celldetective 1.2.2.post2__py3-none-any.whl → 1.3.0.post1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -8,7 +8,7 @@
8
8
  "record": "public",
9
9
  "status": "open"
10
10
  },
11
- "created": "2024-02-20T10:44:16.176924+00:00",
11
+ "created": "2024-09-25T18:50:29.356160+00:00",
12
12
  "custom_fields": {
13
13
  "code:codeRepository": "https://github.com/remyeltorro/celldetective",
14
14
  "code:developmentStatus": {
@@ -31,259 +31,401 @@
31
31
  "status": "P"
32
32
  },
33
33
  "files": {
34
- "count": 24,
35
- "default_preview": "db_mcf7_nuclei_w_primary_NK.zip",
34
+ "count": 21,
35
+ "default_preview": "db_mcf7_nuclei_w_lymphocytes.zip",
36
36
  "enabled": true,
37
37
  "entries": {
38
- "CP.zip": {
39
- "checksum": "md5:8759d036061b1101fb29cdab7ec2553e",
40
- "ext": "zip",
41
- "id": "dfb79c02-eec0-4877-978d-b4c5c7fef502",
42
- "key": "CP.zip",
43
- "metadata": null,
44
- "mimetype": "application/zip",
45
- "size": 24570028
46
- },
47
- "CP_cyto.zip": {
48
- "checksum": "md5:f9b50b77833ba0aac5a108bf5eea141e",
49
- "ext": "zip",
50
- "id": "2457ecaf-4cf7-4b6e-8700-7db45225171b",
51
- "key": "CP_cyto.zip",
52
- "metadata": null,
53
- "mimetype": "application/zip",
54
- "size": 24589828
55
- },
56
- "CP_cyto2.zip": {
57
- "checksum": "md5:9a9bee3bae47bca15379dfa6b09bef19",
38
+ "CP_cyto3.zip": {
39
+ "access": {
40
+ "hidden": false
41
+ },
42
+ "checksum": "md5:a88f2cbff39cab4369d80bfadbf31906",
58
43
  "ext": "zip",
59
- "id": "7ac1c98d-e83f-413d-8cb4-7a09a6284fe2",
60
- "key": "CP_cyto2.zip",
61
- "metadata": null,
44
+ "id": "d90b0f71-cdde-4521-9227-b467405524a2",
45
+ "key": "CP_cyto3.zip",
46
+ "links": {
47
+ "content": "https://zenodo.org/api/records/13840137/files/CP_cyto3.zip/content",
48
+ "self": "https://zenodo.org/api/records/13840137/files/CP_cyto3.zip"
49
+ },
50
+ "metadata": {},
62
51
  "mimetype": "application/zip",
63
- "size": 24582967
52
+ "size": 24640158,
53
+ "storage_class": "L"
64
54
  },
65
55
  "CP_livecell.zip": {
56
+ "access": {
57
+ "hidden": false
58
+ },
66
59
  "checksum": "md5:4a158688881c68de0d14117db2880930",
67
60
  "ext": "zip",
68
- "id": "24c81d38-b395-43f5-9416-ccff4e295500",
61
+ "id": "3948628f-4700-4645-91b3-920e51d7563c",
69
62
  "key": "CP_livecell.zip",
70
- "metadata": null,
63
+ "links": {
64
+ "content": "https://zenodo.org/api/records/13840137/files/CP_livecell.zip/content",
65
+ "self": "https://zenodo.org/api/records/13840137/files/CP_livecell.zip"
66
+ },
67
+ "metadata": {},
71
68
  "mimetype": "application/zip",
72
- "size": 24607449
69
+ "size": 24607449,
70
+ "storage_class": "L"
73
71
  },
74
72
  "CP_nuclei.zip": {
73
+ "access": {
74
+ "hidden": false
75
+ },
75
76
  "checksum": "md5:479209924265c41bd04d50341b51da04",
76
77
  "ext": "zip",
77
- "id": "989cfa90-4151-4395-88cf-fae680ceb967",
78
+ "id": "d0aba995-171e-4a0d-a527-b994cbb1d307",
78
79
  "key": "CP_nuclei.zip",
79
- "metadata": null,
80
+ "links": {
81
+ "content": "https://zenodo.org/api/records/13840137/files/CP_nuclei.zip/content",
82
+ "self": "https://zenodo.org/api/records/13840137/files/CP_nuclei.zip"
83
+ },
84
+ "metadata": {},
80
85
  "mimetype": "application/zip",
81
- "size": 24566617
86
+ "size": 24566617,
87
+ "storage_class": "L"
82
88
  },
83
89
  "CP_tissuenet.zip": {
90
+ "access": {
91
+ "hidden": false
92
+ },
84
93
  "checksum": "md5:ea161f28b6159c492c7fa8a76970017c",
85
94
  "ext": "zip",
86
- "id": "592cef04-e2c6-4e52-94af-5202cbc26c7c",
95
+ "id": "e50d26fb-d0b8-4fdd-ac8c-6e0660f8d2e4",
87
96
  "key": "CP_tissuenet.zip",
88
- "metadata": null,
89
- "mimetype": "application/zip",
90
- "size": 24613186
91
- },
92
- "MCF7_bf_pi_cfse_h.zip": {
93
- "checksum": "md5:e57d8bc0f24ce60548ee38715d1772c0",
94
- "ext": "zip",
95
- "id": "31d4fbed-c09a-41cf-bd01-826ac29a0004",
96
- "key": "MCF7_bf_pi_cfse_h.zip",
97
- "metadata": null,
98
- "mimetype": "application/zip",
99
- "size": 9799393
100
- },
101
- "MCF7_h_pi.zip": {
102
- "checksum": "md5:332591e958dcd41f00656801f712491e",
103
- "ext": "zip",
104
- "id": "68dd73dc-64c8-44d3-be9a-d282c4cf691d",
105
- "key": "MCF7_h_pi.zip",
106
- "metadata": null,
107
- "mimetype": "application/zip",
108
- "size": 5329531
109
- },
110
- "MCF7_h_versatile.zip": {
111
- "checksum": "md5:a155ee1a92b67b14da2b5ac06bab95cd",
112
- "ext": "zip",
113
- "id": "a2f07d95-1aa7-4494-9372-cbded27e9f9c",
114
- "key": "MCF7_h_versatile.zip",
115
- "metadata": null,
97
+ "links": {
98
+ "content": "https://zenodo.org/api/records/13840137/files/CP_tissuenet.zip/content",
99
+ "self": "https://zenodo.org/api/records/13840137/files/CP_tissuenet.zip"
100
+ },
101
+ "metadata": {},
116
102
  "mimetype": "application/zip",
117
- "size": 5324227
103
+ "size": 24613186,
104
+ "storage_class": "L"
118
105
  },
119
106
  "NucCond.zip": {
107
+ "access": {
108
+ "hidden": false
109
+ },
120
110
  "checksum": "md5:673951a63ad0ea0fbfa443cfa78b0102",
121
111
  "ext": "zip",
122
- "id": "225511e5-cb8c-4148-ae6a-e523e7f0e7e2",
112
+ "id": "54b61fe2-a99c-45d9-9c6d-03867d7b0828",
123
113
  "key": "NucCond.zip",
124
- "metadata": null,
125
- "mimetype": "application/zip",
126
- "size": 33259465
127
- },
128
- "SD_paper_dsb2018.zip": {
129
- "checksum": "md5:1f1a5726c81f782bdaca14135c56765a",
130
- "ext": "zip",
131
- "id": "ef82d530-ec00-4577-8ac7-f9eab1190905",
132
- "key": "SD_paper_dsb2018.zip",
133
- "metadata": null,
114
+ "links": {
115
+ "content": "https://zenodo.org/api/records/13840137/files/NucCond.zip/content",
116
+ "self": "https://zenodo.org/api/records/13840137/files/NucCond.zip"
117
+ },
118
+ "metadata": {},
134
119
  "mimetype": "application/zip",
135
- "size": 5236495
120
+ "size": 33259465,
121
+ "storage_class": "L"
136
122
  },
137
123
  "SD_versatile_fluo.zip": {
124
+ "access": {
125
+ "hidden": false
126
+ },
138
127
  "checksum": "md5:49592e9f05a796d2787652e36c8ef6e2",
139
128
  "ext": "zip",
140
- "id": "6a8cc39c-92a2-4821-8312-453fac1b58a5",
129
+ "id": "36e4fd13-8838-49b2-a213-eb3c858e0ea0",
141
130
  "key": "SD_versatile_fluo.zip",
142
- "metadata": null,
131
+ "links": {
132
+ "content": "https://zenodo.org/api/records/13840137/files/SD_versatile_fluo.zip/content",
133
+ "self": "https://zenodo.org/api/records/13840137/files/SD_versatile_fluo.zip"
134
+ },
135
+ "metadata": {},
143
136
  "mimetype": "application/zip",
144
- "size": 5325273
137
+ "size": 5325273,
138
+ "storage_class": "L"
145
139
  },
146
140
  "SD_versatile_he.zip": {
141
+ "access": {
142
+ "hidden": false
143
+ },
147
144
  "checksum": "md5:186bf4be5f78763dde9b181aa8f8d116",
148
145
  "ext": "zip",
149
- "id": "7a04bf27-338f-460f-9fdd-1e7f70ccf0a5",
146
+ "id": "fa73b75a-7758-4a4f-84c0-1c65d7d62766",
150
147
  "key": "SD_versatile_he.zip",
151
- "metadata": null,
148
+ "links": {
149
+ "content": "https://zenodo.org/api/records/13840137/files/SD_versatile_he.zip/content",
150
+ "self": "https://zenodo.org/api/records/13840137/files/SD_versatile_he.zip"
151
+ },
152
+ "metadata": {},
152
153
  "mimetype": "application/zip",
153
- "size": 5300029
154
+ "size": 5300029,
155
+ "storage_class": "L"
154
156
  },
155
157
  "db-si-NucCondensation.zip": {
158
+ "access": {
159
+ "hidden": false
160
+ },
156
161
  "checksum": "md5:e9f565ddc96f99dad44cbe7b37db2d14",
157
162
  "ext": "zip",
158
- "id": "c404bf60-12b5-405d-9272-8a17488a6244",
163
+ "id": "418be5bf-3a36-4bad-862c-ce8e71bf9b3a",
159
164
  "key": "db-si-NucCondensation.zip",
160
- "metadata": null,
165
+ "links": {
166
+ "content": "https://zenodo.org/api/records/13840137/files/db-si-NucCondensation.zip/content",
167
+ "self": "https://zenodo.org/api/records/13840137/files/db-si-NucCondensation.zip"
168
+ },
169
+ "metadata": {},
161
170
  "mimetype": "application/zip",
162
- "size": 19184643
171
+ "size": 19184643,
172
+ "storage_class": "L"
163
173
  },
164
174
  "db-si-NucPI.zip": {
175
+ "access": {
176
+ "hidden": false
177
+ },
165
178
  "checksum": "md5:cf1654b9f8ccde262e8dcdbe78639a92",
166
179
  "ext": "zip",
167
- "id": "5e20a713-311a-46b8-9154-b4b0b3e644d7",
180
+ "id": "f81dab09-25bf-46b0-a30b-84ecf3320000",
168
181
  "key": "db-si-NucPI.zip",
169
- "metadata": null,
182
+ "links": {
183
+ "content": "https://zenodo.org/api/records/13840137/files/db-si-NucPI.zip/content",
184
+ "self": "https://zenodo.org/api/records/13840137/files/db-si-NucPI.zip"
185
+ },
186
+ "metadata": {},
170
187
  "mimetype": "application/zip",
171
- "size": 19826406
188
+ "size": 19826406,
189
+ "storage_class": "L"
172
190
  },
173
- "db_mcf7_nuclei_w_primary_NK.zip": {
174
- "checksum": "md5:96fc34fa49ee8b0bac10e75983511616",
191
+ "db_mcf7_nuclei_w_lymphocytes.zip": {
192
+ "access": {
193
+ "hidden": false
194
+ },
195
+ "checksum": "md5:54e452d8e3234e02821715df779c8d67",
175
196
  "ext": "zip",
176
- "id": "e03fbc79-ee8a-44be-9b7c-1ab274f3d0c4",
177
- "key": "db_mcf7_nuclei_w_primary_NK.zip",
178
- "metadata": null,
197
+ "id": "1eaaea4b-f604-4a60-9625-20f8d28b4853",
198
+ "key": "db_mcf7_nuclei_w_lymphocytes.zip",
199
+ "links": {
200
+ "content": "https://zenodo.org/api/records/13840137/files/db_mcf7_nuclei_w_lymphocytes.zip/content",
201
+ "self": "https://zenodo.org/api/records/13840137/files/db_mcf7_nuclei_w_lymphocytes.zip"
202
+ },
203
+ "metadata": {},
179
204
  "mimetype": "application/zip",
180
- "size": 136420712
205
+ "size": 336663433,
206
+ "storage_class": "L"
181
207
  },
182
208
  "db_primary_NK_w_mcf7.zip": {
183
- "checksum": "md5:e05e958a017291bae68de9a1833fa289",
209
+ "access": {
210
+ "hidden": false
211
+ },
212
+ "checksum": "md5:dfd3dcc181af616989cb6e4411cd95f2",
184
213
  "ext": "zip",
185
- "id": "5dedc85f-9d3b-4ea4-a9c1-cd9eeb8b3180",
214
+ "id": "27d806ca-4e24-4535-9f1b-b08999c6efd9",
186
215
  "key": "db_primary_NK_w_mcf7.zip",
187
- "metadata": null,
216
+ "links": {
217
+ "content": "https://zenodo.org/api/records/13840137/files/db_primary_NK_w_mcf7.zip/content",
218
+ "self": "https://zenodo.org/api/records/13840137/files/db_primary_NK_w_mcf7.zip"
219
+ },
220
+ "metadata": {},
188
221
  "mimetype": "application/zip",
189
- "size": 613655269
222
+ "size": 629371043,
223
+ "storage_class": "L"
224
+ },
225
+ "db_spreading_lymphocytes.zip": {
226
+ "access": {
227
+ "hidden": false
228
+ },
229
+ "checksum": "md5:bd119fd624368a1a2d6cf78303406f15",
230
+ "ext": "zip",
231
+ "id": "07bb925a-5f74-4695-b924-9cde4f6dd86e",
232
+ "key": "db_spreading_lymphocytes.zip",
233
+ "links": {
234
+ "content": "https://zenodo.org/api/records/13840137/files/db_spreading_lymphocytes.zip/content",
235
+ "self": "https://zenodo.org/api/records/13840137/files/db_spreading_lymphocytes.zip"
236
+ },
237
+ "metadata": {},
238
+ "mimetype": "application/zip",
239
+ "size": 509951394,
240
+ "storage_class": "L"
190
241
  },
191
242
  "demo_adcc.zip": {
192
- "checksum": "md5:353bc4159bee33e6d70136a1ccdb5f82",
243
+ "access": {
244
+ "hidden": false
245
+ },
246
+ "checksum": "md5:3a826e2f02c42a8fc66344c27891539e",
193
247
  "ext": "zip",
194
- "id": "588767cb-8720-4c9e-bc33-fc2575b8f335",
248
+ "id": "6b61ad51-8c92-4854-afba-6d433dc61223",
195
249
  "key": "demo_adcc.zip",
196
- "metadata": null,
250
+ "links": {
251
+ "content": "https://zenodo.org/api/records/13840137/files/demo_adcc.zip/content",
252
+ "self": "https://zenodo.org/api/records/13840137/files/demo_adcc.zip"
253
+ },
254
+ "metadata": {},
197
255
  "mimetype": "application/zip",
198
- "size": 939668430
256
+ "size": 939668429,
257
+ "storage_class": "L"
199
258
  },
200
259
  "demo_ricm.zip": {
201
- "checksum": "md5:8a4a4449b76d43fff575eeb8db5ebc17",
260
+ "access": {
261
+ "hidden": false
262
+ },
263
+ "checksum": "md5:21152b506b4b9b54a15c7c5c6e25df36",
202
264
  "ext": "zip",
203
- "id": "844c466f-68b7-4e01-9f5e-3acae2631ee2",
265
+ "id": "5f8be46a-01f1-4d1b-986a-684245e61e9e",
204
266
  "key": "demo_ricm.zip",
205
- "metadata": null,
267
+ "links": {
268
+ "content": "https://zenodo.org/api/records/13840137/files/demo_ricm.zip/content",
269
+ "self": "https://zenodo.org/api/records/13840137/files/demo_ricm.zip"
270
+ },
271
+ "metadata": {},
272
+ "mimetype": "application/zip",
273
+ "size": 286996804,
274
+ "storage_class": "L"
275
+ },
276
+ "lymphocytes_ricm.zip": {
277
+ "access": {
278
+ "hidden": false
279
+ },
280
+ "checksum": "md5:d727d15d18225a76ac2944be2c29a538",
281
+ "ext": "zip",
282
+ "id": "19b43b00-0a8e-4ae1-8d56-cf751746b6c8",
283
+ "key": "lymphocytes_ricm.zip",
284
+ "links": {
285
+ "content": "https://zenodo.org/api/records/13840137/files/lymphocytes_ricm.zip/content",
286
+ "self": "https://zenodo.org/api/records/13840137/files/lymphocytes_ricm.zip"
287
+ },
288
+ "metadata": {},
206
289
  "mimetype": "application/zip",
207
- "size": 286996594
290
+ "size": 24403972,
291
+ "storage_class": "L"
208
292
  },
209
293
  "lysis_H_PI.zip": {
294
+ "access": {
295
+ "hidden": false
296
+ },
210
297
  "checksum": "md5:f8553e793c70b64ebc7b4e4720dcde89",
211
298
  "ext": "zip",
212
- "id": "aa989022-23ff-48fa-84bc-70eb5eebabb1",
299
+ "id": "15965065-ef3f-42c5-aa30-c8c179dcb626",
213
300
  "key": "lysis_H_PI.zip",
214
- "metadata": null,
301
+ "links": {
302
+ "content": "https://zenodo.org/api/records/13840137/files/lysis_H_PI.zip/content",
303
+ "self": "https://zenodo.org/api/records/13840137/files/lysis_H_PI.zip"
304
+ },
305
+ "metadata": {},
215
306
  "mimetype": "application/zip",
216
- "size": 30433310
307
+ "size": 30433310,
308
+ "storage_class": "L"
217
309
  },
218
310
  "lysis_PI_area.zip": {
311
+ "access": {
312
+ "hidden": false
313
+ },
219
314
  "checksum": "md5:2fc2aca5be0adfd5984a7669e79d9e42",
220
315
  "ext": "zip",
221
- "id": "e43f325e-d931-40ef-8f7c-0bb2d6caac65",
316
+ "id": "496e1cfd-37b3-4d31-965c-d44f59e47c1d",
222
317
  "key": "lysis_PI_area.zip",
223
- "metadata": null,
318
+ "links": {
319
+ "content": "https://zenodo.org/api/records/13840137/files/lysis_PI_area.zip/content",
320
+ "self": "https://zenodo.org/api/records/13840137/files/lysis_PI_area.zip"
321
+ },
322
+ "metadata": {},
323
+ "mimetype": "application/zip",
324
+ "size": 33305370,
325
+ "storage_class": "L"
326
+ },
327
+ "mcf7_nuc_multimodal.zip": {
328
+ "access": {
329
+ "hidden": false
330
+ },
331
+ "checksum": "md5:0feb3dd50573f432dc441429e32158f1",
332
+ "ext": "zip",
333
+ "id": "4cdc773c-f7f0-4f53-be04-1415f7b5afeb",
334
+ "key": "mcf7_nuc_multimodal.zip",
335
+ "links": {
336
+ "content": "https://zenodo.org/api/records/13840137/files/mcf7_nuc_multimodal.zip/content",
337
+ "self": "https://zenodo.org/api/records/13840137/files/mcf7_nuc_multimodal.zip"
338
+ },
339
+ "metadata": {},
224
340
  "mimetype": "application/zip",
225
- "size": 33305370
341
+ "size": 23584494,
342
+ "storage_class": "L"
226
343
  },
227
- "primNK_SD.zip": {
228
- "checksum": "md5:2ad7fe0c30b0f94c00d4a742987ea0b1",
344
+ "mcf7_nuc_stardist_transfer.zip": {
345
+ "access": {
346
+ "hidden": false
347
+ },
348
+ "checksum": "md5:f263d38dd8a6b3095ac594ca044ee3e8",
229
349
  "ext": "zip",
230
- "id": "0ecbe7ea-2e6f-4f6c-8267-029346ba32b7",
231
- "key": "primNK_SD.zip",
232
- "metadata": null,
350
+ "id": "b84054cf-b9a1-4610-a6c8-9d1b8cda78f4",
351
+ "key": "mcf7_nuc_stardist_transfer.zip",
352
+ "links": {
353
+ "content": "https://zenodo.org/api/records/13840137/files/mcf7_nuc_stardist_transfer.zip/content",
354
+ "self": "https://zenodo.org/api/records/13840137/files/mcf7_nuc_stardist_transfer.zip"
355
+ },
356
+ "metadata": {},
233
357
  "mimetype": "application/zip",
234
- "size": 5302361
358
+ "size": 12787354,
359
+ "storage_class": "L"
235
360
  },
236
361
  "primNK_cfse.zip": {
237
- "checksum": "md5:f7d96b6d071e0acc62cf67dc84c18f4e",
362
+ "access": {
363
+ "hidden": false
364
+ },
365
+ "checksum": "md5:fc755f611f4b7cee83304e0e9488c507",
238
366
  "ext": "zip",
239
- "id": "f71ae25a-7a7f-4c7e-8bb1-40fdf474637e",
367
+ "id": "26ef68c8-5720-4b25-8370-2d81275445bb",
240
368
  "key": "primNK_cfse.zip",
241
- "metadata": null,
369
+ "links": {
370
+ "content": "https://zenodo.org/api/records/13840137/files/primNK_cfse.zip/content",
371
+ "self": "https://zenodo.org/api/records/13840137/files/primNK_cfse.zip"
372
+ },
373
+ "metadata": {},
242
374
  "mimetype": "application/zip",
243
- "size": 24582170
375
+ "size": 24582170,
376
+ "storage_class": "L"
244
377
  },
245
378
  "primNK_multimodal.zip": {
246
- "checksum": "md5:9310e309f27663ac3c108f468233ac34",
379
+ "access": {
380
+ "hidden": false
381
+ },
382
+ "checksum": "md5:78a4851864f9d20f6de5f118e834ee60",
247
383
  "ext": "zip",
248
- "id": "ce10030a-4df7-4b8b-9608-cd51ab58d7e6",
384
+ "id": "7aa38463-9cf7-437e-b943-e2c3ad1bc15b",
249
385
  "key": "primNK_multimodal.zip",
250
- "metadata": null,
386
+ "links": {
387
+ "content": "https://zenodo.org/api/records/13840137/files/primNK_multimodal.zip/content",
388
+ "self": "https://zenodo.org/api/records/13840137/files/primNK_multimodal.zip"
389
+ },
390
+ "metadata": {},
251
391
  "mimetype": "application/zip",
252
- "size": 24346365
392
+ "size": 24346365,
393
+ "storage_class": "L"
253
394
  }
254
395
  },
255
396
  "order": [],
256
- "total_bytes": 2350826118
397
+ "total_bytes": 3057417364
257
398
  },
258
- "id": "10650279",
399
+ "id": "13840137",
259
400
  "is_draft": false,
260
401
  "is_published": true,
261
402
  "links": {
262
- "access": "https://zenodo.org/api/records/10650279/access",
263
- "access_links": "https://zenodo.org/api/records/10650279/access/links",
264
- "access_request": "https://zenodo.org/api/records/10650279/access/request",
265
- "access_users": "https://zenodo.org/api/records/10650279/access/users",
266
- "archive": "https://zenodo.org/api/records/10650279/files-archive",
267
- "archive_media": "https://zenodo.org/api/records/10650279/media-files-archive",
268
- "communities": "https://zenodo.org/api/records/10650279/communities",
269
- "communities-suggestions": "https://zenodo.org/api/records/10650279/communities-suggestions",
270
- "doi": "https://doi.org/10.5281/zenodo.10650279",
271
- "draft": "https://zenodo.org/api/records/10650279/draft",
272
- "files": "https://zenodo.org/api/records/10650279/files",
273
- "latest": "https://zenodo.org/api/records/10650279/versions/latest",
274
- "latest_html": "https://zenodo.org/records/10650279/latest",
275
- "media_files": "https://zenodo.org/api/records/10650279/media-files",
403
+ "access": "https://zenodo.org/api/records/13840137/access",
404
+ "access_grants": "https://zenodo.org/api/records/13840137/access/grants",
405
+ "access_links": "https://zenodo.org/api/records/13840137/access/links",
406
+ "access_request": "https://zenodo.org/api/records/13840137/access/request",
407
+ "access_users": "https://zenodo.org/api/records/13840137/access/users",
408
+ "archive": "https://zenodo.org/api/records/13840137/files-archive",
409
+ "archive_media": "https://zenodo.org/api/records/13840137/media-files-archive",
410
+ "communities": "https://zenodo.org/api/records/13840137/communities",
411
+ "communities-suggestions": "https://zenodo.org/api/records/13840137/communities-suggestions",
412
+ "doi": "https://doi.org/10.5281/zenodo.13840137",
413
+ "draft": "https://zenodo.org/api/records/13840137/draft",
414
+ "files": "https://zenodo.org/api/records/13840137/files",
415
+ "latest": "https://zenodo.org/api/records/13840137/versions/latest",
416
+ "latest_html": "https://zenodo.org/records/13840137/latest",
417
+ "media_files": "https://zenodo.org/api/records/13840137/media-files",
276
418
  "parent": "https://zenodo.org/api/records/10650278",
277
419
  "parent_doi": "https://zenodo.org/doi/10.5281/zenodo.10650278",
278
420
  "parent_html": "https://zenodo.org/records/10650278",
279
- "requests": "https://zenodo.org/api/records/10650279/requests",
280
- "reserve_doi": "https://zenodo.org/api/records/10650279/draft/pids/doi",
281
- "self": "https://zenodo.org/api/records/10650279",
282
- "self_doi": "https://zenodo.org/doi/10.5281/zenodo.10650279",
283
- "self_html": "https://zenodo.org/records/10650279",
284
- "self_iiif_manifest": "https://zenodo.org/api/iiif/record:10650279/manifest",
285
- "self_iiif_sequence": "https://zenodo.org/api/iiif/record:10650279/sequence/default",
286
- "versions": "https://zenodo.org/api/records/10650279/versions"
421
+ "requests": "https://zenodo.org/api/records/13840137/requests",
422
+ "reserve_doi": "https://zenodo.org/api/records/13840137/draft/pids/doi",
423
+ "self": "https://zenodo.org/api/records/13840137",
424
+ "self_doi": "https://zenodo.org/doi/10.5281/zenodo.13840137",
425
+ "self_html": "https://zenodo.org/records/13840137",
426
+ "self_iiif_manifest": "https://zenodo.org/api/iiif/record:13840137/manifest",
427
+ "self_iiif_sequence": "https://zenodo.org/api/iiif/record:13840137/sequence/default",
428
+ "versions": "https://zenodo.org/api/records/13840137/versions"
287
429
  },
288
430
  "media_files": {
289
431
  "count": 0,
@@ -373,6 +515,27 @@
373
515
  }
374
516
  }
375
517
  },
518
+ {
519
+ "affiliations": [
520
+ {
521
+ "id": "055ymkj32",
522
+ "name": "Adhesion and Inflammation Lab"
523
+ }
524
+ ],
525
+ "person_or_org": {
526
+ "family_name": "Dervanova",
527
+ "given_name": "Ksenija",
528
+ "name": "Dervanova, Ksenija",
529
+ "type": "personal"
530
+ },
531
+ "role": {
532
+ "id": "projectmember",
533
+ "title": {
534
+ "de": "Projektmitglied",
535
+ "en": "Project member"
536
+ }
537
+ }
538
+ },
376
539
  {
377
540
  "affiliations": [
378
541
  {
@@ -394,6 +557,34 @@
394
557
  }
395
558
  }
396
559
  },
560
+ {
561
+ "affiliations": [
562
+ {
563
+ "id": "055ymkj32",
564
+ "name": "Adhesion and Inflammation Lab"
565
+ }
566
+ ],
567
+ "person_or_org": {
568
+ "family_name": "Dupuy",
569
+ "given_name": "Florian",
570
+ "identifiers": [
571
+ {
572
+ "identifier": "0000-0003-3270-3125",
573
+ "scheme": "orcid"
574
+ }
575
+ ],
576
+ "name": "Dupuy, Florian",
577
+ "type": "personal"
578
+ },
579
+ "role": {
580
+ "id": "annotator",
581
+ "title": {
582
+ "de": "Kommentator",
583
+ "en": "Annotator",
584
+ "sv": "Annotator"
585
+ }
586
+ }
587
+ },
397
588
  {
398
589
  "affiliations": [
399
590
  {
@@ -470,8 +661,8 @@
470
661
  }
471
662
  }
472
663
  ],
473
- "description": "<p>Overview</p>\n<p>This repository contains datasets, models and demos associated to <a href=\"https://github.com/remyeltorro/celldetective\">Celldetective</a>, a software for single-cell analysis from multimodal time lapse microscopy images.&nbsp;</p>\n<h1>Demos</h1>\n<h2>Cell-cell interaction assay: ADCC</h2>\n<p>We imaged a co-culture of MCF-7 breast cancer cells (targets) and human primary NK cells (effectors), interacting in the presence of bispecific antibodies, to measure antibody dependent cellular cytotoxicity (ADCC). The nuclei of all cells are marked with the Hoechst nuclear stain, the dead nuclei with the propidium iodide nuclear stain, the cytoplasm of the NK cells with CFSE. The system in epifluorescence and brightfield at either 20 or 40X magnification. We provide a single position demo for the ADCC assay, as \"demo_adcc.zip\". After unzipping, the demo_adcc folder can be loaded in Celldetective for testing.&nbsp;</p>\n<h2>Cell-surface interaction assay: RICM</h2>\n<p>We imaged human primary NK cells engaging in spreading with a surface coated with a bispecific antibody similar to the one used in the ADCC assay (replacing the target cells with a flat surface). The system is imaged using the RICM technique. Images are normalized using a median estimate of the background, pooled from all the positions in a well and dividing the images by this estimate. Here, we provide a single position demo for the cell-surface interactiona assay imaged in RICM, as \"demo_ricm.zip\". As above, after unzipping, the experiment can be tested and processed in Celldetective.</p>\n<h1>Datasets</h1>\n<h2>Image annotations for segmentation</h2>\n<h3>Cell-cell interaction assay: ADCC</h3>\n<p>We generated two sets of annotations from images of a co-culture of MCF-7 breast cancer cells and human primary NK cells, interacting in the presence of bispecific antibodies, to measure antibody dependent cellular cytotoxicity (ADCC). Since there are two separate cell populations of interest, the targets (MCF-7) and effectors (NK cells), we curated two datasets. Each sample in a dataset consists of a multichannel image (up to five channels in the context of ADCC, among brightfield , Hoechst nuclear stain, PI nuclear stain, CFSE, LAMP1), the associated instance segmentation annotation for the population of interest and a json file summarizing the content of each channel and the spatial calibration of the image.&nbsp;These sample data are generated directly in Celldetective, using a custom napari plugin.</p>\n<ul>\n<li>db_mcf7_nuclei_w_primary_NK: MCF-7 cell nuclei are annotated specifically on images where primary NK cells, and RBCs co-exist. The annotation exploits up to four channels simultaneously.</li>\n<li>db_primary_NK_w_mcf7: human primary NK cells, with annotated cytoplasm (mostly from CFSE) but exploiting brightfield and Hoechst to segment out of focus or poorly labelled cells.</li>\n</ul>\n<p>These datasets are used to train several segmentation models to segment on one hand the MCF-7 nuclei and on the other hand the primary NK cells.</p>\n<h2>Single-cell signal annotations for classification and regression</h2>\n<h3>Cell-cell interaction assay: ADCC</h3>\n<p>We generated several signal classification/regression datasets with Celldetective to characterize the ADCC assay. Briefly, for a given event cells can be classified as \"the event occured during the observation\", \"no event occured during the observation\", \"the event already occured prior to observation\". If the event occurred during the observation, we can estimate when (the regression). Each single-cell is a dictionary with a collection of signals. The attribute \"class\" sets the class and \"t0\" the time of event (default is -1 for absence of event).&nbsp;</p>\n<ul>\n<li>db-si-NucPI: classification and regression of single-cells with respect to lysis events characterized by a strong PI increase upon lysis (also associated with decreasing nuclear area and sometimes a decreasing Hoechst)</li>\n<li>db-si-NucCondensation: classification and regression of single-cells with respect to nucleus shrinking events characterized by a decreasing nuclear area</li>\n</ul>\n<h1>Models</h1>\n<h2>Segmentation models</h2>\n<h3>Generalist models</h3>\n<p>We integrated in Celldetective select published models for cellular segmentation from StarDist and Cellpose. We wraped the models with an input configuration to help Celldetective handle the normalization, rescaling and channel selection upon inference.&nbsp;</p>\n<ul>\n<li>Cellpose [1,2]: <em>cellpose</em>, <em>cyto</em>, <em>cyto2</em>, <em>livecell</em>, <em>tissuenet</em>, <em>nuclei</em></li>\n<li>StarDist [3]: <em>paper_dsb2018</em>, <em>versatile_fluo</em>, <em>versatile_he</em></li>\n</ul>\n<h3>ADCC models</h3>\n<ul>\n<li>MCF-7 (in the presence of NKs): <em>MCF7_bf_pi_cfse_h</em>, <em>MCF7_bf_h_pi</em>, <em>MCF7_h_pi</em>, <em>MCF7_h_versatile</em></li>\n<li>NKs (in the presence of MCF-7): <em>primNK_multimodal</em>, <em>primNK_SD</em>, <em>primNK_cfse</em></li>\n</ul>\n<h2>Signal analysis models</h2>\n<p>We developed Deep Learning models that classify and regress the time of events from single-cell signals, applied to the ADCC assay.</p>\n<ul>\n<li>&nbsp;lysis detection: <em>lysis_H_PI</em>, <em>lysis_PI_area</em>,<em>. </em>Detect lysis events characterized at least by an increase of PI from one or more measurements (respectively PI+Hoechst and PI+nucleus area, trained on db-si-NucPI)</li>\n<li>nucleus shrinking detection:<em> NucCond</em>. Detect nucleus shrinking events from nuclear area signal (db-si-NucCondensation)</li>\n</ul>\n<p>&nbsp;</p>\n<h1>Bibliography</h1>\n<ol>\n<li>Stringer, C., Wang, T., Michaelos, M. &amp; Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods 18, 100&ndash;106 (2021).</li>\n<li>Pachitariu, M. &amp; Stringer, C. Cellpose 2.0: how to train your own model. Nat Methods 19, 1634&ndash;1641 (2022).</li>\n<li>Schmidt, U., Weigert, M., Broaddus, C. &amp; Myers, G. Cell Detection with Star-Convex Polygons. in Medical Image Computing and Computer Assisted Intervention &ndash; MICCAI 2018 (eds. Frangi, A. F., Schnabel, J. A., Davatzikos, C., Alberola-L&oacute;pez, C. &amp; Fichtinger, G.) 265&ndash;273 (Springer International Publishing, Cham, 2018). doi:10.1007/978-3-030-00934-2_30.</li>\n</ol>\n<p>&nbsp;</p>\n<p>&nbsp;</p>",
474
- "publication_date": "2024-02-22",
664
+ "description": "<p>Overview</p>\n<p>This repository contains datasets, models and demos associated to <a href=\"https://github.com/remyeltorro/celldetective\">Celldetective</a>, a software for single-cell analysis from multimodal time lapse microscopy images.&nbsp;</p>\n<h1>Demos</h1>\n<h2>Cell-cell interaction assay: ADCC</h2>\n<p>We imaged a co-culture of MCF-7 breast cancer cells (targets) and human primary NK cells (effectors), interacting in the presence of bispecific antibodies, to measure antibody dependent cellular cytotoxicity (ADCC). The nuclei of all cells are marked with the Hoechst nuclear stain, the dead nuclei with the propidium iodide nuclear stain, the cytoplasm of the NK cells with CFSE. The system in epifluorescence and brightfield at either 20 or 40X magnification. We provide a single position demo for the ADCC assay, as \"demo_adcc.zip\". After unzipping, the demo_adcc folder can be loaded in Celldetective for testing.&nbsp;</p>\n<h2>Cell-surface interaction assay: RICM</h2>\n<p>We imaged human primary NK cells engaging in spreading with a surface coated with a bispecific antibody similar to the one used in the ADCC assay (replacing the target cells with a flat surface). The system is imaged using the RICM technique. Images are normalized using a median estimate of the background, pooled from all the positions in a well and dividing the images by this estimate. Here, we provide a single position demo for the cell-surface interactiona assay imaged in RICM, as \"demo_ricm.zip\". As above, after unzipping, the experiment can be tested and processed in Celldetective.</p>\n<h1>Datasets</h1>\n<h2>Image annotations for segmentation</h2>\n<h3>Cell-cell interaction assay: ADCC</h3>\n<p>We generated two sets of annotations from images of a co-culture of MCF-7 breast cancer cells and human primary NK cells, interacting in the presence of bispecific antibodies, to measure antibody dependent cellular cytotoxicity (ADCC). Since there are two separate cell populations of interest, the targets (MCF-7) and effectors (NK cells), we curated two datasets. Each sample in a dataset consists of a multichannel image (up to five channels in the context of ADCC, among brightfield , Hoechst nuclear stain, PI nuclear stain, CFSE, LAMP1), the associated instance segmentation annotation for the population of interest and a json file summarizing the content of each channel and the spatial calibration of the image.&nbsp;These sample data are generated directly in Celldetective, using a custom napari plugin.</p>\n<ul>\n<li>db_mcf7_nuclei_w_lymphocytes: MCF-7 cell nuclei are annotated specifically on images where primary NK cells (or rarely primary T cells), and RBCs co-exist. The annotation exploits up to four channels simultaneously.</li>\n<li>db_primary_NK_w_mcf7: human primary NK cells, with annotated cytoplasm (mostly from CFSE) but exploiting brightfield and Hoechst to segment out of focus or poorly labelled cells.</li>\n</ul>\n<p>These datasets are used to train several segmentation models to segment on one hand the MCF-7 nuclei and on the other hand the primary NK cells.</p>\n<h3>Cell-surface interaction assay: RICM</h3>\n<ul>\n<li>db_spreading_lymphocytes: we provide a dataset of primary NK cells (and occasionnaly mice T cells) imaged in RICM (with sometimes paired brightfield images). Cells are detected as soon as they start forming interferences on the image (hovering behavior). A pre-annotation was performed using a threshold based segmentation on the RICM modality. Manuel separation of cell-cell contacts and removal of false positive objects was performed by an expert annotator (using brightfield when available). RBCs are ignored in the annotations.&nbsp;</li>\n</ul>\n<h2>Single-cell signal annotations for classification and regression</h2>\n<h3>Cell-cell interaction assay: ADCC</h3>\n<p>We generated several signal classification/regression datasets with Celldetective to characterize the ADCC assay. Briefly, for a given event cells can be classified as \"the event occured during the observation\", \"no event occured during the observation\", \"the event already occured prior to observation\". If the event occurred during the observation, we can estimate when (the regression). Each single-cell is a dictionary with a collection of signals. The attribute \"class\" sets the class and \"t0\" the time of event (default is -1 for absence of event).&nbsp;</p>\n<ul>\n<li>db-si-NucPI: classification and regression of single-cells with respect to lysis events characterized by a strong PI increase upon lysis (also associated with decreasing nuclear area and sometimes a decreasing Hoechst)</li>\n<li>db-si-NucCondensation: classification and regression of single-cells with respect to nucleus shrinking events characterized by a decreasing nuclear area</li>\n</ul>\n<h1>Models</h1>\n<h2>Segmentation models</h2>\n<h3>Generalist models</h3>\n<p>We integrated in Celldetective select published models for cellular segmentation from StarDist and Cellpose. We wraped the models with an input configuration to help Celldetective handle the normalization, rescaling and channel selection upon inference.&nbsp;</p>\n<ul>\n<li>Cellpose [1,2]: <em>cyto3</em>, <em>livecell</em>, <em>tissuenet</em>, <em>nuclei</em></li>\n<li>StarDist [3]: <em>versatile_fluo</em>, <em>versatile_he</em></li>\n</ul>\n<p>If you use any of these models your research, don't forget to cite the StarDist or Cellpose papers accordingly!</p>\n<h3>ADCC models</h3>\n<ul>\n<li>MCF-7 (in the presence of lymphocytes): <em>mcf7_nuc_multimodal, mcf7_nuc_stardist_transfer</em></li>\n<li>primary NKs (in the presence of MCF-7):&nbsp;<em>primNK_multimodal</em>, <em>primNK_SD</em>, <em>primNK_cfse</em></li>\n</ul>\n<h3>Spreading-assay models</h3>\n<ul>\n<li>Lymphocytes: <em>lymphocytes_ricm</em></li>\n</ul>\n<h2>Signal analysis models</h2>\n<p>We developed Deep Learning models that classify and regress the time of events from single-cell signals, applied to the ADCC assay.</p>\n<ul>\n<li>&nbsp;lysis detection: <em>lysis_H_PI</em>, <em>lysis_PI_area</em>,<em>. </em>Detect lysis events characterized at least by an increase of PI from one or more measurements (respectively PI+Hoechst and PI+nucleus area, trained on db-si-NucPI)</li>\n<li>nucleus shrinking detection:<em> NucCond</em>. Detect nucleus shrinking events from nuclear area signal (db-si-NucCondensation)</li>\n</ul>\n<h1>References</h1>\n<ol>\n<li>Stringer, C., Wang, T., Michaelos, M. &amp; Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods 18, 100&ndash;106 (2021).</li>\n<li>Pachitariu, M. &amp; Stringer, C. Cellpose 2.0: how to train your own model. Nat Methods 19, 1634&ndash;1641 (2022).</li>\n<li>Schmidt, U., Weigert, M., Broaddus, C. &amp; Myers, G. Cell Detection with Star-Convex Polygons. in Medical Image Computing and Computer Assisted Intervention &ndash; MICCAI 2018 (eds. Frangi, A. F., Schnabel, J. A., Davatzikos, C., Alberola-L&oacute;pez, C. &amp; Fichtinger, G.) 265&ndash;273 (Springer International Publishing, Cham, 2018). doi:10.1007/978-3-030-00934-2_30.</li>\n</ol>\n<p>&nbsp;</p>\n<p>&nbsp;</p>",
665
+ "publication_date": "2024-09-25",
475
666
  "publisher": "Zenodo",
476
667
  "resource_type": {
477
668
  "id": "dataset",
@@ -497,14 +688,14 @@
497
688
  }
498
689
  ],
499
690
  "title": "Datasets, models and demos associated to \"Celldetective: an AI-enhanced image analysis tool for unraveling dynamic cell interactions\"",
500
- "version": "1.0.0"
691
+ "version": "1.1.0"
501
692
  },
502
693
  "parent": {
503
694
  "access": {
504
695
  "grants": [],
505
696
  "links": [],
506
697
  "owned_by": {
507
- "user": 1068593
698
+ "user": "1068593"
508
699
  },
509
700
  "settings": {
510
701
  "accept_conditions_text": null,
@@ -526,35 +717,35 @@
526
717
  "pids": {
527
718
  "doi": {
528
719
  "client": "datacite",
529
- "identifier": "10.5281/zenodo.10650279",
720
+ "identifier": "10.5281/zenodo.13840137",
530
721
  "provider": "datacite"
531
722
  },
532
723
  "oai": {
533
- "identifier": "oai:zenodo.org:10650279",
724
+ "identifier": "oai:zenodo.org:13840137",
534
725
  "provider": "oai"
535
726
  }
536
727
  },
537
- "revision_id": 8,
728
+ "revision_id": 4,
538
729
  "stats": {
539
730
  "all_versions": {
540
- "data_volume": 5734753162.0,
541
- "downloads": 69,
542
- "unique_downloads": 48,
543
- "unique_views": 12,
544
- "views": 16
731
+ "data_volume": 63116161707.0,
732
+ "downloads": 1642,
733
+ "unique_downloads": 1581,
734
+ "unique_views": 190,
735
+ "views": 215
545
736
  },
546
737
  "this_version": {
547
- "data_volume": 5734753162.0,
548
- "downloads": 69,
549
- "unique_downloads": 48,
550
- "unique_views": 12,
551
- "views": 16
738
+ "data_volume": 0.0,
739
+ "downloads": 0,
740
+ "unique_downloads": 0,
741
+ "unique_views": 0,
742
+ "views": 0
552
743
  }
553
744
  },
554
745
  "status": "published",
555
- "updated": "2024-02-22T08:32:31.833861+00:00",
746
+ "updated": "2024-09-25T18:50:30.556530+00:00",
556
747
  "versions": {
557
- "index": 1,
748
+ "index": 2,
558
749
  "is_latest": true,
559
750
  "is_latest_draft": true
560
751
  }