191016_304_0033.tif",
116
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia08052020_1015_0036.tif",
117
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/StaticRICM-Dom-20191016-Her2-10nM-C7b21_200_0061.tif",
118
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_5013_0000.tif",
119
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Exp20190619_700_0025.tif",
120
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia08052020_105_0039.tif",
121
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Marie_801_0177.tif",
122
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_504_0016.tif",
123
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dominique20191016_301_0039.tif",
124
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia01092020_504_0037.tif",
125
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dominique20191016_305_0030.tif",
126
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/Dalia-2021-04-27_C7b21NF-incub-with-cells-test_606_0036.tif",
127
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined/20231213_RICM_2C11_PP2_normed_300_0087.tif"
128
- ]
129
- }
130
- }
@@ -1,37 +0,0 @@
1
- {
2
- "model_name": "ricm-bimodal",
3
- "model_type": "cellpose",
4
- "pretrained": null,
5
- "spatial_calibration": 0.2,
6
- "channel_option": [
7
- "adhesion_channel",
8
- "brightfield_channel"
9
- ],
10
- "normalization_percentile": [
11
- false,
12
- true
13
- ],
14
- "normalization_clip": [
15
- true,
16
- true
17
- ],
18
- "normalization_values": [
19
- [
20
- 0.75,
21
- 1.25
22
- ],
23
- [
24
- 1.0,
25
- 99.0
26
- ]
27
- ],
28
- "ds": [
29
- "/home/kheya/Documents/torro-cinam/DATASET-RICM/combined"
30
- ],
31
- "augmentation_factor": 3.0,
32
- "validation_split": 0.2,
33
- "learning_rate": 0.008,
34
- "batch_size": 16,
35
- "epochs": 3000,
36
- "target_directory": "/home/kheya/Documents/torro-cinam/GitHub/celldetective/celldetective/models/segmentation_effectors"
37
- }
@@ -1,312 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: celldetective
3
- Version: 1.2.2
4
- Summary: description
5
- Home-page: http://github.com/remyeltorro/celldetective
6
- Author: Rémy Torro
7
- Author-email: remy.torro@inserm.fr
8
- License: GPL-3.0
9
- Description-Content-Type: text/markdown
10
- License-File: LICENSE
11
- Requires-Dist: wheel
12
- Requires-Dist: nbsphinx
13
- Requires-Dist: nbsphinx-link
14
- Requires-Dist: sphinx-rtd-theme
15
- Requires-Dist: sphinx
16
- Requires-Dist: jinja2
17
- Requires-Dist: ipykernel
18
- Requires-Dist: stardist
19
- Requires-Dist: cellpose<3
20
- Requires-Dist: scikit-learn
21
- Requires-Dist: btrack
22
- Requires-Dist: tensorflow~=2.15.0
23
- Requires-Dist: napari
24
- Requires-Dist: tqdm
25
- Requires-Dist: mahotas
26
- Requires-Dist: fonticon-materialdesignicons6
27
- Requires-Dist: art
28
- Requires-Dist: lifelines
29
- Requires-Dist: setuptools
30
- Requires-Dist: scipy
31
- Requires-Dist: seaborn
32
- Requires-Dist: opencv-python-headless==4.7.0.72
33
- Requires-Dist: liblapack
34
- Requires-Dist: gputools
35
- Requires-Dist: lmfit
36
- Requires-Dist: superqt[cmap]
37
- Requires-Dist: matplotlib-scalebar
38
- Requires-Dist: numpy==1.26.4
39
-
40
- # Celldetective
41
-
42
- <embed>
43
- <p align="center">
44
- <img src="https://github.com/remyeltorro/celldetective/blob/main/celldetective/icons/logo-large.png" width="33%" />
45
- </p>
46
- </embed>
47
-
48
- ![ico1](https://img.shields.io/readthedocs/celldetective?link=https%3A%2F%2Fcelldetective.readthedocs.io%2Fen%2Flatest%2Findex.html)
49
- ![ico17](https://github.com/remyeltorro/celldetective/actions/workflows/test.yml/badge.svg)
50
- ![ico4](https://img.shields.io/pypi/v/celldetective)
51
- ![ico6](https://img.shields.io/github/downloads/remyeltorro/celldetective/total)
52
- ![ico5](https://img.shields.io/pypi/dm/celldetective)
53
- ![ico2](https://img.shields.io/github/forks/remyeltorro/celldetective?link=https%3A%2F%2Fgithub.com%2Fremyeltorro%2Fcelldetective%2Fforks)
54
- ![ico3](https://img.shields.io/github/stars/remyeltorro/celldetective?link=https%3A%2F%2Fgithub.com%2Fremyeltorro%2Fcelldetective%2Fstargazers)
55
-
56
- Celldetective is a python package and software to perform single-cell
57
- analysis on multimodal time lapse microscopy images.
58
-
59
- - **Documentation:** <https://celldetective.readthedocs.io>
60
- - **Source code:** <https://github.com/remyeltorro/celldetective>
61
- - **Bug reports:**
62
- <https://github.com/remyeltorro/celldetective/issues/new/choose>
63
- - **Datasets, models and demos:**
64
- <https://zenodo.org/records/10650279>
65
-
66
- ## Overview
67
-
68
- <embed>
69
- <p align="center">
70
- <img src="https://github.com/remyeltorro/celldetective/blob/main/docs/source/_static/celldetective-blocks.png" width="90%" />
71
- </p>
72
- </embed>
73
-
74
- Despite notable efforts in the development of user-friendly softwares
75
- that integrate state-of-the-art solutions to perform single cell
76
- analysis, very few are designed for time-lapse data and even less for
77
- multimodal problems where cells populations are mixed and can only be
78
- separated through the use of multimodal information. Few software
79
- solutions provide, to our knowledge, the extraction of response
80
- functions from single cell events such as the dynamic survival of a
81
- population directly in the GUI, as coding skills are usually required to
82
- do so. We want to study complex data which is often multimodal time
83
- lapse microscopy images of interacting cell populations, without loss of
84
- generality. With a high need for an easy-to-use,
85
- no-coding-skill-required software adapted to images and intended for
86
- biologists, we introduce **Celldetective**, an open-source python-based
87
- software with the following highlight features:
88
-
89
- - **Comprehensive single-cell image analysis** : Celldetective ships
90
- segmentation, tracking, and measurement modules, as well as event
91
- detection from single-cell signals, for up to two populations of
92
- interest.
93
- - **Integration of state-of-the-art solutions** : Celldetective
94
- harnesses state-of-the-art segmentation techniques (StarDist[^1],
95
- Cellpose[^2] ,[^3]) and tracking algorithm (bTrack[^4]), as well as
96
- the napari viewer[^5] where applicable. These algorithms are
97
- interfaced to be well integrated and accessible for the target
98
- audience, in the context of complex biological applications.
99
- - **A framework for event description and annotations** : we propose a
100
- broad and intuitive framework to annotate and automate the detection
101
- of events from single-cell signals through Deep Learning signal
102
- classification and regression. The event formulation is directly
103
- exploited to define population survival responses.
104
- - **A neighborhood scheme to study cell-cell interactions** : we
105
- introduce a neighborhood scheme to relate the spatio-temporal
106
- distribution and measurements of two cell populations, allowing the
107
- study of how cell-cell interactions affect single-cell and
108
- population responses.
109
- - **Deep Learning customization in GUI** : Celldetective facilitates
110
- the specialization of Deep Learning models or the creation of new
111
- ones adapted to user data, by facilitating the creation of training
112
- sets and the training of such models, without having to write a
113
- single line of code.
114
- - **In-software analysis** : Celldetective ships visualization tools
115
- to collapse single-cell signals with respect to an event, build
116
- survival curves, compare measurement distributions across biological
117
- conditions.
118
- - **A library of segmentation and signal models**: we created specific
119
- models to investigate a co-culture of MCF-7 cells and primary NK
120
- cells, that are available directly is the software with a large
121
- collection of generalist models developed by the StarDist and
122
- Cellpose teams, which are a perfect starting point to segment single
123
- cells in a new biological system.
124
- - **Accessible and open source** : Celldetective does not require any
125
- coding skills. The software, its models and datasets are made fully
126
- open source to encourage transparency and reproducibility.
127
-
128
- <embed>
129
- <p align="center">
130
- <img src="https://github.com/remyeltorro/celldetective/blob/main/docs/source/_static/signal-annotator.gif" width="90%" />
131
- </p>
132
- </embed>
133
-
134
- # System requirements
135
-
136
- ## Hardware requirements
137
-
138
- The software was tested on several machines, including:
139
-
140
- - An Intel(R) Core(TM) i9-10850K CPU @ 3.60GHz, with a single NVIDIA
141
- GeForce RTX 3070 (8 Gb of memory) and 16 Gb of memory
142
- - An Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz, with 16 Gb of memory
143
-
144
- In GPU mode, succesive segmentation and DL signal analysis could be
145
- performed without saturating the GPU memory thanks to the subprocess
146
- formulation for the different modules. The GPU can be disabled in the
147
- startup window. The software does not require a GPU (but model inference
148
- will be longer). A typical analysis of a single movie with a GPU takes
149
- between 5 to 15 minutes. Depending on the number of cells and frames on
150
- the images, this computation time can increase to the order of half an
151
- hour on a CPU.
152
-
153
- The memory must be sufficient to load a movie stack at once in order to
154
- visualize it in napari. Otherwise, processing is performed frame by
155
- frame, therefore the memory required is extremely low.
156
-
157
- ## Software requirements
158
-
159
- The software was developed simulateously on Ubuntu 20.04 and Windows 11.
160
- It was tested on MacOS, but Tensorflow installation can rquire extra
161
- steps.
162
-
163
- - Linux: Ubuntu 20.04.6 LTS (Focal Fossa) (not tested on ulterior
164
- versions)
165
- - Windows: Windows 11 Home 23H2
166
-
167
- To use the software, you must install python, *e.g.* through
168
- [Anaconda](https://www.anaconda.com/download). We developed and tested
169
- the software in Python 3.9 and more recently 3.11.
170
-
171
- # Installation
172
-
173
- ## Stable release
174
-
175
- Celldetective requires a version of Python between 3.9 and 3.11 (included). If your Python version is older or more recent, consider using `conda` to create an environment as described below.
176
-
177
- With the proper Python version, Celldetective can be directly installed with `pip`:
178
-
179
- ``` bash
180
- pip install celldetective
181
- ```
182
-
183
- We recommend that you create an environment to use Celldetective, to protect your package versions and fix the Python version *e.g.*
184
- with `conda`:
185
-
186
- ``` bash
187
- conda create -n celldetective python=3.11 pyqt
188
- conda activate celldetective
189
- pip install celldetective
190
- ```
191
-
192
- Need an update? Simply type the following in the terminal (in your
193
- environment):
194
-
195
- ``` bash
196
- pip install --upgrade celldetective
197
- ```
198
-
199
- ## Development version
200
-
201
- ### From GitHub
202
-
203
- If you want to run the latest development version, you can clone the
204
- repository to your local machine and install Celldetective in
205
- "development" mode. This means that any changes to the cloned repository
206
- will be immediately available in the python environment:
207
-
208
- ``` bash
209
- # creates "celldetective" folder
210
- git clone git://github.com/remyeltorro/celldetective.git
211
- cd celldetective
212
-
213
- # optional: create an environment
214
- conda create -n celldetective python=3.11 pyqt
215
- conda activate celldetective
216
-
217
- # install the celldetective package in editable/development mode
218
- pip install -r requirements.txt
219
- pip install -e .
220
- ```
221
-
222
- To run the latest development version without cloning the repository,
223
- you can also use this line:
224
-
225
- ``` bash
226
- pip install git+https//github.com/remyeltorro/celldetective.git
227
- ```
228
-
229
- ### From a zip file
230
-
231
- You can also download the repository as a compressed file. Unzip the
232
- file and open a terminal at the root of the folder (same level as the
233
- file requirements.txt). We recommend that you create a python
234
- environment as Celldetective relies on many packages that may interfere
235
- with package requirements for other projects. Run the following lines to
236
- create an environment named \"celldetective\":
237
-
238
- ``` bash
239
- conda create -n celldetective python=3.11 pyqt
240
- conda activate celldetective
241
- pip install -r requirements.txt
242
- pip install -e .
243
- ```
244
-
245
- The installation of the dependencies will take a few minutes (up to half
246
- an hour if the network is bad). The Celldetective package itself is
247
- light and installs in a few seconds.
248
-
249
- Before launching the software, move to a different directory as running
250
- the package locally can create some bugs when locating the models.
251
-
252
- # Quick start
253
-
254
- You can launch the GUI by 1) opening a terminal and 2) typing the
255
- following:
256
-
257
- ``` bash
258
- python -m celldetective
259
- ```
260
-
261
- # Documentation
262
-
263
- Read the tutorial here:
264
-
265
- <https://celldetective.readthedocs.io/>
266
-
267
- # How to cite?
268
-
269
- If you use this software in your research, please cite the
270
- [Celldetective](https://www.biorxiv.org/content/10.1101/2024.03.15.585250v1)
271
- paper (currently preprint):
272
-
273
- ``` raw
274
- @article {Torro2024.03.15.585250,
275
- author = {R{\'e}my Torro and Beatriz D{\`\i}az-Bello and Dalia El Arawi and Lorna Ammer and Patrick Chames and Kheya Sengupta and Laurent Limozin},
276
- title = {Celldetective: an AI-enhanced image analysis tool for unraveling dynamic cell interactions},
277
- elocation-id = {2024.03.15.585250},
278
- year = {2024},
279
- doi = {10.1101/2024.03.15.585250},
280
- publisher = {Cold Spring Harbor Laboratory},
281
- abstract = {A current key challenge in bioimaging is the analysis of multimodal and multidimensional data reporting dynamic interactions between diverse cell populations. We developed Celldetective, a software that integrates AI-based segmentation and tracking algorithms and automated signal analysis into a user-friendly graphical interface. It offers complete interactive visualization, annotation, and training capabilities. We demonstrate it by analyzing original experimental data of spreading immune effector cells as well as antibody-dependent cell cytotoxicity events using multimodal fluorescence microscopy.Competing Interest StatementThe authors have declared no competing interest.},
282
- URL = {https://www.biorxiv.org/content/early/2024/03/17/2024.03.15.585250},
283
- eprint = {https://www.biorxiv.org/content/early/2024/03/17/2024.03.15.585250.full.pdf},
284
- journal = {bioRxiv}
285
- }
286
- ```
287
-
288
- Make sure you to cite the papers of any segmentation model (StarDist,
289
- Cellpose) or tracker (bTrack) you used through Celldetective.
290
-
291
- # Bibliography
292
-
293
- [^1]: Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell Detection
294
- with Star-Convex Polygons. in Medical Image Computing and Computer
295
- Assisted Intervention -- MICCAI 2018 (eds. Frangi, A. F., Schnabel,
296
- J. A., Davatzikos, C., Alberola-López, C. & Fichtinger, G.) 265--273
297
- (Springer International Publishing, Cham, 2018).
298
- <doi:10.1007/978-3-030-00934-2_30>.
299
-
300
- [^2]: Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a
301
- generalist algorithm for cellular segmentation. Nat Methods 18,
302
- 100--106 (2021).
303
-
304
- [^3]: Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own
305
- model. Nat Methods 19, 1634--1641 (2022).
306
-
307
- [^4]: Ulicna, K., Vallardi, G., Charras, G. & Lowe, A. R. Automated Deep
308
- Lineage Tree Analysis Using a Bayesian Single Cell Tracking
309
- Approach. Frontiers in Computer Science 3, (2021).
310
-
311
- [^5]: Ahlers, J. et al. napari: a multi-dimensional image viewer for
312
- Python. Zenodo <https://doi.org/10.5281/zenodo.8115575> (2023).