celldetective 1.1.1.post3__py3-none-any.whl → 1.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- celldetective/__init__.py +2 -1
- celldetective/__main__.py +17 -0
- celldetective/extra_properties.py +62 -34
- celldetective/gui/__init__.py +1 -0
- celldetective/gui/analyze_block.py +2 -1
- celldetective/gui/classifier_widget.py +18 -10
- celldetective/gui/control_panel.py +57 -6
- celldetective/gui/layouts.py +14 -11
- celldetective/gui/neighborhood_options.py +21 -13
- celldetective/gui/plot_signals_ui.py +39 -11
- celldetective/gui/process_block.py +413 -95
- celldetective/gui/retrain_segmentation_model_options.py +17 -4
- celldetective/gui/retrain_signal_model_options.py +106 -6
- celldetective/gui/signal_annotator.py +110 -30
- celldetective/gui/signal_annotator2.py +2708 -0
- celldetective/gui/signal_annotator_options.py +3 -1
- celldetective/gui/survival_ui.py +15 -6
- celldetective/gui/tableUI.py +248 -43
- celldetective/io.py +598 -416
- celldetective/measure.py +919 -969
- celldetective/models/pair_signal_detection/blank +0 -0
- celldetective/neighborhood.py +482 -340
- celldetective/preprocessing.py +81 -61
- celldetective/relative_measurements.py +648 -0
- celldetective/scripts/analyze_signals.py +1 -1
- celldetective/scripts/measure_cells.py +28 -8
- celldetective/scripts/measure_relative.py +103 -0
- celldetective/scripts/segment_cells.py +5 -5
- celldetective/scripts/track_cells.py +4 -1
- celldetective/scripts/train_segmentation_model.py +23 -18
- celldetective/scripts/train_signal_model.py +33 -0
- celldetective/segmentation.py +67 -29
- celldetective/signals.py +402 -8
- celldetective/tracking.py +8 -2
- celldetective/utils.py +144 -12
- {celldetective-1.1.1.post3.dist-info → celldetective-1.2.0.dist-info}/METADATA +8 -8
- {celldetective-1.1.1.post3.dist-info → celldetective-1.2.0.dist-info}/RECORD +42 -38
- {celldetective-1.1.1.post3.dist-info → celldetective-1.2.0.dist-info}/WHEEL +1 -1
- tests/test_segmentation.py +1 -1
- {celldetective-1.1.1.post3.dist-info → celldetective-1.2.0.dist-info}/LICENSE +0 -0
- {celldetective-1.1.1.post3.dist-info → celldetective-1.2.0.dist-info}/entry_points.txt +0 -0
- {celldetective-1.1.1.post3.dist-info → celldetective-1.2.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,2708 @@
|
|
|
1
|
+
import copy
|
|
2
|
+
|
|
3
|
+
from PyQt5.QtWidgets import QMainWindow, QComboBox, QLabel, QRadioButton, QLineEdit, QFileDialog, QApplication, \
|
|
4
|
+
QPushButton, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QAction, QShortcut, QLineEdit, QTabWidget, \
|
|
5
|
+
QButtonGroup, QGridLayout, QSlider, QCheckBox, QToolButton
|
|
6
|
+
from PyQt5.QtCore import Qt, QSize
|
|
7
|
+
from PyQt5.QtGui import QKeySequence
|
|
8
|
+
from matplotlib.collections import LineCollection
|
|
9
|
+
from celldetective.gui import SignalAnnotator, Styles
|
|
10
|
+
from celldetective.gui.gui_utils import center_window, QHSeperationLine, FilterChoice
|
|
11
|
+
from superqt import QLabeledDoubleSlider, QLabeledDoubleRangeSlider, QLabeledSlider, QSearchableComboBox
|
|
12
|
+
from celldetective.utils import extract_experiment_channels, get_software_location, _get_img_num_per_channel
|
|
13
|
+
from celldetective.io import auto_load_number_of_frames, load_frames
|
|
14
|
+
from celldetective.gui.gui_utils import FigureCanvas, color_from_status, color_from_class
|
|
15
|
+
import json
|
|
16
|
+
import numpy as np
|
|
17
|
+
from superqt.fonticon import icon
|
|
18
|
+
from fonticon_mdi6 import MDI6
|
|
19
|
+
import os
|
|
20
|
+
from glob import glob
|
|
21
|
+
from natsort import natsorted
|
|
22
|
+
import matplotlib.pyplot as plt
|
|
23
|
+
from matplotlib.ticker import MultipleLocator
|
|
24
|
+
from tqdm import tqdm
|
|
25
|
+
import gc
|
|
26
|
+
from matplotlib.animation import FuncAnimation
|
|
27
|
+
from matplotlib.cm import tab10
|
|
28
|
+
import pandas as pd
|
|
29
|
+
from sklearn.preprocessing import MinMaxScaler
|
|
30
|
+
from functools import partial
|
|
31
|
+
from pandas.api.types import is_numeric_dtype
|
|
32
|
+
|
|
33
|
+
class SignalAnnotator2(QMainWindow,Styles):
|
|
34
|
+
|
|
35
|
+
"""
|
|
36
|
+
UI to set tracking parameters for bTrack.
|
|
37
|
+
|
|
38
|
+
"""
|
|
39
|
+
|
|
40
|
+
def __init__(self, parent=None):
|
|
41
|
+
|
|
42
|
+
super().__init__()
|
|
43
|
+
self.parent_window = parent
|
|
44
|
+
self.setWindowTitle("Signal annotator")
|
|
45
|
+
|
|
46
|
+
self.pos = self.parent_window.parent_window.pos
|
|
47
|
+
self.exp_dir = self.parent_window.exp_dir
|
|
48
|
+
print(f'{self.pos=} {self.exp_dir=}')
|
|
49
|
+
|
|
50
|
+
self.soft_path = get_software_location()
|
|
51
|
+
self.recently_modified = False
|
|
52
|
+
self.n_signals = 3
|
|
53
|
+
self.target_selection = []
|
|
54
|
+
self.effector_selection = []
|
|
55
|
+
|
|
56
|
+
self.reference_selection = []
|
|
57
|
+
self.neighbor_selection = []
|
|
58
|
+
self.pair_selection = []
|
|
59
|
+
self.neighbor_loc_t = []; self.neighbor_loc_idx = [];
|
|
60
|
+
self.reference_loc_t = []; self.reference_loc_idx = [];
|
|
61
|
+
self.reference_loc_t_not_picked = []; self.reference_loc_idx_not_picked = [];
|
|
62
|
+
self.neigh_cell_loc_t = []; self.neigh_cell_loc_idx = [];
|
|
63
|
+
|
|
64
|
+
self.reference_track_of_interest = None
|
|
65
|
+
self.neighbor_track_of_interest = None
|
|
66
|
+
self.value_magnitude = 1
|
|
67
|
+
|
|
68
|
+
self.cols_to_remove = ['REFERENCE_ID', 'NEIGHBOR_ID', 'FRAME', 't0_arrival', 'TRACK_ID', 'class_color', 'status_color',
|
|
69
|
+
'FRAME', 'x_anim', 'y_anim', 't', 'state', 'generation', 'root', 'parent', 'class_id', 'class',
|
|
70
|
+
't0', 'POSITION_X', 'POSITION_Y', 'position', 'well', 'well_index', 'well_name', 'pos_name',
|
|
71
|
+
'index', 'relxy', 'tc', 'nk', 'concentration', 'antibody', 'cell_type', 'pharmaceutical_agent',
|
|
72
|
+
'reference_population', 'neighbor_population']
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
# Read instructions from target block for now...
|
|
76
|
+
self.mode = "neighborhood"
|
|
77
|
+
self.instructions_path = self.exp_dir + os.sep.join(['configs', 'signal_annotator_config_neighborhood.json'])
|
|
78
|
+
|
|
79
|
+
# default params
|
|
80
|
+
self.target_class_name = 'class'
|
|
81
|
+
self.target_time_name = 't0'
|
|
82
|
+
self.target_status_name = 'status'
|
|
83
|
+
|
|
84
|
+
center_window(self)
|
|
85
|
+
|
|
86
|
+
# Locate stack
|
|
87
|
+
self.locate_stack()
|
|
88
|
+
self.load_annotator_config()
|
|
89
|
+
|
|
90
|
+
# Locate tracks
|
|
91
|
+
self.locate_target_tracks()
|
|
92
|
+
self.locate_effector_tracks()
|
|
93
|
+
|
|
94
|
+
self.dataframes = {
|
|
95
|
+
'targets': self.df_targets,
|
|
96
|
+
'effectors': self.df_effectors,
|
|
97
|
+
}
|
|
98
|
+
|
|
99
|
+
self.neighborhood_cols = []
|
|
100
|
+
if self.df_targets is not None:
|
|
101
|
+
self.neighborhood_cols.extend(['target_ref_'+c for c in list(self.df_targets.columns) if c.startswith('neighborhood')])
|
|
102
|
+
if self.df_effectors is not None:
|
|
103
|
+
print(self.df_effectors.columns)
|
|
104
|
+
self.neighborhood_cols.extend(['effector_ref_'+c for c in list(self.df_effectors.columns) if c.startswith('neighborhood')])
|
|
105
|
+
print(f"The following neighborhoods were detected: {self.neighborhood_cols=}")
|
|
106
|
+
self.locate_relative_tracks()
|
|
107
|
+
|
|
108
|
+
# Prepare stack
|
|
109
|
+
self.prepare_stack()
|
|
110
|
+
|
|
111
|
+
self.generate_signal_choices()
|
|
112
|
+
self.frame_lbl = QLabel('frame: ')
|
|
113
|
+
self.looped_animation()
|
|
114
|
+
self.create_cell_signal_canvas()
|
|
115
|
+
|
|
116
|
+
self.populate_widget()
|
|
117
|
+
self.fill_signal_choices()
|
|
118
|
+
|
|
119
|
+
self.reference_pop_option_buttons[0].setChecked(True)
|
|
120
|
+
self.neighbor_pop_option_buttons[1].setChecked(True)
|
|
121
|
+
self.relative_pop_option_buttons[2].setChecked(True)
|
|
122
|
+
#self.plot_signals()
|
|
123
|
+
|
|
124
|
+
self.give_reference_cell_information()
|
|
125
|
+
self.give_neighbor_cell_information()
|
|
126
|
+
self.give_pair_information()
|
|
127
|
+
|
|
128
|
+
# Widget settings
|
|
129
|
+
self.screen_height = self.parent_window.parent_window.parent_window.screen_height
|
|
130
|
+
self.screen_width = self.parent_window.parent_window.parent_window.screen_width
|
|
131
|
+
self.setMinimumWidth(int(0.8*self.screen_width))
|
|
132
|
+
self.setMinimumHeight(int(0.8*self.screen_height))
|
|
133
|
+
|
|
134
|
+
#self.cell_fcanvas.setMinimumHeight(int(0.3*self.screen_height))
|
|
135
|
+
|
|
136
|
+
self.setAttribute(Qt.WA_DeleteOnClose)
|
|
137
|
+
|
|
138
|
+
def populate_widget(self):
|
|
139
|
+
|
|
140
|
+
"""
|
|
141
|
+
Create the multibox design.
|
|
142
|
+
|
|
143
|
+
"""
|
|
144
|
+
|
|
145
|
+
self.button_widget = QWidget()
|
|
146
|
+
main_layout = QHBoxLayout()
|
|
147
|
+
self.button_widget.setLayout(main_layout)
|
|
148
|
+
|
|
149
|
+
main_layout.setContentsMargins(30,30,30,30)
|
|
150
|
+
self.left_panel = QVBoxLayout()
|
|
151
|
+
self.left_panel.setContentsMargins(30,30,30,30)
|
|
152
|
+
self.left_panel.setSpacing(10)
|
|
153
|
+
|
|
154
|
+
self.right_panel = QVBoxLayout()
|
|
155
|
+
|
|
156
|
+
#NEIGHBORHOOD
|
|
157
|
+
neigh_hbox = QHBoxLayout()
|
|
158
|
+
neigh_hbox.addWidget(QLabel('neighborhood: '), 25)
|
|
159
|
+
self.neighborhood_choice_cb = QComboBox()
|
|
160
|
+
self.neighborhood_choice_cb.addItems(self.neighborhood_cols)
|
|
161
|
+
self.neighborhood_choice_cb.setCurrentIndex(0)
|
|
162
|
+
neigh_hbox.addWidget(self.neighborhood_choice_cb, 75)
|
|
163
|
+
self.left_panel.addLayout(neigh_hbox)
|
|
164
|
+
|
|
165
|
+
self.reference_cell_info = QLabel('')
|
|
166
|
+
self.pair_info = QLabel('')
|
|
167
|
+
self.neighbor_cell_info= QLabel('')
|
|
168
|
+
|
|
169
|
+
class_hbox = QHBoxLayout()
|
|
170
|
+
class_hbox.addWidget(QLabel('interaction event: '), 25)
|
|
171
|
+
|
|
172
|
+
subclass_hbox = QHBoxLayout()
|
|
173
|
+
self.relative_class_choice_cb = QComboBox()
|
|
174
|
+
self.relative_class_choice_cb.addItems(self.relative_class_cols)
|
|
175
|
+
self.relative_class_choice_cb.currentIndexChanged.connect(self.compute_status_and_colors_pair)
|
|
176
|
+
self.relative_class_choice_cb.setCurrentIndex(0)
|
|
177
|
+
|
|
178
|
+
subclass_hbox.addWidget(self.relative_class_choice_cb, 90)
|
|
179
|
+
|
|
180
|
+
self.set_reference_and_neighbor_populations()
|
|
181
|
+
self.neighborhood_choice_cb.currentIndexChanged.connect(self.neighborhood_changed)
|
|
182
|
+
self.compute_status_and_colors_pair()
|
|
183
|
+
|
|
184
|
+
self.relative_add_class_btn = QPushButton('')
|
|
185
|
+
self.relative_add_class_btn.setStyleSheet(self.button_select_all)
|
|
186
|
+
self.relative_add_class_btn.setIcon(icon(MDI6.plus,color="black"))
|
|
187
|
+
self.relative_add_class_btn.setToolTip("Add a new interaction event class")
|
|
188
|
+
self.relative_add_class_btn.setIconSize(QSize(20, 20))
|
|
189
|
+
self.relative_add_class_btn.clicked.connect(self.create_new_relative_event_class)
|
|
190
|
+
subclass_hbox.addWidget(self.relative_add_class_btn, 5)
|
|
191
|
+
|
|
192
|
+
self.relative_del_class_btn = QPushButton('')
|
|
193
|
+
self.relative_del_class_btn.setStyleSheet(self.button_select_all)
|
|
194
|
+
self.relative_del_class_btn.setIcon(icon(MDI6.delete,color="black"))
|
|
195
|
+
self.relative_del_class_btn.setToolTip("Delete an interaction event class")
|
|
196
|
+
self.relative_del_class_btn.setIconSize(QSize(20, 20))
|
|
197
|
+
self.relative_del_class_btn.clicked.connect(self.del_relative_event_class)
|
|
198
|
+
subclass_hbox.addWidget(self.relative_del_class_btn, 5)
|
|
199
|
+
class_hbox.addLayout(subclass_hbox, 75)
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
self.left_panel.addLayout(class_hbox)
|
|
203
|
+
|
|
204
|
+
self.cell_events_hbox = QHBoxLayout()
|
|
205
|
+
self.cell_events_hbox.addWidget(QLabel('reference event: '), 25)
|
|
206
|
+
self.reference_event_choice_cb = QComboBox()
|
|
207
|
+
self.cell_events_hbox.addWidget(self.reference_event_choice_cb, 75)
|
|
208
|
+
|
|
209
|
+
#if 'self' not in self.neighborhood_choice_cb.currentText():
|
|
210
|
+
self.neigh_cell_events_hbox = QHBoxLayout()
|
|
211
|
+
self.neigh_lab=QLabel('neighbor event: ')
|
|
212
|
+
self.neigh_cell_events_hbox.addWidget(self.neigh_lab, 25)
|
|
213
|
+
self.neighbor_event_choice_cb = QComboBox()
|
|
214
|
+
self.neigh_cell_events_hbox.addWidget(self.neighbor_event_choice_cb, 75)
|
|
215
|
+
self.fill_class_cbs()
|
|
216
|
+
|
|
217
|
+
#self.left_panel.addLayout(self.cell_events_hbox)
|
|
218
|
+
|
|
219
|
+
# Text information about selected cells
|
|
220
|
+
self.cell_info_hbox = QHBoxLayout()
|
|
221
|
+
self.cell_info_hbox.setContentsMargins(30,30,30,30)
|
|
222
|
+
|
|
223
|
+
reference_layout = QVBoxLayout()
|
|
224
|
+
reference_layout.addWidget(self.reference_cell_info)
|
|
225
|
+
reference_layout.addLayout(self.cell_events_hbox)
|
|
226
|
+
|
|
227
|
+
neighbor_layout = QVBoxLayout()
|
|
228
|
+
neighbor_layout.addWidget(self.neighbor_cell_info)
|
|
229
|
+
neighbor_layout.addLayout(self.neigh_cell_events_hbox)
|
|
230
|
+
|
|
231
|
+
self.cell_info_hbox.addLayout(reference_layout, 33)
|
|
232
|
+
self.cell_info_hbox.addWidget(self.pair_info, 33, alignment=Qt.AlignCenter)
|
|
233
|
+
self.cell_info_hbox.addLayout(neighbor_layout, 33)
|
|
234
|
+
|
|
235
|
+
self.left_panel.addLayout(self.cell_info_hbox)
|
|
236
|
+
|
|
237
|
+
# Annotation buttons
|
|
238
|
+
options_hbox = QHBoxLayout()
|
|
239
|
+
options_hbox.setContentsMargins(150, 30, 50, 0)
|
|
240
|
+
self.event_btn = QRadioButton('event')
|
|
241
|
+
self.event_btn.setStyleSheet(self.button_style_sheet_2)
|
|
242
|
+
self.event_btn.toggled.connect(self.enable_time_of_interest)
|
|
243
|
+
|
|
244
|
+
self.no_event_btn = QRadioButton('no event')
|
|
245
|
+
self.no_event_btn.setStyleSheet(self.button_style_sheet_2)
|
|
246
|
+
self.no_event_btn.toggled.connect(self.enable_time_of_interest)
|
|
247
|
+
|
|
248
|
+
self.else_btn = QRadioButton('else')
|
|
249
|
+
self.else_btn.setStyleSheet(self.button_style_sheet_2)
|
|
250
|
+
self.else_btn.toggled.connect(self.enable_time_of_interest)
|
|
251
|
+
|
|
252
|
+
self.suppr_btn = QRadioButton('mark for\nsuppression')
|
|
253
|
+
self.suppr_btn.setStyleSheet(self.button_style_sheet_2)
|
|
254
|
+
self.suppr_btn.toggled.connect(self.enable_time_of_interest)
|
|
255
|
+
|
|
256
|
+
options_hbox.addWidget(self.event_btn, 25)
|
|
257
|
+
options_hbox.addWidget(self.no_event_btn, 25)
|
|
258
|
+
options_hbox.addWidget(self.else_btn, 25)
|
|
259
|
+
options_hbox.addWidget(self.suppr_btn, 25)
|
|
260
|
+
self.left_panel.addLayout(options_hbox)
|
|
261
|
+
|
|
262
|
+
time_option_hbox = QHBoxLayout()
|
|
263
|
+
time_option_hbox.setContentsMargins(100, 30, 100, 30)
|
|
264
|
+
self.time_of_interest_label = QLabel('time of interest: ')
|
|
265
|
+
time_option_hbox.addWidget(self.time_of_interest_label, 30)
|
|
266
|
+
self.time_of_interest_le = QLineEdit()
|
|
267
|
+
time_option_hbox.addWidget(self.time_of_interest_le, 70)
|
|
268
|
+
self.left_panel.addLayout(time_option_hbox)
|
|
269
|
+
|
|
270
|
+
main_action_hbox = QHBoxLayout()
|
|
271
|
+
self.correct_btn = QPushButton('correct')
|
|
272
|
+
self.correct_btn.setIcon(icon(MDI6.redo_variant, color="white"))
|
|
273
|
+
self.correct_btn.setIconSize(QSize(20, 20))
|
|
274
|
+
self.correct_btn.setStyleSheet(self.button_style_sheet)
|
|
275
|
+
self.correct_btn.clicked.connect(self.show_annotation_buttons)
|
|
276
|
+
self.correct_btn.setEnabled(False)
|
|
277
|
+
main_action_hbox.addWidget(self.correct_btn)
|
|
278
|
+
|
|
279
|
+
self.cancel_btn = QPushButton('cancel')
|
|
280
|
+
self.cancel_btn.setStyleSheet(self.button_style_sheet_2)
|
|
281
|
+
self.cancel_btn.setShortcut(QKeySequence("Esc"))
|
|
282
|
+
self.cancel_btn.setEnabled(False)
|
|
283
|
+
self.cancel_btn.clicked.connect(self.cancel_selection)
|
|
284
|
+
main_action_hbox.addWidget(self.cancel_btn)
|
|
285
|
+
self.left_panel.addLayout(main_action_hbox)
|
|
286
|
+
|
|
287
|
+
self.annotation_btns_to_hide = [self.event_btn, self.no_event_btn,
|
|
288
|
+
self.else_btn, self.time_of_interest_label,
|
|
289
|
+
self.time_of_interest_le, self.suppr_btn]
|
|
290
|
+
self.hide_annotation_buttons()
|
|
291
|
+
|
|
292
|
+
self.del_shortcut = QShortcut(Qt.Key_Delete, self) #QKeySequence("s")
|
|
293
|
+
self.del_shortcut.activated.connect(self.shortcut_suppr)
|
|
294
|
+
self.del_shortcut.setEnabled(False)
|
|
295
|
+
|
|
296
|
+
self.no_event_shortcut = QShortcut(QKeySequence("n"), self) #QKeySequence("s")
|
|
297
|
+
self.no_event_shortcut.activated.connect(self.shortcut_no_event)
|
|
298
|
+
self.no_event_shortcut.setEnabled(False)
|
|
299
|
+
|
|
300
|
+
|
|
301
|
+
# Cell signals
|
|
302
|
+
self.left_panel.addWidget(self.cell_fcanvas)
|
|
303
|
+
|
|
304
|
+
plot_buttons_hbox = QHBoxLayout()
|
|
305
|
+
plot_buttons_hbox.setContentsMargins(0,0,0,0)
|
|
306
|
+
self.normalize_features_btn = QPushButton('')
|
|
307
|
+
self.normalize_features_btn.setStyleSheet(self.button_select_all)
|
|
308
|
+
self.normalize_features_btn.setIcon(icon(MDI6.arrow_collapse_vertical,color="black"))
|
|
309
|
+
self.normalize_features_btn.setIconSize(QSize(25, 25))
|
|
310
|
+
self.normalize_features_btn.setFixedSize(QSize(30, 30))
|
|
311
|
+
#self.normalize_features_btn.setShortcut(QKeySequence('n'))
|
|
312
|
+
self.normalize_features_btn.clicked.connect(self.normalize_features)
|
|
313
|
+
|
|
314
|
+
plot_buttons_hbox.addWidget(QLabel(''), 90)
|
|
315
|
+
plot_buttons_hbox.addWidget(self.normalize_features_btn, 5)
|
|
316
|
+
self.normalized_signals = False
|
|
317
|
+
|
|
318
|
+
self.log_btn = QPushButton()
|
|
319
|
+
self.log_btn.setIcon(icon(MDI6.math_log,color="black"))
|
|
320
|
+
self.log_btn.setStyleSheet(self.button_select_all)
|
|
321
|
+
self.log_btn.clicked.connect(self.switch_to_log)
|
|
322
|
+
plot_buttons_hbox.addWidget(self.log_btn, 5)
|
|
323
|
+
|
|
324
|
+
self.left_panel.addLayout(plot_buttons_hbox)
|
|
325
|
+
|
|
326
|
+
signal_choice_grid = QVBoxLayout()
|
|
327
|
+
signal_choice_grid.setContentsMargins(30,0,30,50)
|
|
328
|
+
|
|
329
|
+
header_layout = QHBoxLayout()
|
|
330
|
+
header_layout.addWidget(QLabel('reference'), 23, alignment=Qt.AlignCenter)
|
|
331
|
+
header_layout.addWidget(QLabel('neighbor'), 23, alignment=Qt.AlignCenter)
|
|
332
|
+
header_layout.addWidget(QLabel('pair'), 23, alignment=Qt.AlignCenter)
|
|
333
|
+
header_layout.addWidget(QLabel(''), 30, alignment=Qt.AlignCenter)
|
|
334
|
+
signal_choice_grid.addLayout(header_layout)
|
|
335
|
+
|
|
336
|
+
for i in range(self.n_signals):
|
|
337
|
+
|
|
338
|
+
h_layout = QHBoxLayout()
|
|
339
|
+
h_layout.addWidget(self.reference_pop_option_buttons[i], 23, alignment=Qt.AlignCenter)
|
|
340
|
+
h_layout.addWidget(self.neighbor_pop_option_buttons[i], 23, alignment=Qt.AlignCenter)
|
|
341
|
+
h_layout.addWidget(self.relative_pop_option_buttons[i], 23, alignment=Qt.AlignCenter)
|
|
342
|
+
h_layout.addWidget(self.signal_choices[i], 30)
|
|
343
|
+
signal_choice_grid.addLayout(h_layout)
|
|
344
|
+
|
|
345
|
+
# signal_choice_vbox = QVBoxLayout()
|
|
346
|
+
# signal_choice_vbox.setContentsMargins(30,0,30,50)
|
|
347
|
+
# for i in range(len(self.signal_choices)):
|
|
348
|
+
# signal_choice_grid.addWidget(self.signal_choices[i],i+1,3)
|
|
349
|
+
# # hlayout = QHBoxLayout()
|
|
350
|
+
# #
|
|
351
|
+
# # #hlayout.addLayout(self.signal_labels[i], 20)
|
|
352
|
+
# # #hlayout.addLayout(self.signal_choices[i], 75)
|
|
353
|
+
# # # if i==0:
|
|
354
|
+
# # # hlayout.addWidget(self.signal_choices[i], 75,alignment=Qt.AlignBottom)
|
|
355
|
+
# # # else:
|
|
356
|
+
# # hlayout.addWidget(self.signal_choices[i], 75)
|
|
357
|
+
# # #hlayout.addWidget(self.log_btns[i], 5)
|
|
358
|
+
# # signal_choice_vbox.addLayout(hlayout)
|
|
359
|
+
|
|
360
|
+
# self.log_btns[i].setIcon(icon(MDI6.math_log,color="black"))
|
|
361
|
+
# self.log_btns[i].setStyleSheet(self.parent.parent.parent.button_select_all)
|
|
362
|
+
# self.log_btns[i].clicked.connect(lambda ch, i=i: self.switch_to_log(i))
|
|
363
|
+
#signal_choice_hbox.addLayout(signal_choice_vbox,alignment=Qt.AlignCenter)
|
|
364
|
+
|
|
365
|
+
self.left_panel.addLayout(signal_choice_grid)
|
|
366
|
+
|
|
367
|
+
btn_hbox = QHBoxLayout()
|
|
368
|
+
self.save_btn = QPushButton('Save')
|
|
369
|
+
self.save_btn.setStyleSheet(self.button_style_sheet)
|
|
370
|
+
self.save_btn.clicked.connect(self.save_trajectories)
|
|
371
|
+
btn_hbox.addWidget(self.save_btn, 90)
|
|
372
|
+
|
|
373
|
+
self.export_btn = QPushButton('')
|
|
374
|
+
self.export_btn.setStyleSheet(self.button_select_all)
|
|
375
|
+
self.export_btn.clicked.connect(self.export_signals)
|
|
376
|
+
self.export_btn.setIcon(icon(MDI6.export,color="black"))
|
|
377
|
+
self.export_btn.setIconSize(QSize(25, 25))
|
|
378
|
+
btn_hbox.addWidget(self.export_btn, 10)
|
|
379
|
+
self.left_panel.addLayout(btn_hbox)
|
|
380
|
+
|
|
381
|
+
# Animation
|
|
382
|
+
animation_buttons_box = QHBoxLayout()
|
|
383
|
+
|
|
384
|
+
|
|
385
|
+
animation_buttons_box.addWidget(self.frame_lbl, 20, alignment=Qt.AlignLeft)
|
|
386
|
+
|
|
387
|
+
self.first_frame_btn = QPushButton()
|
|
388
|
+
self.first_frame_btn.clicked.connect(self.set_first_frame)
|
|
389
|
+
self.first_frame_btn.setShortcut(QKeySequence('f'))
|
|
390
|
+
self.first_frame_btn.setIcon(icon(MDI6.page_first,color="black"))
|
|
391
|
+
self.first_frame_btn.setStyleSheet(self.button_select_all)
|
|
392
|
+
self.first_frame_btn.setFixedSize(QSize(60, 60))
|
|
393
|
+
self.first_frame_btn.setIconSize(QSize(30, 30))
|
|
394
|
+
|
|
395
|
+
|
|
396
|
+
|
|
397
|
+
self.last_frame_btn = QPushButton()
|
|
398
|
+
self.last_frame_btn.clicked.connect(self.set_last_frame)
|
|
399
|
+
self.last_frame_btn.setShortcut(QKeySequence('l'))
|
|
400
|
+
self.last_frame_btn.setIcon(icon(MDI6.page_last,color="black"))
|
|
401
|
+
self.last_frame_btn.setStyleSheet(self.button_select_all)
|
|
402
|
+
self.last_frame_btn.setFixedSize(QSize(60, 60))
|
|
403
|
+
self.last_frame_btn.setIconSize(QSize(30, 30))
|
|
404
|
+
|
|
405
|
+
self.stop_btn = QPushButton()
|
|
406
|
+
self.stop_btn.clicked.connect(self.stop)
|
|
407
|
+
self.stop_btn.setIcon(icon(MDI6.stop,color="black"))
|
|
408
|
+
self.stop_btn.setStyleSheet(self.button_select_all)
|
|
409
|
+
self.stop_btn.setFixedSize(QSize(60, 60))
|
|
410
|
+
self.stop_btn.setIconSize(QSize(30, 30))
|
|
411
|
+
|
|
412
|
+
|
|
413
|
+
self.start_btn = QPushButton()
|
|
414
|
+
self.start_btn.clicked.connect(self.start)
|
|
415
|
+
self.start_btn.setIcon(icon(MDI6.play,color="black"))
|
|
416
|
+
self.start_btn.setFixedSize(QSize(60, 60))
|
|
417
|
+
self.start_btn.setStyleSheet(self.button_select_all)
|
|
418
|
+
self.start_btn.setIconSize(QSize(30, 30))
|
|
419
|
+
self.start_btn.hide()
|
|
420
|
+
|
|
421
|
+
animation_buttons_box.addWidget(self.first_frame_btn, 5, alignment=Qt.AlignRight)
|
|
422
|
+
animation_buttons_box.addWidget(self.stop_btn,5, alignment=Qt.AlignRight)
|
|
423
|
+
animation_buttons_box.addWidget(self.start_btn,5, alignment=Qt.AlignRight)
|
|
424
|
+
animation_buttons_box.addWidget(self.last_frame_btn, 5, alignment=Qt.AlignRight)
|
|
425
|
+
|
|
426
|
+
|
|
427
|
+
self.right_panel.addLayout(animation_buttons_box, 5)
|
|
428
|
+
|
|
429
|
+
|
|
430
|
+
self.right_panel.addWidget(self.fcanvas, 90)
|
|
431
|
+
|
|
432
|
+
if not self.rgb_mode:
|
|
433
|
+
contrast_hbox = QHBoxLayout()
|
|
434
|
+
contrast_hbox.setContentsMargins(150,5,150,5)
|
|
435
|
+
self.contrast_slider = QLabeledDoubleRangeSlider()
|
|
436
|
+
# self.contrast_slider.setSingleStep(0.001)
|
|
437
|
+
# self.contrast_slider.setTickInterval(0.001)
|
|
438
|
+
self.contrast_slider.setOrientation(1)
|
|
439
|
+
print('range: ', [np.nanpercentile(self.stack.flatten(), 0.001), np.nanpercentile(self.stack.flatten(), 99.999)])
|
|
440
|
+
self.contrast_slider.setRange(
|
|
441
|
+
*[np.nanpercentile(self.stack, 0.001), np.nanpercentile(self.stack, 99.999)])
|
|
442
|
+
self.contrast_slider.setValue(
|
|
443
|
+
[np.nanpercentile(self.stack, 1), np.nanpercentile(self.stack, 99.99)])
|
|
444
|
+
self.contrast_slider.valueChanged.connect(self.contrast_slider_action)
|
|
445
|
+
contrast_hbox.addWidget(QLabel('contrast: '))
|
|
446
|
+
contrast_hbox.addWidget(self.contrast_slider,90)
|
|
447
|
+
self.right_panel.addLayout(contrast_hbox, 5)
|
|
448
|
+
|
|
449
|
+
# speed_hbox = QHBoxLayout()
|
|
450
|
+
# speed_hbox.setContentsMargins(150,5,150,5)
|
|
451
|
+
# self.interval_slider = QLabeledSlider()
|
|
452
|
+
# self.interval_slider.setSingleStep(1)
|
|
453
|
+
# self.interval_slider.setTickInterval(1)
|
|
454
|
+
# self.interval_slider.setOrientation(1)
|
|
455
|
+
# self.interval_slider.setRange(1, 10000)
|
|
456
|
+
# self.interval_slider.setValue(self.speed)
|
|
457
|
+
# self.interval_slider.valueChanged.connect(self.interval_slider_action)
|
|
458
|
+
# speed_hbox.addWidget(QLabel('interval (ms): '))
|
|
459
|
+
# speed_hbox.addWidget(self.interval_slider,90)
|
|
460
|
+
# self.right_panel.addLayout(speed_hbox, 10)
|
|
461
|
+
|
|
462
|
+
#self.selected_populationulate_left_panel()
|
|
463
|
+
#grid.addLayout(self.left_side, 0, 0, 1, 1)
|
|
464
|
+
|
|
465
|
+
main_layout.addLayout(self.left_panel, 35)
|
|
466
|
+
main_layout.addLayout(self.right_panel, 65)
|
|
467
|
+
self.button_widget.adjustSize()
|
|
468
|
+
self.compute_status_and_colors_reference()
|
|
469
|
+
|
|
470
|
+
|
|
471
|
+
self.setCentralWidget(self.button_widget)
|
|
472
|
+
self.show()
|
|
473
|
+
|
|
474
|
+
QApplication.processEvents()
|
|
475
|
+
|
|
476
|
+
def fill_class_cbs(self):
|
|
477
|
+
|
|
478
|
+
cols_to_remove = ['class_id', 'class_color']
|
|
479
|
+
|
|
480
|
+
try:
|
|
481
|
+
self.reference_event_choice_cb.disconnect()
|
|
482
|
+
except:
|
|
483
|
+
pass
|
|
484
|
+
self.reference_event_choice_cb.clear()
|
|
485
|
+
df_reference = self.dataframes[self.reference_population]
|
|
486
|
+
reference_class_cols = [c for c in list(df_reference.columns) if c.startswith('class')]
|
|
487
|
+
for c in cols_to_remove:
|
|
488
|
+
try:
|
|
489
|
+
reference_class_cols.remove(c)
|
|
490
|
+
except:
|
|
491
|
+
pass
|
|
492
|
+
self.reference_event_choice_cb.addItems(reference_class_cols)
|
|
493
|
+
self.reference_event_choice_cb.currentIndexChanged.connect(self.compute_status_and_colors_reference)
|
|
494
|
+
|
|
495
|
+
try:
|
|
496
|
+
self.neighbor_event_choice_cb.disconnect()
|
|
497
|
+
except:
|
|
498
|
+
pass
|
|
499
|
+
self.neighbor_event_choice_cb.clear()
|
|
500
|
+
df_neighbors = self.dataframes[self.neighbor_population]
|
|
501
|
+
neighbor_class_cols = [c for c in list(df_neighbors.columns) if c.startswith('class')]
|
|
502
|
+
for c in cols_to_remove:
|
|
503
|
+
try:
|
|
504
|
+
neighbor_class_cols.remove(c)
|
|
505
|
+
except:
|
|
506
|
+
pass
|
|
507
|
+
self.neighbor_event_choice_cb.addItems(neighbor_class_cols)
|
|
508
|
+
self.neighbor_event_choice_cb.currentIndexChanged.connect(self.compute_status_and_colors_neighbor)
|
|
509
|
+
|
|
510
|
+
|
|
511
|
+
def del_target_event_class(self):
|
|
512
|
+
|
|
513
|
+
msgBox = QMessageBox()
|
|
514
|
+
msgBox.setIcon(QMessageBox.Warning)
|
|
515
|
+
msgBox.setText(f"You are about to delete event class {self.target_class_choice_cb.currentText()}. The associated time and\nstatus will also be deleted. Do you still want to proceed?")
|
|
516
|
+
msgBox.setWindowTitle("Warning")
|
|
517
|
+
msgBox.setStandardButtons(QMessageBox.Yes | QMessageBox.No)
|
|
518
|
+
returnValue = msgBox.exec()
|
|
519
|
+
if returnValue == QMessageBox.No:
|
|
520
|
+
return None
|
|
521
|
+
else:
|
|
522
|
+
class_to_delete = self.target_class_choice_cb.currentText()
|
|
523
|
+
time_to_delete = class_to_delete.replace('class','t')
|
|
524
|
+
status_to_delete = class_to_delete.replace('class', 'status')
|
|
525
|
+
cols_to_delete = [class_to_delete, time_to_delete, status_to_delete]
|
|
526
|
+
for c in cols_to_delete:
|
|
527
|
+
try:
|
|
528
|
+
self.df_targets = self.df_targets.drop([c], axis=1)
|
|
529
|
+
except Exception as e:
|
|
530
|
+
print(e)
|
|
531
|
+
item_idx = self.target_class_choice_cb.findText(class_to_delete)
|
|
532
|
+
self.target_class_choice_cb.removeItem(item_idx)
|
|
533
|
+
|
|
534
|
+
def del_effector_event_class(self):
|
|
535
|
+
|
|
536
|
+
msgBox = QMessageBox()
|
|
537
|
+
msgBox.setIcon(QMessageBox.Warning)
|
|
538
|
+
msgBox.setText(f"You are about to delete event class {self.effector_class_choice_cb.currentText()}. The associated time and\nstatus will also be deleted. Do you still want to proceed?")
|
|
539
|
+
msgBox.setWindowTitle("Warning")
|
|
540
|
+
msgBox.setStandardButtons(QMessageBox.Yes | QMessageBox.No)
|
|
541
|
+
returnValue = msgBox.exec()
|
|
542
|
+
if returnValue == QMessageBox.No:
|
|
543
|
+
return None
|
|
544
|
+
else:
|
|
545
|
+
class_to_delete = self.effector_class_choice_cb.currentText()
|
|
546
|
+
time_to_delete = class_to_delete.replace('class','t')
|
|
547
|
+
status_to_delete = class_to_delete.replace('class', 'status')
|
|
548
|
+
cols_to_delete = [class_to_delete, time_to_delete, status_to_delete]
|
|
549
|
+
for c in cols_to_delete:
|
|
550
|
+
try:
|
|
551
|
+
self.df_effectors = self.df_effectors.drop([c], axis=1)
|
|
552
|
+
except Exception as e:
|
|
553
|
+
print(e)
|
|
554
|
+
item_idx = self.effector_class_choice_cb.findText(class_to_delete)
|
|
555
|
+
self.effector_class_choice_cb.removeItem(item_idx)
|
|
556
|
+
|
|
557
|
+
def del_relative_event_class(self):
|
|
558
|
+
|
|
559
|
+
msgBox = QMessageBox()
|
|
560
|
+
msgBox.setIcon(QMessageBox.Warning)
|
|
561
|
+
msgBox.setText(f"You are about to delete event class {self.relative_class_choice_cb.currentText()}. The associated time and\nstatus will also be deleted. Do you still want to proceed?")
|
|
562
|
+
msgBox.setWindowTitle("Warning")
|
|
563
|
+
msgBox.setStandardButtons(QMessageBox.Yes | QMessageBox.No)
|
|
564
|
+
returnValue = msgBox.exec()
|
|
565
|
+
if returnValue == QMessageBox.No:
|
|
566
|
+
return None
|
|
567
|
+
else:
|
|
568
|
+
class_to_delete = self.relative_class_choice_cb.currentText()
|
|
569
|
+
time_to_delete = class_to_delete.replace('class','t')
|
|
570
|
+
status_to_delete = class_to_delete.replace('class', 'status')
|
|
571
|
+
cols_to_delete = [class_to_delete, time_to_delete, status_to_delete]
|
|
572
|
+
for c in cols_to_delete:
|
|
573
|
+
try:
|
|
574
|
+
self.df_relative = self.df_relative.drop([c], axis=1)
|
|
575
|
+
except Exception as e:
|
|
576
|
+
print(e)
|
|
577
|
+
item_idx = self.relative_class_choice_cb.findText(class_to_delete)
|
|
578
|
+
self.relative_class_choice_cb.removeItem(item_idx)
|
|
579
|
+
|
|
580
|
+
def update_cell_events(self):
|
|
581
|
+
if 'self' in self.current_neighborhood:
|
|
582
|
+
try:
|
|
583
|
+
self.neighbor_event_choice_cb.hide()
|
|
584
|
+
self.neigh_lab.hide()
|
|
585
|
+
except:
|
|
586
|
+
pass
|
|
587
|
+
self.reference_event_choice_cb.disconnect()
|
|
588
|
+
self.reference_event_choice_cb.clear()
|
|
589
|
+
if self.reference_population=='targets':
|
|
590
|
+
self.reference_event_choice_cb.addItems(self.target_class_cols)
|
|
591
|
+
self.reference_event_choice_cb.currentIndexChanged.connect(self.compute_status_and_colors_reference)
|
|
592
|
+
else:
|
|
593
|
+
self.reference_event_choice_cb.addItems(self.effector_class_cols)
|
|
594
|
+
self.reference_event_choice_cb.currentIndexChanged.connect(self.compute_status_and_colors_neighbor)
|
|
595
|
+
|
|
596
|
+
else:
|
|
597
|
+
try:
|
|
598
|
+
self.neighbor_event_choice_cb.show()
|
|
599
|
+
self.neigh_lab.show()
|
|
600
|
+
except:
|
|
601
|
+
pass
|
|
602
|
+
self.reference_event_choice_cb.disconnect()
|
|
603
|
+
self.reference_event_choice_cb.clear()
|
|
604
|
+
|
|
605
|
+
if self.reference_population=='targets':
|
|
606
|
+
self.reference_event_choice_cb.addItems(self.target_class_cols)
|
|
607
|
+
self.reference_event_choice_cb.currentIndexChanged.connect(self.compute_status_and_colors_reference)
|
|
608
|
+
|
|
609
|
+
else:
|
|
610
|
+
self.reference_event_choice_cb.addItems(self.effector_class_cols)
|
|
611
|
+
self.reference_event_choice_cb.currentIndexChanged.connect(self.compute_status_and_colors_neighbor)
|
|
612
|
+
|
|
613
|
+
self.neighbor_event_choice_cb.disconnect()
|
|
614
|
+
self.neighbor_event_choice_cb.clear()
|
|
615
|
+
|
|
616
|
+
if self.neighbor_population=='targets':
|
|
617
|
+
self.neighbor_event_choice_cb.addItems(self.target_class_cols)
|
|
618
|
+
self.neighbor_event_choice_cb.currentIndexChanged.connect(self.compute_status_and_colors_reference)
|
|
619
|
+
|
|
620
|
+
else:
|
|
621
|
+
self.neighbor_event_choice_cb.addItems(self.effector_class_cols)
|
|
622
|
+
self.neighbor_event_choice_cb.currentIndexChanged.connect(self.compute_status_and_colors_neighbor)
|
|
623
|
+
|
|
624
|
+
|
|
625
|
+
|
|
626
|
+
def create_new_relative_event_class(self):
|
|
627
|
+
|
|
628
|
+
# display qwidget to name the event
|
|
629
|
+
self.newClassWidget = QWidget()
|
|
630
|
+
self.newClassWidget.setWindowTitle('Create new event class')
|
|
631
|
+
|
|
632
|
+
layout = QVBoxLayout()
|
|
633
|
+
self.newClassWidget.setLayout(layout)
|
|
634
|
+
name_hbox = QHBoxLayout()
|
|
635
|
+
name_hbox.addWidget(QLabel('event name: '), 25)
|
|
636
|
+
self.relative_class_name_le = QLineEdit('event')
|
|
637
|
+
name_hbox.addWidget(self.relative_class_name_le, 75)
|
|
638
|
+
layout.addLayout(name_hbox)
|
|
639
|
+
|
|
640
|
+
class_labels = ['event', 'no event', 'else']
|
|
641
|
+
layout.addWidget(QLabel('prefill: '))
|
|
642
|
+
radio_box = QHBoxLayout()
|
|
643
|
+
self.class_option_rb = [QRadioButton() for i in range(3)]
|
|
644
|
+
for i,c in enumerate(self.class_option_rb):
|
|
645
|
+
if i==0:
|
|
646
|
+
c.setChecked(True)
|
|
647
|
+
c.setText(class_labels[i])
|
|
648
|
+
radio_box.addWidget(c, 33, alignment=Qt.AlignCenter)
|
|
649
|
+
layout.addLayout(radio_box)
|
|
650
|
+
|
|
651
|
+
btn_hbox = QHBoxLayout()
|
|
652
|
+
submit_btn = QPushButton('submit')
|
|
653
|
+
cancel_btn = QPushButton('cancel')
|
|
654
|
+
btn_hbox.addWidget(cancel_btn, 50)
|
|
655
|
+
btn_hbox.addWidget(submit_btn, 50)
|
|
656
|
+
layout.addLayout(btn_hbox)
|
|
657
|
+
submit_btn.clicked.connect(self.write_new_relative_event_class)
|
|
658
|
+
cancel_btn.clicked.connect(self.close_without_new_class)
|
|
659
|
+
|
|
660
|
+
self.newClassWidget.show()
|
|
661
|
+
center_window(self.newClassWidget)
|
|
662
|
+
|
|
663
|
+
def write_new_relative_event_class(self):
|
|
664
|
+
|
|
665
|
+
if self.relative_class_name_le.text()=='':
|
|
666
|
+
self.relative_class = 'class'
|
|
667
|
+
self.relative_time = 't0'
|
|
668
|
+
self.relative_status = 'status'
|
|
669
|
+
else:
|
|
670
|
+
self.relative_class = 'class_'+self.relative_class_name_le.text()
|
|
671
|
+
self.relative_status = self.relative_class.replace('class','status')
|
|
672
|
+
self.relative_time = 't0_'+self.relative_class_name_le.text()
|
|
673
|
+
|
|
674
|
+
if self.relative_class in list(self.df_relative.columns):
|
|
675
|
+
|
|
676
|
+
msgBox = QMessageBox()
|
|
677
|
+
msgBox.setIcon(QMessageBox.Warning)
|
|
678
|
+
msgBox.setText("This event name already exists. If you proceed,\nall annotated data will be rewritten. Do you wish to continue?")
|
|
679
|
+
msgBox.setWindowTitle("Warning")
|
|
680
|
+
msgBox.setStandardButtons(QMessageBox.Yes | QMessageBox.No)
|
|
681
|
+
returnValue = msgBox.exec()
|
|
682
|
+
if returnValue == QMessageBox.No:
|
|
683
|
+
return None
|
|
684
|
+
else:
|
|
685
|
+
pass
|
|
686
|
+
|
|
687
|
+
fill_option = np.where([c.isChecked() for c in self.class_option_rb])[0][0]
|
|
688
|
+
self.df_relative.loc[(~self.df_relative['status_'+self.current_neighborhood].isnull())&(self.df_relative['reference_population']==self.reference_population),self.relative_class] = fill_option
|
|
689
|
+
if fill_option==0:
|
|
690
|
+
self.df_relative.loc[(~self.df_relative['status_'+self.current_neighborhood].isnull())&(self.df_relative['reference_population']==self.reference_population),self.relative_time] = 0.1
|
|
691
|
+
else:
|
|
692
|
+
self.df_relative.loc[(~self.df_relative['status_'+self.current_neighborhood].isnull())&(self.df_relative['reference_population']==self.reference_population),self.relative_time] = -1
|
|
693
|
+
self.relative_class_choice_cb.disconnect()
|
|
694
|
+
self.relative_class_choice_cb.clear()
|
|
695
|
+
cols = np.array(self.df_relative.columns)
|
|
696
|
+
self.relative_class_cols = np.array([c.startswith('class') for c in list(self.df_relative.columns)])
|
|
697
|
+
self.relative_class_cols = list(cols[self.relative_class_cols])
|
|
698
|
+
try:
|
|
699
|
+
self.relative_class_cols.remove('class_color')
|
|
700
|
+
self.relative_class_cols.remove('class_id')
|
|
701
|
+
except:
|
|
702
|
+
pass
|
|
703
|
+
self.relative_class_choice_cb.currentIndexChanged.connect(self.compute_status_and_colors_pair)
|
|
704
|
+
self.relative_class_choice_cb.addItems(self.relative_class_cols)
|
|
705
|
+
idx = self.relative_class_choice_cb.findText(self.relative_class)
|
|
706
|
+
self.relative_class_choice_cb.setCurrentIndex(idx)
|
|
707
|
+
|
|
708
|
+
self.pair_class_name = self.relative_class
|
|
709
|
+
|
|
710
|
+
self.pair_time_name = self.relative_time
|
|
711
|
+
self.pair_status_name = self.relative_status
|
|
712
|
+
|
|
713
|
+
self.newClassWidget.close()
|
|
714
|
+
|
|
715
|
+
|
|
716
|
+
def close_without_new_class(self):
|
|
717
|
+
|
|
718
|
+
self.newClassWidget.close()
|
|
719
|
+
|
|
720
|
+
|
|
721
|
+
def compute_status_and_colors_reference(self):
|
|
722
|
+
|
|
723
|
+
df_reference = self.dataframes[self.reference_population]
|
|
724
|
+
self.reference_class_name = self.reference_event_choice_cb.currentText()
|
|
725
|
+
self.expected_reference_status = 'status_'
|
|
726
|
+
suffix = self.reference_class_name.replace('class','').replace('_','')
|
|
727
|
+
if suffix!='':
|
|
728
|
+
self.expected_reference_status+='_'+suffix
|
|
729
|
+
self.expected_reference_time = 't_'+suffix
|
|
730
|
+
else:
|
|
731
|
+
self.expected_reference_time = 't0'
|
|
732
|
+
|
|
733
|
+
self.reference_time_name = self.expected_reference_time
|
|
734
|
+
self.reference_status_name = self.expected_reference_status
|
|
735
|
+
|
|
736
|
+
if self.reference_time_name in list(df_reference.columns) and self.reference_class_name in list(df_reference.columns) and not self.reference_status_name in list(df_reference.columns):
|
|
737
|
+
# only create the status column if it does not exist to not erase static classification results
|
|
738
|
+
self.make_reference_status_column()
|
|
739
|
+
elif self.reference_time_name in list(df_reference.columns) and self.reference_class_name in list(df_reference.columns):
|
|
740
|
+
# all good, do nothing
|
|
741
|
+
pass
|
|
742
|
+
else:
|
|
743
|
+
if not self.reference_status_name in list(df_reference.columns):
|
|
744
|
+
df_reference[self.reference_status_name] = 0
|
|
745
|
+
df_reference['status_color'] = color_from_status(0)
|
|
746
|
+
df_reference['class_color'] = color_from_class(1)
|
|
747
|
+
|
|
748
|
+
if not self.reference_class_name in list(df_reference.columns):
|
|
749
|
+
df_reference[self.reference_class_name] = 1
|
|
750
|
+
if not self.reference_time_name in list(df_reference.columns):
|
|
751
|
+
df_reference[self.reference_time_name] = -1
|
|
752
|
+
|
|
753
|
+
df_reference['status_color'] = [color_from_status(i) for i in df_reference[self.reference_status_name].to_numpy()]
|
|
754
|
+
df_reference['class_color'] = [color_from_class(i) for i in df_reference[self.reference_class_name].to_numpy()]
|
|
755
|
+
|
|
756
|
+
if self.reference_population=='targets':
|
|
757
|
+
self.extract_scatter_from_target_trajectories()
|
|
758
|
+
else:
|
|
759
|
+
self.extract_scatter_from_effector_trajectories()
|
|
760
|
+
|
|
761
|
+
|
|
762
|
+
def compute_status_and_colors_neighbor(self):
|
|
763
|
+
|
|
764
|
+
df_neighbors = self.dataframes[self.neighbor_population]
|
|
765
|
+
self.neighbor_class_name = self.neighbor_event_choice_cb.currentText()
|
|
766
|
+
self.expected_neighbor_status = 'status_'
|
|
767
|
+
suffix = self.neighbor_class_name.replace('class','').replace('_','')
|
|
768
|
+
if suffix!='':
|
|
769
|
+
self.expected_neighbor_status+='_'+suffix
|
|
770
|
+
self.expected_neighbor_time = 't_'+suffix
|
|
771
|
+
else:
|
|
772
|
+
self.expected_neighbor_time = 't0'
|
|
773
|
+
|
|
774
|
+
self.neighbor_time_name = self.expected_neighbor_time
|
|
775
|
+
self.neighbor_status_name = self.expected_neighbor_status
|
|
776
|
+
|
|
777
|
+
if self.neighbor_time_name in list(df_neighbors.columns) and self.neighbor_class_name in list(df_neighbors.columns) and not self.neighbor_status_name in list(df_neighbors.columns):
|
|
778
|
+
# only create the status column if it does not exist to not erase static classification results
|
|
779
|
+
self.make_neighbor_status_column()
|
|
780
|
+
elif self.neighbor_time_name in list(df_neighbors.columns) and self.neighbor_class_name in list(df_neighbors.columns):
|
|
781
|
+
# all good, do nothing
|
|
782
|
+
pass
|
|
783
|
+
else:
|
|
784
|
+
if not self.neighbor_status_name in list(df_neighbors.columns):
|
|
785
|
+
df_neighbors[self.neighbor_status_name] = 0
|
|
786
|
+
df_neighbors['status_color'] = color_from_status(0)
|
|
787
|
+
df_neighbors['class_color'] = color_from_class(1)
|
|
788
|
+
|
|
789
|
+
if not self.neighbor_class_name in list(df_neighbors.columns):
|
|
790
|
+
df_neighbors[self.neighbor_class_name] = 1
|
|
791
|
+
if not self.neighbor_time_name in list(df_neighbors.columns):
|
|
792
|
+
df_neighbors[self.neighbor_time_name] = -1
|
|
793
|
+
|
|
794
|
+
df_neighbors['status_color'] = [color_from_status(i) for i in df_neighbors[self.neighbor_status_name].to_numpy()]
|
|
795
|
+
df_neighbors['class_color'] = [color_from_class(i) for i in df_neighbors[self.neighbor_class_name].to_numpy()]
|
|
796
|
+
|
|
797
|
+
if self.neighbor_population=='targets':
|
|
798
|
+
self.extract_scatter_from_target_trajectories()
|
|
799
|
+
else:
|
|
800
|
+
self.extract_scatter_from_effector_trajectories()
|
|
801
|
+
|
|
802
|
+
# if self.df_effectors is not None:
|
|
803
|
+
# if self.reference_population=='effectors':
|
|
804
|
+
# self.effector_class_name = self.reference_event_choice_cb.currentText()
|
|
805
|
+
# elif self.neighbor_population == 'effectors':
|
|
806
|
+
# self.effector_class_name = self.neighbor_event_choice_cb.currentText()
|
|
807
|
+
# else:
|
|
808
|
+
# self.effector_class_name=''
|
|
809
|
+
# #self.effector_class_name = self.effector_class_choice_cb.currentText()
|
|
810
|
+
# self.effector_expected_status = 'status'
|
|
811
|
+
# suffix = self.effector_class_name.replace('class','').replace('_','')
|
|
812
|
+
# if suffix!='':
|
|
813
|
+
# self.effector_expected_status+='_'+suffix
|
|
814
|
+
# self.effector_expected_time = 't_'+suffix
|
|
815
|
+
# else:
|
|
816
|
+
# self.effector_expected_time = 't0'
|
|
817
|
+
|
|
818
|
+
# self.effector_time_name = self.effector_expected_time
|
|
819
|
+
# self.effector_status_name = self.effector_expected_status
|
|
820
|
+
|
|
821
|
+
# print('selection and expected names: ', self.effector_class_name, self.effector_expected_time, self.effector_expected_status)
|
|
822
|
+
|
|
823
|
+
# if self.effector_time_name in self.df_effectors.columns and self.effector_class_name in self.df_effectors.columns and not self.effector_status_name in self.df_effectors.columns:
|
|
824
|
+
# # only create the status column if it does not exist to not erase static classification results
|
|
825
|
+
# self.make_effector_status_column()
|
|
826
|
+
# elif self.effector_time_name in self.df_effectors.columns and self.effector_class_name in self.df_effectors.columns:
|
|
827
|
+
# # all good, do nothing
|
|
828
|
+
# pass
|
|
829
|
+
# else:
|
|
830
|
+
# if not self.effector_status_name in self.df_effectors.columns:
|
|
831
|
+
# self.df_effectors[self.effector_status_name] = 0
|
|
832
|
+
# self.df_effectors['status_color'] = color_from_status(0)
|
|
833
|
+
# self.df_effectors['class_color'] = color_from_class(1)
|
|
834
|
+
|
|
835
|
+
# if not self.effector_class_name in self.df_effectors.columns:
|
|
836
|
+
# self.df_effectors[self.effector_class_name] = 1
|
|
837
|
+
# if not self.effector_time_name in self.df_effectors.columns:
|
|
838
|
+
# self.df_effectors[self.effector_time_name] = -1
|
|
839
|
+
|
|
840
|
+
# self.df_effectors['status_color'] = [color_from_status(i) for i in self.df_effectors[self.effector_status_name].to_numpy()]
|
|
841
|
+
# self.df_effectors['class_color'] = [color_from_class(i) for i in self.df_effectors[self.effector_class_name].to_numpy()]
|
|
842
|
+
|
|
843
|
+
# self.extract_scatter_from_effector_trajectories()
|
|
844
|
+
|
|
845
|
+
def compute_status_and_colors_pair(self):
|
|
846
|
+
|
|
847
|
+
self.pair_class_name = self.relative_class_choice_cb.currentText()
|
|
848
|
+
print(f'{self.pair_class_name=}')
|
|
849
|
+
|
|
850
|
+
self.pair_expected_status = 'status'
|
|
851
|
+
suffix = self.pair_class_name.replace('class','').replace('_','',1)
|
|
852
|
+
if suffix!='':
|
|
853
|
+
self.pair_expected_status+='_'+suffix
|
|
854
|
+
self.pair_expected_time = 't0_'+suffix
|
|
855
|
+
if not self.pair_expected_time in list(self.df_relative.columns):
|
|
856
|
+
self.pair_expected_time = 't_'+suffix
|
|
857
|
+
else:
|
|
858
|
+
self.pair_expected_time = 't0'
|
|
859
|
+
|
|
860
|
+
self.pair_time_name = self.pair_expected_time
|
|
861
|
+
self.pair_status_name = self.pair_expected_status
|
|
862
|
+
|
|
863
|
+
if self.pair_time_name in self.df_relative.columns and self.pair_class_name in self.df_relative.columns and not self.pair_status_name in self.df_relative.columns:
|
|
864
|
+
# only create the status column if it does not exist to not erase static classification results
|
|
865
|
+
self.make_relative_status_column()
|
|
866
|
+
elif self.pair_time_name in self.df_relative.columns and self.pair_class_name in self.df_relative.columns:
|
|
867
|
+
# all good, do nothing
|
|
868
|
+
pass
|
|
869
|
+
else:
|
|
870
|
+
if not self.pair_status_name in self.df_relative.columns:
|
|
871
|
+
self.df_relative[self.pair_status_name] = 0
|
|
872
|
+
self.df_relative['status_color'] = color_from_status(0)
|
|
873
|
+
self.df_relative['class_color'] = color_from_class(1)
|
|
874
|
+
|
|
875
|
+
if not self.pair_class_name in self.df_relative.columns:
|
|
876
|
+
self.df_relative[self.pair_time_name] = 1
|
|
877
|
+
if not self.pair_time_name in self.df_relative.columns:
|
|
878
|
+
self.df_relative[self.pair_time_name] = -1
|
|
879
|
+
|
|
880
|
+
self.df_relative['status_color'] = [color_from_status(i) for i in self.df_relative[self.pair_status_name].to_numpy()]
|
|
881
|
+
self.df_relative['class_color'] = [color_from_class(i) for i in self.df_relative[self.pair_class_name].to_numpy()]
|
|
882
|
+
|
|
883
|
+
self.extract_scatter_from_lines()
|
|
884
|
+
self.give_pair_information()
|
|
885
|
+
self.plot_signals()
|
|
886
|
+
|
|
887
|
+
def contrast_slider_action(self):
|
|
888
|
+
|
|
889
|
+
"""
|
|
890
|
+
Recontrast the imshow as the contrast slider is moved.
|
|
891
|
+
"""
|
|
892
|
+
|
|
893
|
+
self.vmin = self.contrast_slider.value()[0]
|
|
894
|
+
self.vmax = self.contrast_slider.value()[1]
|
|
895
|
+
self.im.set_clim(vmin=self.vmin, vmax=self.vmax)
|
|
896
|
+
self.fcanvas.canvas.draw_idle()
|
|
897
|
+
|
|
898
|
+
|
|
899
|
+
def cancel_selection(self):
|
|
900
|
+
|
|
901
|
+
print('Canceling selection...')
|
|
902
|
+
|
|
903
|
+
self.hide_annotation_buttons()
|
|
904
|
+
self.correct_btn.setEnabled(False)
|
|
905
|
+
self.correct_btn.setText('correct')
|
|
906
|
+
self.cancel_btn.setEnabled(False)
|
|
907
|
+
self.correct_btn.disconnect()
|
|
908
|
+
self.correct_btn.clicked.connect(self.show_annotation_buttons)
|
|
909
|
+
|
|
910
|
+
self.reference_selection = []
|
|
911
|
+
self.reference_track_of_interest = None
|
|
912
|
+
self.give_reference_cell_information()
|
|
913
|
+
|
|
914
|
+
if len(self.pair_selection) > 0:
|
|
915
|
+
self.cancel_pair_selection()
|
|
916
|
+
|
|
917
|
+
if self.df_targets is not None:
|
|
918
|
+
self.target_selection = []
|
|
919
|
+
if self.df_effectors is not None:
|
|
920
|
+
self.effector_selection = []
|
|
921
|
+
|
|
922
|
+
_, _, neighbor_colors, initial_neighbor_colors = self.get_neighbor_sets()
|
|
923
|
+
_, _, reference_colors, initial_reference_colors = self.get_reference_sets()
|
|
924
|
+
|
|
925
|
+
for k, (t,idx) in enumerate(zip(self.neighbor_loc_t, self.neighbor_loc_idx)):
|
|
926
|
+
neighbor_colors[t][idx,0] = initial_neighbor_colors[k][0]
|
|
927
|
+
neighbor_colors[t][idx,1] = initial_neighbor_colors[k][1]
|
|
928
|
+
|
|
929
|
+
#for (t,idx) in (zip(self.neighbor_loc_t_not_picked,self.target_loc_idx_not_picked)):
|
|
930
|
+
# neighbor_colors[t][idx, 0] = initial_neighbor_colors[k][0]
|
|
931
|
+
# neighbor_colors[t][idx, 1] = initial_neighbor_colors[k][1]
|
|
932
|
+
|
|
933
|
+
for t in range(len(neighbor_colors)):
|
|
934
|
+
for ind in range(len(neighbor_colors[t])):
|
|
935
|
+
neighbor_colors[t][ind] = initial_neighbor_colors[t][ind]
|
|
936
|
+
|
|
937
|
+
for k, (t,idx) in enumerate(zip(self.reference_loc_t, self.reference_loc_idx)):
|
|
938
|
+
reference_colors[t][idx,0] = initial_reference_colors[k][0]
|
|
939
|
+
reference_colors[t][idx,1] = initial_reference_colors[k][1]
|
|
940
|
+
|
|
941
|
+
for (t,idx) in (zip(self.reference_loc_t_not_picked,self.reference_loc_idx_not_picked)):
|
|
942
|
+
reference_colors[t][idx, 0] = initial_reference_colors[t][idx,0]
|
|
943
|
+
reference_colors[t][idx, 1] = initial_reference_colors[t][idx,1]
|
|
944
|
+
|
|
945
|
+
for t in range(len(reference_colors)):
|
|
946
|
+
for ind in range(len(reference_colors[t])):
|
|
947
|
+
reference_colors[t][ind] = initial_reference_colors[t][ind]
|
|
948
|
+
|
|
949
|
+
self.lines_data={}
|
|
950
|
+
self.lines_list=[]
|
|
951
|
+
self.lines_plot=[]
|
|
952
|
+
|
|
953
|
+
self.selected_population = None
|
|
954
|
+
|
|
955
|
+
for i in range(self.n_signals):
|
|
956
|
+
self.reference_pop_option_buttons[i].setEnabled(False)
|
|
957
|
+
|
|
958
|
+
self.plot_signals()
|
|
959
|
+
|
|
960
|
+
|
|
961
|
+
def hide_annotation_buttons(self):
|
|
962
|
+
|
|
963
|
+
for a in self.annotation_btns_to_hide:
|
|
964
|
+
a.hide()
|
|
965
|
+
for b in [self.event_btn, self.no_event_btn, self.else_btn, self.suppr_btn]:
|
|
966
|
+
b.setChecked(False)
|
|
967
|
+
self.time_of_interest_label.setEnabled(False)
|
|
968
|
+
self.time_of_interest_le.setText('')
|
|
969
|
+
self.time_of_interest_le.setEnabled(False)
|
|
970
|
+
|
|
971
|
+
|
|
972
|
+
def enable_time_of_interest(self):
|
|
973
|
+
|
|
974
|
+
if self.event_btn.isChecked():
|
|
975
|
+
self.time_of_interest_label.setEnabled(True)
|
|
976
|
+
self.time_of_interest_le.setEnabled(True)
|
|
977
|
+
else:
|
|
978
|
+
self.time_of_interest_label.setEnabled(False)
|
|
979
|
+
self.time_of_interest_le.setEnabled(False)
|
|
980
|
+
|
|
981
|
+
def cancel_pair_selection(self):
|
|
982
|
+
|
|
983
|
+
# Unselect and recolor pair line
|
|
984
|
+
self.pair_selection = []
|
|
985
|
+
for t in range(len(self.lines_colors_status)):
|
|
986
|
+
for idx in range(len(self.lines_colors_status[t])):
|
|
987
|
+
if self.lines_colors_status[t][idx,2] == 'lime':
|
|
988
|
+
self.lines_colors_status[t][idx,2]=self.initial_lines_colors_status[t][idx,2]
|
|
989
|
+
self.lines_colors_class[t][idx,2]=self.initial_lines_colors_class[t][idx,2]
|
|
990
|
+
|
|
991
|
+
# Unselect and recolor neighbor
|
|
992
|
+
self.neighbor_selection =[]
|
|
993
|
+
self.neighbor_track_of_interest = None
|
|
994
|
+
_, _, colors_neigh, _ = self.get_neighbor_sets()
|
|
995
|
+
for k,(t,idx) in enumerate(zip(self.neigh_cell_loc_t,self.neigh_cell_loc_idx)):
|
|
996
|
+
colors_neigh[t][idx, 0] = self.neigh_previous_color[k][0]
|
|
997
|
+
colors_neigh[t][idx, 1] = self.neigh_previous_color[k][1]
|
|
998
|
+
self.give_neighbor_cell_information()
|
|
999
|
+
self.give_pair_information()
|
|
1000
|
+
|
|
1001
|
+
for i in range(self.n_signals):
|
|
1002
|
+
self.neighbor_pop_option_buttons[i].setEnabled(False)
|
|
1003
|
+
self.relative_pop_option_buttons[i].setEnabled(False)
|
|
1004
|
+
option = self.signal_pop_button_groups[i].checkedId()
|
|
1005
|
+
if option!=0:
|
|
1006
|
+
self.lines[i].set_xdata([])
|
|
1007
|
+
self.lines[i].set_ydata([])
|
|
1008
|
+
self.line_dt.set_xdata([])
|
|
1009
|
+
self.line_dt.set_ydata([])
|
|
1010
|
+
self.lines[i].set_label('')
|
|
1011
|
+
|
|
1012
|
+
self.correct_btn.setEnabled(False)
|
|
1013
|
+
self.cancel_btn.setEnabled(False)
|
|
1014
|
+
|
|
1015
|
+
|
|
1016
|
+
def apply_modification(self):
|
|
1017
|
+
|
|
1018
|
+
# Plot the new time
|
|
1019
|
+
t0 = -1
|
|
1020
|
+
if self.event_btn.isChecked():
|
|
1021
|
+
try:
|
|
1022
|
+
cclass = 0
|
|
1023
|
+
t0 = float(self.time_of_interest_le.text().replace(',', '.'))
|
|
1024
|
+
self.line_dt.set_xdata([t0, t0])
|
|
1025
|
+
self.cell_fcanvas.canvas.draw_idle()
|
|
1026
|
+
except Exception as e:
|
|
1027
|
+
print(e)
|
|
1028
|
+
t0 = -1
|
|
1029
|
+
cclass = 2
|
|
1030
|
+
|
|
1031
|
+
elif self.no_event_btn.isChecked():
|
|
1032
|
+
cclass = 1
|
|
1033
|
+
|
|
1034
|
+
elif self.else_btn.isChecked():
|
|
1035
|
+
cclass = 2
|
|
1036
|
+
|
|
1037
|
+
elif self.suppr_btn.isChecked():
|
|
1038
|
+
cclass = 42
|
|
1039
|
+
|
|
1040
|
+
pair_filter = (self.df_relative['REFERENCE_ID'] == self.reference_track_of_interest)&(self.df_relative['NEIGHBOR_ID']==self.neighbor_track_of_interest)&(self.df_relative['reference_population']==self.reference_population)&(self.df_relative['neighbor_population']==self.neighbor_population)&(~self.df_relative['status_'+self.current_neighborhood].isnull())
|
|
1041
|
+
|
|
1042
|
+
self.df_relative.loc[pair_filter, self.pair_class_name] = cclass
|
|
1043
|
+
self.df_relative.loc[pair_filter, self.pair_time_name] = t0
|
|
1044
|
+
timeline = self.df_relative.loc[pair_filter, 'FRAME'].to_numpy()
|
|
1045
|
+
|
|
1046
|
+
status = np.zeros_like(timeline)
|
|
1047
|
+
if t0 > 0:
|
|
1048
|
+
status[timeline >= t0] = 1.
|
|
1049
|
+
if cclass == 2:
|
|
1050
|
+
status[:] = 2
|
|
1051
|
+
if cclass > 2:
|
|
1052
|
+
status[:] = 42
|
|
1053
|
+
|
|
1054
|
+
status_color = [color_from_status(s, recently_modified=True) for s in status]
|
|
1055
|
+
class_color = [color_from_class(cclass, recently_modified=True) for i in range(len(status))]
|
|
1056
|
+
|
|
1057
|
+
self.df_relative.loc[pair_filter, self.pair_status_name] = status
|
|
1058
|
+
self.df_relative.loc[pair_filter, 'status_color'] = status_color
|
|
1059
|
+
self.df_relative.loc[pair_filter, 'class_color'] = class_color
|
|
1060
|
+
|
|
1061
|
+
# self.make_status_column()
|
|
1062
|
+
self.extract_scatter_from_lines()
|
|
1063
|
+
self.give_reference_cell_information()
|
|
1064
|
+
self.give_neighbor_cell_information()
|
|
1065
|
+
self.give_pair_information()
|
|
1066
|
+
|
|
1067
|
+
self.correct_btn.disconnect()
|
|
1068
|
+
self.correct_btn.clicked.connect(self.show_annotation_buttons)
|
|
1069
|
+
# self.cancel_btn.click()
|
|
1070
|
+
|
|
1071
|
+
self.hide_annotation_buttons()
|
|
1072
|
+
self.correct_btn.setEnabled(False)
|
|
1073
|
+
self.correct_btn.setText('correct')
|
|
1074
|
+
self.cancel_btn.setEnabled(False)
|
|
1075
|
+
self.del_shortcut.setEnabled(False)
|
|
1076
|
+
self.no_event_shortcut.setEnabled(False)
|
|
1077
|
+
|
|
1078
|
+
self.pair_selection=[]
|
|
1079
|
+
self.neighbor_selection = []
|
|
1080
|
+
self.neighbor_track_of_interest = None
|
|
1081
|
+
# but keep reference
|
|
1082
|
+
|
|
1083
|
+
#self.make_status_column()
|
|
1084
|
+
self.extract_scatter_from_target_trajectories()
|
|
1085
|
+
self.extract_scatter_from_effector_trajectories()
|
|
1086
|
+
|
|
1087
|
+
self.recolor_selection()
|
|
1088
|
+
self.trace_neighbors()
|
|
1089
|
+
|
|
1090
|
+
def locate_stack(self):
|
|
1091
|
+
|
|
1092
|
+
"""
|
|
1093
|
+
Locate the target movie.
|
|
1094
|
+
|
|
1095
|
+
"""
|
|
1096
|
+
|
|
1097
|
+
movies = glob(self.pos + f"movie/{self.parent_window.parent_window.movie_prefix}*.tif")
|
|
1098
|
+
|
|
1099
|
+
if len(movies)==0:
|
|
1100
|
+
msgBox = QMessageBox()
|
|
1101
|
+
msgBox.setIcon(QMessageBox.Warning)
|
|
1102
|
+
msgBox.setText("No movies are detected in the experiment folder. Cannot load an image to test Haralick.")
|
|
1103
|
+
msgBox.setWindowTitle("Warning")
|
|
1104
|
+
msgBox.setStandardButtons(QMessageBox.Ok)
|
|
1105
|
+
returnValue = msgBox.exec()
|
|
1106
|
+
if returnValue == QMessageBox.Yes:
|
|
1107
|
+
self.close()
|
|
1108
|
+
else:
|
|
1109
|
+
self.stack_path = movies[0]
|
|
1110
|
+
self.len_movie = self.parent_window.parent_window.len_movie
|
|
1111
|
+
len_movie_auto = auto_load_number_of_frames(self.stack_path)
|
|
1112
|
+
if len_movie_auto is not None:
|
|
1113
|
+
self.len_movie = len_movie_auto
|
|
1114
|
+
exp_config = self.exp_dir +"config.ini"
|
|
1115
|
+
self.channel_names, self.channels = extract_experiment_channels(exp_config)
|
|
1116
|
+
self.channel_names = np.array(self.channel_names)
|
|
1117
|
+
self.channels = np.array(self.channels)
|
|
1118
|
+
self.nbr_channels = len(self.channels)
|
|
1119
|
+
|
|
1120
|
+
def locate_target_tracks(self):
|
|
1121
|
+
|
|
1122
|
+
population = 'targets'
|
|
1123
|
+
self.target_trajectories_path = self.pos + os.sep.join(['output','tables', f'trajectories_{population}.pkl'])
|
|
1124
|
+
if not os.path.exists(self.target_trajectories_path):
|
|
1125
|
+
self.target_trajectories_path = self.target_trajectories_path.replace('.pkl','.csv')
|
|
1126
|
+
|
|
1127
|
+
if not os.path.exists(self.target_trajectories_path):
|
|
1128
|
+
|
|
1129
|
+
msgBox = QMessageBox()
|
|
1130
|
+
msgBox.setIcon(QMessageBox.Warning)
|
|
1131
|
+
msgBox.setText("The target trajectories cannot be detected...")
|
|
1132
|
+
msgBox.setWindowTitle("Warning")
|
|
1133
|
+
msgBox.setStandardButtons(QMessageBox.Ok)
|
|
1134
|
+
returnValue = msgBox.exec()
|
|
1135
|
+
self.df_targets = None
|
|
1136
|
+
|
|
1137
|
+
else:
|
|
1138
|
+
|
|
1139
|
+
# Load and prep tracks
|
|
1140
|
+
if self.target_trajectories_path.endswith('.pkl'):
|
|
1141
|
+
self.df_targets = np.load(self.target_trajectories_path, allow_pickle=True)
|
|
1142
|
+
else:
|
|
1143
|
+
self.df_targets = pd.read_csv(self.target_trajectories_path)
|
|
1144
|
+
|
|
1145
|
+
self.df_targets = self.df_targets.sort_values(by=['TRACK_ID', 'FRAME'])
|
|
1146
|
+
|
|
1147
|
+
cols = np.array(self.df_targets.columns)
|
|
1148
|
+
self.target_class_cols = [c for c in list(self.df_targets.columns) if c.startswith('class')]
|
|
1149
|
+
|
|
1150
|
+
try:
|
|
1151
|
+
self.target_class_cols.remove('class_id')
|
|
1152
|
+
except:
|
|
1153
|
+
pass
|
|
1154
|
+
try:
|
|
1155
|
+
self.target_class_cols.remove('class_color')
|
|
1156
|
+
except:
|
|
1157
|
+
pass
|
|
1158
|
+
|
|
1159
|
+
if len(self.target_class_cols)>0:
|
|
1160
|
+
|
|
1161
|
+
self.target_class_name = self.target_class_cols[0]
|
|
1162
|
+
self.target_expected_status = 'status'
|
|
1163
|
+
suffix = self.target_class_name.replace('class','').replace('_','')
|
|
1164
|
+
if suffix!='':
|
|
1165
|
+
self.target_expected_status+='_'+suffix
|
|
1166
|
+
self.target_expected_time = 't_'+suffix
|
|
1167
|
+
else:
|
|
1168
|
+
self.target_expected_time = 't0'
|
|
1169
|
+
self.target_time_name = self.target_expected_time
|
|
1170
|
+
self.target_status_name = self.target_expected_status
|
|
1171
|
+
else:
|
|
1172
|
+
self.target_class_name = 'class'
|
|
1173
|
+
self.target_time_name = 't0'
|
|
1174
|
+
self.target_status_name = 'status'
|
|
1175
|
+
|
|
1176
|
+
if self.target_time_name in self.df_targets.columns and self.target_class_name in self.df_targets.columns and not self.target_status_name in self.df_targets.columns:
|
|
1177
|
+
# only create the status column if it does not exist to not erase static classification results
|
|
1178
|
+
pass
|
|
1179
|
+
#self.make_target_status_column()
|
|
1180
|
+
elif self.target_time_name in self.df_targets.columns and self.target_class_name in self.df_targets.columns:
|
|
1181
|
+
# all good, do nothing
|
|
1182
|
+
pass
|
|
1183
|
+
else:
|
|
1184
|
+
if not self.target_status_name in self.df_targets.columns:
|
|
1185
|
+
self.df_targets[self.target_status_name] = 0
|
|
1186
|
+
self.df_targets['status_color'] = color_from_status(0)
|
|
1187
|
+
self.df_targets['class_color'] = color_from_class(1)
|
|
1188
|
+
|
|
1189
|
+
if not self.target_class_name in self.df_targets.columns:
|
|
1190
|
+
self.df_targets[self.target_class_name] = 1
|
|
1191
|
+
if not self.target_time_name in self.df_targets.columns:
|
|
1192
|
+
self.df_targets[self.target_time_name] = -1
|
|
1193
|
+
|
|
1194
|
+
self.df_targets['status_color'] = color_from_status(2) #[color_from_status(i) for i in self.df_targets[self.target_status_name].to_numpy()]
|
|
1195
|
+
self.df_targets['class_color'] = color_from_status(2) #[color_from_class(i) for i in self.df_targets[self.target_class_name].to_numpy()]
|
|
1196
|
+
|
|
1197
|
+
self.df_targets = self.df_targets.dropna(subset=['POSITION_X', 'POSITION_Y'])
|
|
1198
|
+
self.df_targets['x_anim'] = self.df_targets['POSITION_X'] * self.fraction
|
|
1199
|
+
self.df_targets['y_anim'] = self.df_targets['POSITION_Y'] * self.fraction
|
|
1200
|
+
self.df_targets['x_anim'] = self.df_targets['x_anim'].astype(int)
|
|
1201
|
+
self.df_targets['y_anim'] = self.df_targets['y_anim'].astype(int)
|
|
1202
|
+
|
|
1203
|
+
self.extract_scatter_from_target_trajectories()
|
|
1204
|
+
self.target_track_of_interest = self.df_targets['TRACK_ID'].min()
|
|
1205
|
+
|
|
1206
|
+
self.loc_t = []
|
|
1207
|
+
self.loc_idx = []
|
|
1208
|
+
for t in range(len(self.target_tracks)):
|
|
1209
|
+
indices = np.where(self.target_tracks[t]==self.target_track_of_interest)[0]
|
|
1210
|
+
if len(indices)>0:
|
|
1211
|
+
self.loc_t.append(t)
|
|
1212
|
+
self.loc_idx.append(indices[0])
|
|
1213
|
+
|
|
1214
|
+
self.MinMaxScaler_targets = MinMaxScaler()
|
|
1215
|
+
self.target_columns = list(self.df_targets.columns)
|
|
1216
|
+
cols_to_remove = [c for c in self.cols_to_remove if c in self.target_columns] + self.target_class_cols
|
|
1217
|
+
time_cols = [c for c in self.target_columns if c.startswith('t_')]
|
|
1218
|
+
cols_to_remove += time_cols
|
|
1219
|
+
neigh_cols = [c for c in self.target_columns if c.startswith('neighborhood_')]
|
|
1220
|
+
cols_to_remove += neigh_cols
|
|
1221
|
+
|
|
1222
|
+
for col in cols_to_remove:
|
|
1223
|
+
try:
|
|
1224
|
+
self.target_columns.remove(col)
|
|
1225
|
+
except:
|
|
1226
|
+
pass
|
|
1227
|
+
|
|
1228
|
+
x = self.df_targets[self.target_columns].values
|
|
1229
|
+
self.MinMaxScaler_targets.fit(x)
|
|
1230
|
+
|
|
1231
|
+
def locate_effector_tracks(self):
|
|
1232
|
+
|
|
1233
|
+
population = 'effectors'
|
|
1234
|
+
self.effector_trajectories_path = self.pos + os.sep.join(['output','tables',f'trajectories_{population}.pkl'])
|
|
1235
|
+
if not os.path.exists(self.effector_trajectories_path):
|
|
1236
|
+
self.effector_trajectories_path = self.effector_trajectories_path.replace('.pkl','.csv')
|
|
1237
|
+
|
|
1238
|
+
if not os.path.exists(self.effector_trajectories_path):
|
|
1239
|
+
|
|
1240
|
+
msgBox = QMessageBox()
|
|
1241
|
+
msgBox.setIcon(QMessageBox.Warning)
|
|
1242
|
+
msgBox.setText("The effector trajectories cannot be detected...")
|
|
1243
|
+
msgBox.setWindowTitle("Warning")
|
|
1244
|
+
msgBox.setStandardButtons(QMessageBox.Ok)
|
|
1245
|
+
returnValue = msgBox.exec()
|
|
1246
|
+
self.df_effectors = None
|
|
1247
|
+
else:
|
|
1248
|
+
# Load and prep tracks
|
|
1249
|
+
if self.effector_trajectories_path.endswith('.pkl'):
|
|
1250
|
+
self.df_effectors = np.load(self.effector_trajectories_path, allow_pickle=True)
|
|
1251
|
+
else:
|
|
1252
|
+
self.df_effectors = pd.read_csv(self.effector_trajectories_path)
|
|
1253
|
+
|
|
1254
|
+
try:
|
|
1255
|
+
self.df_effectors = self.df_effectors.sort_values(by=['TRACK_ID', 'FRAME'])
|
|
1256
|
+
except:
|
|
1257
|
+
self.df_effectors = self.df_effectors.sort_values(by=['ID', 'FRAME'])
|
|
1258
|
+
|
|
1259
|
+
|
|
1260
|
+
cols = np.array(self.df_effectors.columns)
|
|
1261
|
+
self.effector_class_cols = np.array([c.startswith('class') for c in list(self.df_effectors.columns)])
|
|
1262
|
+
self.effector_class_cols = list(cols[self.effector_class_cols])
|
|
1263
|
+
try:
|
|
1264
|
+
self.effector_class_cols.remove('class_id')
|
|
1265
|
+
except:
|
|
1266
|
+
pass
|
|
1267
|
+
try:
|
|
1268
|
+
self.effector_class_cols.remove('class_color')
|
|
1269
|
+
except:
|
|
1270
|
+
pass
|
|
1271
|
+
if len(self.effector_class_cols)>0:
|
|
1272
|
+
self.effector_class_name = self.effector_class_cols[0]
|
|
1273
|
+
self.effector_expected_status = 'status'
|
|
1274
|
+
suffix = self.effector_class_name.replace('class','').replace('_','')
|
|
1275
|
+
if suffix!='':
|
|
1276
|
+
self.effector_expected_status+='_'+suffix
|
|
1277
|
+
self.effector_expected_time = 't_'+suffix
|
|
1278
|
+
else:
|
|
1279
|
+
self.effector_expected_time = 't0'
|
|
1280
|
+
self.effector_time_name = self.effector_expected_time
|
|
1281
|
+
self.effector_status_name = self.effector_expected_status
|
|
1282
|
+
else:
|
|
1283
|
+
self.effector_class_name = 'class'
|
|
1284
|
+
self.effector_time_name = 't0'
|
|
1285
|
+
self.effector_status_name = 'status'
|
|
1286
|
+
|
|
1287
|
+
if self.effector_time_name in self.df_effectors.columns and self.effector_class_name in self.df_effectors.columns and not self.effector_status_name in self.df_effectors.columns:
|
|
1288
|
+
# only create the status column if it does not exist to not erase static classification results
|
|
1289
|
+
pass
|
|
1290
|
+
#self.make_effector_status_column()
|
|
1291
|
+
elif self.effector_time_name in self.df_effectors.columns and self.effector_class_name in self.df_effectors.columns:
|
|
1292
|
+
# all good, do nothing
|
|
1293
|
+
pass
|
|
1294
|
+
else:
|
|
1295
|
+
if not self.effector_status_name in self.df_effectors.columns:
|
|
1296
|
+
self.df_effectors[self.effector_status_name] = 0
|
|
1297
|
+
self.df_effectors['status_color'] = color_from_status(0)
|
|
1298
|
+
self.df_effectors['class_color'] = color_from_class(1)
|
|
1299
|
+
|
|
1300
|
+
if not self.effector_class_name in self.df_effectors.columns:
|
|
1301
|
+
self.df_effectors[self.effector_class_name] = 1
|
|
1302
|
+
if not self.effector_time_name in self.df_effectors.columns:
|
|
1303
|
+
self.df_effectors[self.effector_time_name] = -1
|
|
1304
|
+
|
|
1305
|
+
self.df_effectors['status_color'] = color_from_status(2) #[color_from_status(i) for i in self.df_effectors[self.effector_status_name].to_numpy()]
|
|
1306
|
+
self.df_effectors['class_color'] = color_from_status(2) #[color_from_class(i) for i in self.df_effectors[self.effector_class_name].to_numpy()]
|
|
1307
|
+
|
|
1308
|
+
|
|
1309
|
+
self.df_effectors = self.df_effectors.dropna(subset=['POSITION_X', 'POSITION_Y'])
|
|
1310
|
+
self.df_effectors['x_anim'] = self.df_effectors['POSITION_X'] * self.fraction
|
|
1311
|
+
self.df_effectors['y_anim'] = self.df_effectors['POSITION_Y'] * self.fraction
|
|
1312
|
+
self.df_effectors['x_anim'] = self.df_effectors['x_anim'].astype(int)
|
|
1313
|
+
self.df_effectors['y_anim'] = self.df_effectors['y_anim'].astype(int)
|
|
1314
|
+
|
|
1315
|
+
self.extract_scatter_from_effector_trajectories()
|
|
1316
|
+
try:
|
|
1317
|
+
self.effector_track_of_interest = self.df_effectors['TRACK_ID'].min()
|
|
1318
|
+
except:
|
|
1319
|
+
self.effector_track_of_interest = self.df_effectors['ID'].min()
|
|
1320
|
+
|
|
1321
|
+
|
|
1322
|
+
self.loc_t = []
|
|
1323
|
+
self.loc_idx = []
|
|
1324
|
+
for t in range(len(self.effector_tracks)):
|
|
1325
|
+
indices = np.where(self.effector_tracks[t]==self.effector_track_of_interest)[0]
|
|
1326
|
+
if len(indices)>0:
|
|
1327
|
+
self.loc_t.append(t)
|
|
1328
|
+
self.loc_idx.append(indices[0])
|
|
1329
|
+
|
|
1330
|
+
self.MinMaxScaler_effectors = MinMaxScaler()
|
|
1331
|
+
self.effector_columns = list(self.df_effectors.columns)
|
|
1332
|
+
cols_to_remove = [c for c in self.cols_to_remove if c in self.effector_columns] + self.effector_class_cols
|
|
1333
|
+
time_cols = [c for c in self.effector_columns if c.startswith('t_')]
|
|
1334
|
+
cols_to_remove += time_cols
|
|
1335
|
+
neigh_cols = [c for c in self.effector_columns if c.startswith('neighborhood_')]
|
|
1336
|
+
cols_to_remove += neigh_cols
|
|
1337
|
+
|
|
1338
|
+
for col in cols_to_remove:
|
|
1339
|
+
try:
|
|
1340
|
+
self.effector_columns.remove(col)
|
|
1341
|
+
except:
|
|
1342
|
+
pass
|
|
1343
|
+
|
|
1344
|
+
x = self.df_effectors[self.effector_columns].to_numpy()
|
|
1345
|
+
print(self.effector_columns, x, x.shape)
|
|
1346
|
+
self.MinMaxScaler_effectors.fit(x)
|
|
1347
|
+
|
|
1348
|
+
|
|
1349
|
+
# def make_effector_status_column(self):
|
|
1350
|
+
# print('remaking the status column for the effectors')
|
|
1351
|
+
# for tid, group in self.df_effectors.groupby('TRACK_ID'):
|
|
1352
|
+
|
|
1353
|
+
# indices = group.index
|
|
1354
|
+
# t0 = group[self.].to_numpy()[0]
|
|
1355
|
+
# cclass = group[self.class_name].to_numpy()[0]
|
|
1356
|
+
# timeline = group['FRAME'].to_numpy()
|
|
1357
|
+
# status = np.zeros_like(timeline)
|
|
1358
|
+
# if t0 > 0:
|
|
1359
|
+
# status[timeline >= t0] = 1.
|
|
1360
|
+
# if cclass == 2:
|
|
1361
|
+
# status[:] = 2
|
|
1362
|
+
# if cclass > 2:
|
|
1363
|
+
# status[:] = 42
|
|
1364
|
+
# status_color = [color_from_status(s) for s in status]
|
|
1365
|
+
# class_color = [color_from_class(cclass) for i in range(len(status))]
|
|
1366
|
+
|
|
1367
|
+
# self.df_tracks.loc[indices, self.status_name] = status
|
|
1368
|
+
# self.df_tracks.loc[indices, 'status_color'] = status_color
|
|
1369
|
+
# self.df_tracks.loc[indices, 'class_color'] = class_color
|
|
1370
|
+
|
|
1371
|
+
|
|
1372
|
+
|
|
1373
|
+
def locate_relative_tracks(self):
|
|
1374
|
+
|
|
1375
|
+
population = 'relative'
|
|
1376
|
+
self.relative_trajectories_path = self.pos + os.sep.join(['output','tables','trajectories_pairs.csv'])
|
|
1377
|
+
|
|
1378
|
+
if not os.path.exists(self.relative_trajectories_path):
|
|
1379
|
+
|
|
1380
|
+
msgBox = QMessageBox()
|
|
1381
|
+
msgBox.setIcon(QMessageBox.Warning)
|
|
1382
|
+
msgBox.setText("The pair measurements cannot be detected... Please measure the pairs first.")
|
|
1383
|
+
msgBox.setWindowTitle("Warning")
|
|
1384
|
+
msgBox.setStandardButtons(QMessageBox.Ok)
|
|
1385
|
+
returnValue = msgBox.exec()
|
|
1386
|
+
self.close()
|
|
1387
|
+
else:
|
|
1388
|
+
# Load and prep tracks
|
|
1389
|
+
self.df_relative = pd.read_csv(self.relative_trajectories_path)
|
|
1390
|
+
print(self.df_relative.columns)
|
|
1391
|
+
self.df_relative= self.df_relative.sort_values(by=['REFERENCE_ID','NEIGHBOR_ID','reference_population','neighbor_population','FRAME'])
|
|
1392
|
+
self.relative_cols = np.array(self.df_relative.columns)
|
|
1393
|
+
|
|
1394
|
+
self.relative_class_cols = [c for c in list(self.df_relative.columns) if c.startswith('class')]
|
|
1395
|
+
|
|
1396
|
+
if len(self.relative_class_cols) > 0:
|
|
1397
|
+
self.relative_class_name = self.relative_class_cols[0]
|
|
1398
|
+
self.relative_expected_status = 'status'
|
|
1399
|
+
suffix = self.relative_class_name.replace('class', '').replace('_', '')
|
|
1400
|
+
if suffix != '':
|
|
1401
|
+
self.relative_expected_status += '_' + suffix
|
|
1402
|
+
self.relative_expected_time = 't_' + suffix
|
|
1403
|
+
else:
|
|
1404
|
+
self.relative_expected_time = 't0_arrival'
|
|
1405
|
+
self.relative_time_name = self.relative_expected_time
|
|
1406
|
+
self.relative_status_name = self.relative_expected_status
|
|
1407
|
+
else:
|
|
1408
|
+
self.relative_class_name = 'class'
|
|
1409
|
+
self.relative_time_name = 't0'
|
|
1410
|
+
self.relative_status_name = 'status'
|
|
1411
|
+
|
|
1412
|
+
|
|
1413
|
+
self.MinMaxScaler_pairs = MinMaxScaler()
|
|
1414
|
+
self.pair_columns = list(self.df_relative.columns)
|
|
1415
|
+
cols_to_remove = [c for c in self.cols_to_remove if c in self.pair_columns] + self.relative_class_cols
|
|
1416
|
+
time_cols = [c for c in self.pair_columns if c.startswith('t0_') or c.startswith('t_')]
|
|
1417
|
+
cols_to_remove += time_cols
|
|
1418
|
+
neigh_cols = [c for c in self.pair_columns if c.startswith('neighborhood_')]
|
|
1419
|
+
cols_to_remove += neigh_cols
|
|
1420
|
+
|
|
1421
|
+
for col in cols_to_remove:
|
|
1422
|
+
try:
|
|
1423
|
+
self.pair_columns.remove(col)
|
|
1424
|
+
except:
|
|
1425
|
+
pass
|
|
1426
|
+
|
|
1427
|
+
x = self.df_relative[self.pair_columns].values
|
|
1428
|
+
self.MinMaxScaler_pairs.fit(x)
|
|
1429
|
+
|
|
1430
|
+
|
|
1431
|
+
def set_reference_and_neighbor_populations(self):
|
|
1432
|
+
|
|
1433
|
+
neigh = self.neighborhood_choice_cb.currentText()
|
|
1434
|
+
self.current_neighborhood = neigh.replace('target_ref_','').replace('effector_ref_','')
|
|
1435
|
+
self.reference_population = ['targets' if 'target' in neigh else 'effectors'][0]
|
|
1436
|
+
self.neighbor_population = self.df_relative.loc[(~self.df_relative['status_'+self.current_neighborhood].isnull())&(self.df_relative['reference_population']==self.reference_population), 'neighbor_population'].values[0]
|
|
1437
|
+
|
|
1438
|
+
print(f'Current neighborhood: {self.current_neighborhood}')
|
|
1439
|
+
print(f'New reference population: {self.reference_population}')
|
|
1440
|
+
print(f'New neighbor population: {self.neighbor_population}')
|
|
1441
|
+
|
|
1442
|
+
idx = self.relative_class_choice_cb.findText('class_'+self.current_neighborhood)
|
|
1443
|
+
if idx is not None:
|
|
1444
|
+
self.relative_class_choice_cb.setCurrentIndex(idx)
|
|
1445
|
+
|
|
1446
|
+
def make_reference_status_column(self):
|
|
1447
|
+
|
|
1448
|
+
df_reference = self.dataframes[self.reference_population]
|
|
1449
|
+
print('remaking the status column')
|
|
1450
|
+
|
|
1451
|
+
for tid, group in df_reference.groupby('TRACK_ID'):
|
|
1452
|
+
|
|
1453
|
+
indices = group.index
|
|
1454
|
+
t0 = group[self.reference_time_name].to_numpy()[0]
|
|
1455
|
+
cclass = group[self.reference_class_name].to_numpy()[0]
|
|
1456
|
+
timeline = group['FRAME'].to_numpy()
|
|
1457
|
+
status = np.zeros_like(timeline)
|
|
1458
|
+
if t0 > 0:
|
|
1459
|
+
status[timeline>=t0] = 1.
|
|
1460
|
+
if cclass==2:
|
|
1461
|
+
status[:] = 2
|
|
1462
|
+
if cclass>2:
|
|
1463
|
+
status[:] = 42
|
|
1464
|
+
status_color = [color_from_status(s) for s in status]
|
|
1465
|
+
class_color = [color_from_class(cclass) for i in range(len(status))]
|
|
1466
|
+
|
|
1467
|
+
df_reference.loc[indices, self.reference_status_name] = status
|
|
1468
|
+
df_reference.loc[indices, 'status_color'] = status_color
|
|
1469
|
+
df_reference.loc[indices, 'class_color'] = class_color
|
|
1470
|
+
|
|
1471
|
+
def make_relative_status_column(self):
|
|
1472
|
+
|
|
1473
|
+
pair_filter = self.df_relative.loc[~(self.df_relative['status_'+self.current_neighborhood].isnull())&(self.df_relative['reference_population']==self.reference_population), :]
|
|
1474
|
+
|
|
1475
|
+
for tid, group in pair_filter.groupby(['REFERENCE_ID','NEIGHBOR_ID','reference_population','neighbor_population']):
|
|
1476
|
+
|
|
1477
|
+
indices = group.index
|
|
1478
|
+
t0 = group[self.pair_time_name].to_numpy()[0]
|
|
1479
|
+
cclass = group[self.pair_class_name].to_numpy()[0]
|
|
1480
|
+
timeline = group['FRAME'].to_numpy()
|
|
1481
|
+
status = np.zeros_like(timeline)
|
|
1482
|
+
if t0 > 0:
|
|
1483
|
+
status[timeline>=t0] = 1.
|
|
1484
|
+
if cclass==2:
|
|
1485
|
+
status[:] = 2
|
|
1486
|
+
if cclass>2:
|
|
1487
|
+
status[:] = 42
|
|
1488
|
+
print(t0, status)
|
|
1489
|
+
status_color = [color_from_status(s) for s in status]
|
|
1490
|
+
class_color = [color_from_class(cclass) for i in range(len(status))]
|
|
1491
|
+
|
|
1492
|
+
self.df_relative.loc[indices, self.pair_status_name] = status
|
|
1493
|
+
self.df_relative.loc[indices, 'status_color'] = status_color
|
|
1494
|
+
self.df_relative.loc[indices, 'class_color'] = class_color
|
|
1495
|
+
|
|
1496
|
+
def make_neighbor_status_column(self):
|
|
1497
|
+
|
|
1498
|
+
df_neighbors = self.dataframes[self.neighbor_population]
|
|
1499
|
+
print('remaking the status column')
|
|
1500
|
+
|
|
1501
|
+
for tid, group in df_neighbors.groupby('TRACK_ID'):
|
|
1502
|
+
|
|
1503
|
+
indices = group.index
|
|
1504
|
+
t0 = group[self.neighbor_time_name].to_numpy()[0]
|
|
1505
|
+
cclass = group[self.neighbor_class_name].to_numpy()[0]
|
|
1506
|
+
timeline = group['FRAME'].to_numpy()
|
|
1507
|
+
status = np.zeros_like(timeline)
|
|
1508
|
+
if t0 > 0:
|
|
1509
|
+
status[timeline>=t0] = 1.
|
|
1510
|
+
if cclass==2:
|
|
1511
|
+
status[:] = 2
|
|
1512
|
+
if cclass>2:
|
|
1513
|
+
status[:] = 42
|
|
1514
|
+
status_color = [color_from_status(s) for s in status]
|
|
1515
|
+
class_color = [color_from_class(cclass) for i in range(len(status))]
|
|
1516
|
+
|
|
1517
|
+
df_neighbors.loc[indices, self.neighbor_status_name] = status
|
|
1518
|
+
df_neighbors.loc[indices, 'status_color'] = status_color
|
|
1519
|
+
df_neighbors.loc[indices, 'class_color'] = class_color
|
|
1520
|
+
|
|
1521
|
+
def fill_signal_choices(self):
|
|
1522
|
+
|
|
1523
|
+
|
|
1524
|
+
self.reference_signals = list(self.dataframes[self.reference_population].columns)
|
|
1525
|
+
self.neighbor_signals = list(self.dataframes[self.neighbor_population].columns)
|
|
1526
|
+
self.relative_signals = list(self.relative_cols)
|
|
1527
|
+
|
|
1528
|
+
self.cols_to_remove.extend([c for c in self.reference_signals if c.startswith('neighborhood')])
|
|
1529
|
+
self.cols_to_remove.extend([c for c in self.neighbor_signals if c.startswith('neighborhood')])
|
|
1530
|
+
|
|
1531
|
+
for c in self.cols_to_remove:
|
|
1532
|
+
if c in self.reference_signals:
|
|
1533
|
+
self.reference_signals.remove(c)
|
|
1534
|
+
if c in self.neighbor_signals:
|
|
1535
|
+
self.neighbor_signals.remove(c)
|
|
1536
|
+
if c in self.relative_signals:
|
|
1537
|
+
self.relative_signals.remove(c)
|
|
1538
|
+
|
|
1539
|
+
self.update_signal_choices(0)
|
|
1540
|
+
self.update_signal_choices(1)
|
|
1541
|
+
self.update_signal_choices(2)
|
|
1542
|
+
|
|
1543
|
+
|
|
1544
|
+
def update_signal_choices(self, index):
|
|
1545
|
+
|
|
1546
|
+
self.signal_choices[index].disconnect()
|
|
1547
|
+
|
|
1548
|
+
current_idx = self.signal_choices[index].currentIndex()
|
|
1549
|
+
if current_idx==-1:
|
|
1550
|
+
current_idx = 0
|
|
1551
|
+
|
|
1552
|
+
self.signal_choices[index].clear()
|
|
1553
|
+
if self.reference_pop_option_buttons[index].isChecked():
|
|
1554
|
+
self.signal_choices[index].addItems(['--'] + self.reference_signals)
|
|
1555
|
+
self.signal_choices[index].setCurrentIndex(current_idx)
|
|
1556
|
+
if self.neighbor_pop_option_buttons[index].isChecked():
|
|
1557
|
+
self.signal_choices[index].addItems(['--'] + self.neighbor_signals)
|
|
1558
|
+
self.signal_choices[index].setCurrentIndex(current_idx)
|
|
1559
|
+
if self.relative_pop_option_buttons[index].isChecked():
|
|
1560
|
+
self.signal_choices[index].addItems(['--'] + self.relative_signals)
|
|
1561
|
+
self.signal_choices[index].setCurrentIndex(current_idx)
|
|
1562
|
+
|
|
1563
|
+
self.signal_choices[index].currentIndexChanged.connect(self.plot_signals)
|
|
1564
|
+
|
|
1565
|
+
self.plot_signals()
|
|
1566
|
+
|
|
1567
|
+
def generate_signal_choices(self):
|
|
1568
|
+
|
|
1569
|
+
self.signal_choices = []
|
|
1570
|
+
self.signal_labels = []
|
|
1571
|
+
self.n_signals = 3
|
|
1572
|
+
|
|
1573
|
+
self.signal_choices = [QSearchableComboBox() for i in range(self.n_signals)]
|
|
1574
|
+
self.signal_pop_button_groups = [QButtonGroup() for i in range(self.n_signals)]
|
|
1575
|
+
self.reference_pop_option_buttons = [QRadioButton() for i in range(self.n_signals)]
|
|
1576
|
+
self.neighbor_pop_option_buttons = [QRadioButton() for i in range(self.n_signals)]
|
|
1577
|
+
self.relative_pop_option_buttons = [QRadioButton() for i in range(self.n_signals)]
|
|
1578
|
+
|
|
1579
|
+
for i in range(self.n_signals):
|
|
1580
|
+
|
|
1581
|
+
self.signal_pop_button_groups[i].addButton(self.reference_pop_option_buttons[i], 0)
|
|
1582
|
+
self.signal_pop_button_groups[i].addButton(self.neighbor_pop_option_buttons[i], 1)
|
|
1583
|
+
self.signal_pop_button_groups[i].addButton(self.relative_pop_option_buttons[i], 2)
|
|
1584
|
+
|
|
1585
|
+
self.signal_choices[i].currentIndexChanged.connect(self.plot_signals)
|
|
1586
|
+
self.reference_pop_option_buttons[i].toggled.connect(partial(self.update_signal_choices,i))
|
|
1587
|
+
self.neighbor_pop_option_buttons[i].toggled.connect(partial(self.update_signal_choices,i))
|
|
1588
|
+
self.relative_pop_option_buttons[i].toggled.connect(partial(self.update_signal_choices,i))
|
|
1589
|
+
|
|
1590
|
+
self.reference_pop_option_buttons[i].setEnabled(False)
|
|
1591
|
+
self.neighbor_pop_option_buttons[i].setEnabled(False)
|
|
1592
|
+
self.relative_pop_option_buttons[i].setEnabled(False)
|
|
1593
|
+
|
|
1594
|
+
def plot_signals(self):
|
|
1595
|
+
|
|
1596
|
+
range_values = []
|
|
1597
|
+
|
|
1598
|
+
if self.reference_track_of_interest is None and self.neighbor_track_of_interest is None:
|
|
1599
|
+
# No cell selected, plot nothing
|
|
1600
|
+
for t in self.cell_ax.texts:
|
|
1601
|
+
t.remove()
|
|
1602
|
+
self.cell_ax.text(0.5, 0.5, "No data available", horizontalalignment='center', verticalalignment='center', transform=self.cell_ax.transAxes)
|
|
1603
|
+
for i in range(self.n_signals):
|
|
1604
|
+
self.lines[i].set_xdata([])
|
|
1605
|
+
self.lines[i].set_ydata([])
|
|
1606
|
+
self.lines[i].set_label('')
|
|
1607
|
+
self.line_dt.set_xdata([])
|
|
1608
|
+
self.line_dt.set_ydata([])
|
|
1609
|
+
self.cell_fcanvas.canvas.draw()
|
|
1610
|
+
return None
|
|
1611
|
+
else:
|
|
1612
|
+
for t in self.cell_ax.texts:
|
|
1613
|
+
t.remove()
|
|
1614
|
+
|
|
1615
|
+
# Plot signals
|
|
1616
|
+
for i in range(self.n_signals):
|
|
1617
|
+
|
|
1618
|
+
signal = []; timeline = [];
|
|
1619
|
+
signal_txt = self.signal_choices[i].currentText()
|
|
1620
|
+
option = self.signal_pop_button_groups[i].checkedId()
|
|
1621
|
+
|
|
1622
|
+
if option==0 and self.reference_track_of_interest is not None and signal_txt!='--' and signal_txt!='':
|
|
1623
|
+
|
|
1624
|
+
df_reference = self.dataframes[self.reference_population]
|
|
1625
|
+
self.lines[i].set_label(f'reference ({self.reference_population}) '+ signal_txt)
|
|
1626
|
+
|
|
1627
|
+
signal = df_reference.loc[df_reference['TRACK_ID']==self.reference_track_of_interest, signal_txt].to_numpy()
|
|
1628
|
+
timeline = df_reference.loc[df_reference['TRACK_ID']==self.reference_track_of_interest, 'FRAME'].to_numpy()
|
|
1629
|
+
range_values.extend(df_reference.loc[:,signal_txt].values)
|
|
1630
|
+
|
|
1631
|
+
elif option==1 and self.neighbor_track_of_interest is not None and signal_txt!='--' and signal_txt!='':
|
|
1632
|
+
|
|
1633
|
+
df_neighbor = self.dataframes[self.neighbor_population]
|
|
1634
|
+
self.lines[i].set_label(f'neighbor ({self.neighbor_population}) '+ signal_txt)
|
|
1635
|
+
|
|
1636
|
+
signal = df_neighbor.loc[df_neighbor['TRACK_ID']==self.neighbor_track_of_interest, signal_txt].to_numpy()
|
|
1637
|
+
timeline = df_neighbor.loc[df_neighbor['TRACK_ID']==self.neighbor_track_of_interest, 'FRAME'].to_numpy()
|
|
1638
|
+
range_values.extend(df_neighbor.loc[:,signal_txt].values)
|
|
1639
|
+
|
|
1640
|
+
elif option==2 and self.reference_track_of_interest is not None and self.neighbor_track_of_interest is not None and signal_txt!='--' and signal_txt!='':
|
|
1641
|
+
|
|
1642
|
+
self.lines[i].set_label(f'pair '+signal_txt)
|
|
1643
|
+
signal = self.df_relative.loc[(self.df_relative['REFERENCE_ID']==self.reference_track_of_interest)&(self.df_relative['NEIGHBOR_ID']==self.neighbor_track_of_interest)&(self.df_relative['reference_population']==self.reference_population)&(self.df_relative['neighbor_population']==self.neighbor_population), signal_txt].to_numpy()
|
|
1644
|
+
timeline = self.df_relative.loc[(self.df_relative['REFERENCE_ID']==self.reference_track_of_interest)&(self.df_relative['NEIGHBOR_ID']==self.neighbor_track_of_interest)&(self.df_relative['reference_population']==self.reference_population)&(self.df_relative['neighbor_population']==self.neighbor_population), 'FRAME'].to_numpy()
|
|
1645
|
+
range_values.extend(self.df_relative.loc[(self.df_relative['reference_population']==self.reference_population)&(self.df_relative['neighbor_population']==self.neighbor_population), signal_txt].values)
|
|
1646
|
+
else:
|
|
1647
|
+
self.lines[i].set_label('')
|
|
1648
|
+
|
|
1649
|
+
|
|
1650
|
+
self.lines[i].set_xdata(timeline)
|
|
1651
|
+
self.lines[i].set_ydata(signal)
|
|
1652
|
+
self.lines[i].set_color(tab10(i / float(self.n_signals)))
|
|
1653
|
+
|
|
1654
|
+
#self.configure_ylims()
|
|
1655
|
+
if len(range_values)>0:
|
|
1656
|
+
range_values = np.array(range_values)
|
|
1657
|
+
if len(range_values[range_values==range_values])>0:
|
|
1658
|
+
if len(range_values[range_values>0])>0:
|
|
1659
|
+
self.value_magnitude = np.nanpercentile(range_values, 1)
|
|
1660
|
+
else:
|
|
1661
|
+
self.value_magnitude = 1
|
|
1662
|
+
self.non_log_ymin = 0.98*np.nanmin(range_values)
|
|
1663
|
+
self.non_log_ymax = np.nanmax(range_values)*1.02
|
|
1664
|
+
if self.cell_ax.get_yscale()=='linear':
|
|
1665
|
+
self.cell_ax.set_ylim(self.non_log_ymin, self.non_log_ymax)
|
|
1666
|
+
else:
|
|
1667
|
+
self.cell_ax.set_ylim(self.value_magnitude, self.non_log_ymax)
|
|
1668
|
+
|
|
1669
|
+
if self.reference_track_of_interest is not None and self.neighbor_track_of_interest is not None:
|
|
1670
|
+
t0 = self.df_relative.loc[(self.df_relative['REFERENCE_ID'] == self.reference_track_of_interest)&(self.df_relative['NEIGHBOR_ID'] == self.neighbor_track_of_interest)&(self.df_relative['reference_population'] == self.reference_population)&(self.df_relative['neighbor_population'] == self.neighbor_population), self.pair_time_name].dropna().to_numpy()
|
|
1671
|
+
if t0!=[]:
|
|
1672
|
+
t0=t0[0]
|
|
1673
|
+
ymin,ymax = self.cell_ax.get_ylim()
|
|
1674
|
+
self.line_dt.set_xdata([t0, t0])
|
|
1675
|
+
self.line_dt.set_ydata([ymin,ymax])
|
|
1676
|
+
|
|
1677
|
+
self.cell_ax.legend()
|
|
1678
|
+
self.cell_fcanvas.canvas.draw()
|
|
1679
|
+
|
|
1680
|
+
|
|
1681
|
+
def extract_scatter_from_lines(self):
|
|
1682
|
+
|
|
1683
|
+
self.lines_list = []
|
|
1684
|
+
self.lines_tracks=[]
|
|
1685
|
+
self.lines_colors_status = []
|
|
1686
|
+
self.initial_lines_colors_status=[]
|
|
1687
|
+
self.lines_colors_class = []
|
|
1688
|
+
self.initial_lines_colors_class=[]
|
|
1689
|
+
|
|
1690
|
+
for t in np.arange(self.len_movie):
|
|
1691
|
+
|
|
1692
|
+
# Append frame_positions to self.line_positions
|
|
1693
|
+
self.lines_tracks.append(self.df_relative.loc[(self.df_relative['FRAME'] == t)&(~self.df_relative['status_'+self.current_neighborhood].isnull())&(self.df_relative['reference_population']==self.reference_population), ['REFERENCE_ID', 'NEIGHBOR_ID']].to_numpy())
|
|
1694
|
+
self.initial_lines_colors_status.append(self.df_relative.loc[(self.df_relative['FRAME'] == t)&(~self.df_relative['status_'+self.current_neighborhood].isnull())&(self.df_relative['reference_population']==self.reference_population), ['REFERENCE_ID', 'NEIGHBOR_ID','status_color']].to_numpy())
|
|
1695
|
+
self.lines_colors_status.append(self.df_relative.loc[(self.df_relative['FRAME'] == t)&(~self.df_relative['status_'+self.current_neighborhood].isnull())&(self.df_relative['reference_population']==self.reference_population), ['REFERENCE_ID', 'NEIGHBOR_ID','status_color']].to_numpy())
|
|
1696
|
+
self.initial_lines_colors_class.append(self.df_relative.loc[(self.df_relative['FRAME'] == t)&(~self.df_relative['status_'+self.current_neighborhood].isnull())&(self.df_relative['reference_population']==self.reference_population), ['REFERENCE_ID', 'NEIGHBOR_ID','class_color']].to_numpy())
|
|
1697
|
+
self.lines_colors_class.append(self.df_relative.loc[(self.df_relative['FRAME'] == t)&(~self.df_relative['status_'+self.current_neighborhood].isnull())&(self.df_relative['reference_population']==self.reference_population), ['REFERENCE_ID', 'NEIGHBOR_ID','class_color']].to_numpy())
|
|
1698
|
+
|
|
1699
|
+
def extract_scatter_from_target_trajectories(self):
|
|
1700
|
+
|
|
1701
|
+
print('extracting scatter from target trajectories...')
|
|
1702
|
+
|
|
1703
|
+
self.target_positions = []
|
|
1704
|
+
self.target_colors = []
|
|
1705
|
+
self.target_tracks = []
|
|
1706
|
+
self.initial_target_colors = []
|
|
1707
|
+
|
|
1708
|
+
for t in np.arange(self.len_movie):
|
|
1709
|
+
|
|
1710
|
+
if self.df_targets is not None:
|
|
1711
|
+
self.target_positions.append(self.df_targets.loc[self.df_targets['FRAME']==t,['x_anim', 'y_anim']].to_numpy())
|
|
1712
|
+
self.target_colors.append(self.df_targets.loc[self.df_targets['FRAME']==t,['class_color', 'status_color']].to_numpy())
|
|
1713
|
+
self.initial_target_colors.append(
|
|
1714
|
+
self.df_targets.loc[self.df_targets['FRAME'] == t, ['class_color', 'status_color']].to_numpy())
|
|
1715
|
+
try:
|
|
1716
|
+
self.target_tracks.append(self.df_targets.loc[self.df_targets['FRAME']==t, 'TRACK_ID'].to_numpy())
|
|
1717
|
+
except:
|
|
1718
|
+
self.target_tracks.append(
|
|
1719
|
+
self.df_targets.loc[self.df_targets['FRAME'] == t, 'ID'].to_numpy())
|
|
1720
|
+
|
|
1721
|
+
|
|
1722
|
+
def extract_scatter_from_effector_trajectories(self):
|
|
1723
|
+
|
|
1724
|
+
self.effector_positions = []
|
|
1725
|
+
self.effector_colors = []
|
|
1726
|
+
self.initial_effector_colors=[]
|
|
1727
|
+
self.effector_tracks = []
|
|
1728
|
+
|
|
1729
|
+
for t in np.arange(self.len_movie):
|
|
1730
|
+
|
|
1731
|
+
if self.df_effectors is not None:
|
|
1732
|
+
|
|
1733
|
+
self.effector_positions.append(self.df_effectors.loc[self.df_effectors['FRAME']==t,['x_anim', 'y_anim']].to_numpy())
|
|
1734
|
+
self.effector_colors.append(self.df_effectors.loc[self.df_effectors['FRAME']==t,['class_color', 'status_color']].to_numpy())
|
|
1735
|
+
self.initial_effector_colors.append(self.df_effectors.loc[self.df_effectors['FRAME'] == t, ['class_color', 'status_color']].to_numpy())
|
|
1736
|
+
try:
|
|
1737
|
+
self.effector_tracks.append(self.df_effectors.loc[self.df_effectors['FRAME']==t, 'TRACK_ID'].to_numpy())
|
|
1738
|
+
except:
|
|
1739
|
+
self.effector_tracks.append(
|
|
1740
|
+
self.df_effectors.loc[self.df_effectors['FRAME'] == t, 'ID'].to_numpy())
|
|
1741
|
+
|
|
1742
|
+
def load_annotator_config(self):
|
|
1743
|
+
|
|
1744
|
+
"""
|
|
1745
|
+
Load settings from config or set default values.
|
|
1746
|
+
"""
|
|
1747
|
+
|
|
1748
|
+
print('Reading instructions..')
|
|
1749
|
+
if os.path.exists(self.instructions_path):
|
|
1750
|
+
with open(self.instructions_path, 'r') as f:
|
|
1751
|
+
|
|
1752
|
+
instructions = json.load(f)
|
|
1753
|
+
print(f'Reading instructions: {instructions}')
|
|
1754
|
+
|
|
1755
|
+
if 'rgb_mode' in instructions:
|
|
1756
|
+
self.rgb_mode = instructions['rgb_mode']
|
|
1757
|
+
else:
|
|
1758
|
+
self.rgb_mode = False
|
|
1759
|
+
|
|
1760
|
+
if 'percentile_mode' in instructions:
|
|
1761
|
+
self.percentile_mode = instructions['percentile_mode']
|
|
1762
|
+
else:
|
|
1763
|
+
self.percentile_mode = True
|
|
1764
|
+
|
|
1765
|
+
if 'channels' in instructions:
|
|
1766
|
+
self.target_channels = instructions['channels']
|
|
1767
|
+
else:
|
|
1768
|
+
self.target_channels = [[self.channel_names[0], 0.01, 99.99]]
|
|
1769
|
+
|
|
1770
|
+
if 'fraction' in instructions:
|
|
1771
|
+
self.fraction = float(instructions['fraction'])
|
|
1772
|
+
else:
|
|
1773
|
+
self.fraction = 0.25
|
|
1774
|
+
|
|
1775
|
+
if 'interval' in instructions:
|
|
1776
|
+
self.anim_interval = int(instructions['interval'])
|
|
1777
|
+
else:
|
|
1778
|
+
self.anim_interval = 1
|
|
1779
|
+
|
|
1780
|
+
if 'log' in instructions:
|
|
1781
|
+
self.log_option = instructions['log']
|
|
1782
|
+
else:
|
|
1783
|
+
self.log_option = False
|
|
1784
|
+
else:
|
|
1785
|
+
self.rgb_mode = False
|
|
1786
|
+
self.log_option = False
|
|
1787
|
+
self.percentile_mode = True
|
|
1788
|
+
self.target_channels = [[self.channel_names[0], 0.01, 99.99]]
|
|
1789
|
+
self.fraction = 0.25
|
|
1790
|
+
self.anim_interval = 1
|
|
1791
|
+
|
|
1792
|
+
def prepare_stack(self):
|
|
1793
|
+
|
|
1794
|
+
self.img_num_channels = _get_img_num_per_channel(self.channels, self.len_movie, self.nbr_channels)
|
|
1795
|
+
self.stack = []
|
|
1796
|
+
for ch in tqdm(self.target_channels, desc="channel"):
|
|
1797
|
+
target_ch_name = ch[0]
|
|
1798
|
+
if self.percentile_mode:
|
|
1799
|
+
normalize_kwargs = {"percentiles": (ch[1], ch[2]), "values": None}
|
|
1800
|
+
else:
|
|
1801
|
+
normalize_kwargs = {"values": (ch[1], ch[2]), "percentiles": None}
|
|
1802
|
+
|
|
1803
|
+
if self.rgb_mode:
|
|
1804
|
+
normalize_kwargs.update({'amplification': 255., 'clip': True})
|
|
1805
|
+
|
|
1806
|
+
chan = []
|
|
1807
|
+
indices = self.img_num_channels[self.channels[np.where(self.channel_names==target_ch_name)][0]]
|
|
1808
|
+
for t in tqdm(range(len(indices)),desc='FRAME'):
|
|
1809
|
+
if self.rgb_mode:
|
|
1810
|
+
f = load_frames(indices[t], self.stack_path, scale=self.fraction, normalize_input=True, normalize_kwargs=normalize_kwargs)
|
|
1811
|
+
f = f.astype(np.uint8)
|
|
1812
|
+
else:
|
|
1813
|
+
f = load_frames(indices[t], self.stack_path, scale=self.fraction, normalize_input=False)
|
|
1814
|
+
chan.append(f[:,:,0])
|
|
1815
|
+
|
|
1816
|
+
self.stack.append(chan)
|
|
1817
|
+
|
|
1818
|
+
self.stack = np.array(self.stack)
|
|
1819
|
+
if self.rgb_mode:
|
|
1820
|
+
self.stack = np.moveaxis(self.stack, 0, -1)
|
|
1821
|
+
else:
|
|
1822
|
+
self.stack = self.stack[0]
|
|
1823
|
+
if self.log_option:
|
|
1824
|
+
self.stack[np.where(self.stack>0.)] = np.log(self.stack[np.where(self.stack>0.)])
|
|
1825
|
+
|
|
1826
|
+
print(f'Load stack of shape: {self.stack.shape}.')
|
|
1827
|
+
|
|
1828
|
+
def neighborhood_changed(self):
|
|
1829
|
+
|
|
1830
|
+
self.cancel_selection()
|
|
1831
|
+
self.set_reference_and_neighbor_populations()
|
|
1832
|
+
# Update reference classes and neighbor classes
|
|
1833
|
+
self.fill_class_cbs()
|
|
1834
|
+
|
|
1835
|
+
self.update_cell_events()
|
|
1836
|
+
self.extract_scatter_from_lines()
|
|
1837
|
+
# self.draw_frame(self.framedata)
|
|
1838
|
+
self.plot_signals()
|
|
1839
|
+
|
|
1840
|
+
|
|
1841
|
+
def closeEvent(self, event):
|
|
1842
|
+
|
|
1843
|
+
self.stop()
|
|
1844
|
+
# result = QMessageBox.question(self,
|
|
1845
|
+
# "Confirm Exit...",
|
|
1846
|
+
# "Are you sure you want to exit ?",
|
|
1847
|
+
# QMessageBox.Yes| QMessageBox.No,
|
|
1848
|
+
# )
|
|
1849
|
+
del self.stack
|
|
1850
|
+
gc.collect()
|
|
1851
|
+
|
|
1852
|
+
def looped_animation(self):
|
|
1853
|
+
|
|
1854
|
+
"""
|
|
1855
|
+
Load an image.
|
|
1856
|
+
|
|
1857
|
+
"""
|
|
1858
|
+
|
|
1859
|
+
self.framedata = 0
|
|
1860
|
+
|
|
1861
|
+
self.fig, self.ax = plt.subplots(tight_layout=True)
|
|
1862
|
+
self.fcanvas = FigureCanvas(self.fig, interactive=True)
|
|
1863
|
+
self.ax.clear()
|
|
1864
|
+
|
|
1865
|
+
if not hasattr(self, 'lines'):
|
|
1866
|
+
self.lines_data = {}
|
|
1867
|
+
|
|
1868
|
+
self.im = self.ax.imshow(self.stack[0], cmap='gray', vmin=np.nanpercentile(self.stack, 1), vmax=np.nanpercentile(self.stack, 99.99))
|
|
1869
|
+
|
|
1870
|
+
|
|
1871
|
+
if self.df_targets is not None:
|
|
1872
|
+
self.target_status_scatter = self.ax.scatter(self.target_positions[0][:,0], self.target_positions[0][:,1], marker="x", c=self.target_colors[0][:,1], s=50, picker=True, pickradius=10)
|
|
1873
|
+
self.target_class_scatter = self.ax.scatter(self.target_positions[0][:,0], self.target_positions[0][:,1], marker='o', facecolors='none',edgecolors=self.target_colors[0][:,0], s=200)
|
|
1874
|
+
else:
|
|
1875
|
+
self.target_status_scatter = self.ax.scatter([],[], marker="x", s=50, picker=True, pickradius=10)
|
|
1876
|
+
self.target_class_scatter = self.ax.scatter([],[], marker='o', facecolors='none', s=200)
|
|
1877
|
+
|
|
1878
|
+
if self.df_effectors is not None:
|
|
1879
|
+
self.effector_status_scatter = self.ax.scatter(self.effector_positions[0][:,0], self.effector_positions[0][:,1], marker="x", c=self.effector_colors[0][:,1], s=50, picker=True, pickradius=10)
|
|
1880
|
+
self.effector_class_scatter = self.ax.scatter(self.effector_positions[0][:,0], self.effector_positions[0][:,1], marker='^', facecolors='none',edgecolors=self.effector_colors[0][:,0], s=200)
|
|
1881
|
+
else:
|
|
1882
|
+
self.effector_status_scatter = self.ax.scatter([], [], marker="x", s=50, picker=True, pickradius=10)
|
|
1883
|
+
self.effector_class_scatter = self.ax.scatter([],[], marker='^', facecolors='none', s=200)
|
|
1884
|
+
|
|
1885
|
+
self.points=self.ax.scatter([], [], marker="$\Join$", s=100, picker=True, pickradius=10, zorder=10) #picker=True, pickradius=10
|
|
1886
|
+
|
|
1887
|
+
self.ax.set_xticks([])
|
|
1888
|
+
self.ax.set_yticks([])
|
|
1889
|
+
self.ax.set_aspect('equal')
|
|
1890
|
+
|
|
1891
|
+
self.fig.set_facecolor('none') # or 'None'
|
|
1892
|
+
self.fig.canvas.setStyleSheet("background-color: black;")
|
|
1893
|
+
|
|
1894
|
+
self.anim = FuncAnimation(
|
|
1895
|
+
self.fig,
|
|
1896
|
+
self.draw_frame,
|
|
1897
|
+
frames = self.len_movie, # better would be to cast np.arange(len(movie)) in case frame column is incomplete
|
|
1898
|
+
interval = self.anim_interval, # in ms
|
|
1899
|
+
blit=True,
|
|
1900
|
+
)
|
|
1901
|
+
|
|
1902
|
+
self.fig.canvas.mpl_connect('pick_event', self.on_scatter_pick)
|
|
1903
|
+
self.fcanvas.canvas.draw()
|
|
1904
|
+
|
|
1905
|
+
|
|
1906
|
+
def create_cell_signal_canvas(self):
|
|
1907
|
+
|
|
1908
|
+
self.cell_fig, self.cell_ax = plt.subplots()
|
|
1909
|
+
self.cell_fcanvas = FigureCanvas(self.cell_fig, interactive=True)
|
|
1910
|
+
self.cell_ax.clear()
|
|
1911
|
+
|
|
1912
|
+
spacing = 0.5
|
|
1913
|
+
minorLocator = MultipleLocator(1)
|
|
1914
|
+
self.cell_ax.xaxis.set_minor_locator(minorLocator)
|
|
1915
|
+
self.cell_ax.xaxis.set_major_locator(MultipleLocator(5))
|
|
1916
|
+
self.cell_ax.grid(which = 'major')
|
|
1917
|
+
self.cell_ax.set_xlabel("time [frame]")
|
|
1918
|
+
self.cell_ax.set_ylabel("signal")
|
|
1919
|
+
|
|
1920
|
+
self.cell_fig.set_facecolor('none') # or 'None'
|
|
1921
|
+
self.cell_fig.canvas.setStyleSheet("background-color: transparent;")
|
|
1922
|
+
|
|
1923
|
+
self.lines = [self.cell_ax.plot([np.linspace(0,self.len_movie-1,self.len_movie)],[np.zeros((self.len_movie))])[0] for i in range(len(self.signal_choices))]
|
|
1924
|
+
for i in range(len(self.lines)):
|
|
1925
|
+
self.lines[i].set_label(f'signal {i}')
|
|
1926
|
+
|
|
1927
|
+
min_val,max_val = self.cell_ax.get_ylim()
|
|
1928
|
+
self.line_dt, = self.cell_ax.plot([-1,-1],[min_val,max_val],c="k",linestyle="--")
|
|
1929
|
+
|
|
1930
|
+
self.cell_ax.set_xlim(0,self.len_movie)
|
|
1931
|
+
self.cell_ax.legend()
|
|
1932
|
+
self.cell_fcanvas.canvas.draw()
|
|
1933
|
+
|
|
1934
|
+
#self.plot_signals()
|
|
1935
|
+
|
|
1936
|
+
|
|
1937
|
+
def on_scatter_pick(self, event):
|
|
1938
|
+
|
|
1939
|
+
self.identify_closest_marker(event)
|
|
1940
|
+
print(self.pair_selected, self.reference_selection)
|
|
1941
|
+
|
|
1942
|
+
_, tracks, _, _ = self.get_reference_sets()
|
|
1943
|
+
|
|
1944
|
+
if self.selected_population == self.reference_population:
|
|
1945
|
+
|
|
1946
|
+
if self.index is not None:
|
|
1947
|
+
toi = tracks[self.framedata][self.index]
|
|
1948
|
+
|
|
1949
|
+
if len(self.reference_selection)==0:
|
|
1950
|
+
|
|
1951
|
+
self.reference_track_of_interest = toi
|
|
1952
|
+
self.reference_selection.append(self.reference_track_of_interest)
|
|
1953
|
+
|
|
1954
|
+
self.get_neighbors_of_selected_cell(self.reference_track_of_interest)
|
|
1955
|
+
print(f'You selected track {self.reference_track_of_interest} with {len(self.neighbors)} neighbors...')
|
|
1956
|
+
|
|
1957
|
+
self.give_reference_cell_information()
|
|
1958
|
+
self.give_neighbor_cell_information()
|
|
1959
|
+
self.give_pair_information()
|
|
1960
|
+
|
|
1961
|
+
self.recolor_selection()
|
|
1962
|
+
self.trace_neighbors()
|
|
1963
|
+
|
|
1964
|
+
for i in range(self.n_signals):
|
|
1965
|
+
self.reference_pop_option_buttons[i].setEnabled(True)
|
|
1966
|
+
|
|
1967
|
+
self.plot_signals()
|
|
1968
|
+
|
|
1969
|
+
elif len(self.reference_selection) > 0 and toi in self.reference_selection and not self.pair_selected:
|
|
1970
|
+
|
|
1971
|
+
self.cancel_btn.click()
|
|
1972
|
+
self.cancel_selection()
|
|
1973
|
+
|
|
1974
|
+
elif len(self.reference_selection) > 0 and toi in self.neighbors and self.neighbor_population==self.reference_population and not self.pair_selected:
|
|
1975
|
+
if len(self.pair_selection)==0:
|
|
1976
|
+
self.neighbor_track_of_interest = toi
|
|
1977
|
+
self.highlight_the_pair()
|
|
1978
|
+
else:
|
|
1979
|
+
self.cancel_pair_selection()
|
|
1980
|
+
else:
|
|
1981
|
+
print('one cell already selected... skip... ')
|
|
1982
|
+
pass
|
|
1983
|
+
elif len(self.reference_selection) > 0 and not self.pair_selected:
|
|
1984
|
+
|
|
1985
|
+
print('You are picking a cell from the neighbor population...')
|
|
1986
|
+
_, tracks, _, _ = self.get_neighbor_sets()
|
|
1987
|
+
if self.index is not None:
|
|
1988
|
+
toi = tracks[self.framedata][self.index]
|
|
1989
|
+
|
|
1990
|
+
if toi in self.neighbors and len(self.reference_selection) > 0:
|
|
1991
|
+
if len(self.pair_selection)==0:
|
|
1992
|
+
self.neighbor_track_of_interest = toi
|
|
1993
|
+
print('highlight pair!')
|
|
1994
|
+
self.highlight_the_pair()
|
|
1995
|
+
else:
|
|
1996
|
+
print('cancel pair!')
|
|
1997
|
+
self.cancel_pair_selection()
|
|
1998
|
+
else:
|
|
1999
|
+
self.cancel_pair_selection()
|
|
2000
|
+
|
|
2001
|
+
if self.pair_selected and len(self.reference_selection)>0:
|
|
2002
|
+
|
|
2003
|
+
print('You selected a pair...')
|
|
2004
|
+
artist = event.artist
|
|
2005
|
+
print(self.index)
|
|
2006
|
+
|
|
2007
|
+
if self.index is not None and len(self.pair_selection)==0:
|
|
2008
|
+
|
|
2009
|
+
selected_point = artist.get_offsets()[self.index]
|
|
2010
|
+
|
|
2011
|
+
if len(self.pair_selection) == 0 and ((selected_point[0],selected_point[1]) in self.connections.keys()):
|
|
2012
|
+
|
|
2013
|
+
connect = self.connections[(selected_point[0], selected_point[1])]
|
|
2014
|
+
self.neighbor_track_of_interest = connect[0][1]
|
|
2015
|
+
self.highlight_the_pair()
|
|
2016
|
+
|
|
2017
|
+
elif len(self.pair_selection)==1:
|
|
2018
|
+
print('Length of pair selection is larger than one, trying to cancel the pair selection...')
|
|
2019
|
+
self.cancel_pair_selection()
|
|
2020
|
+
else:
|
|
2021
|
+
print('something else')
|
|
2022
|
+
self.cancel_pair_selection()
|
|
2023
|
+
else:
|
|
2024
|
+
print('else #1')
|
|
2025
|
+
print(f"{len(self.pair_selection)=} {self.index=}")
|
|
2026
|
+
self.cancel_pair_selection()
|
|
2027
|
+
else:
|
|
2028
|
+
print('else #2')
|
|
2029
|
+
pass
|
|
2030
|
+
|
|
2031
|
+
print(f"{self.pair_selection=}")
|
|
2032
|
+
|
|
2033
|
+
|
|
2034
|
+
def highlight_the_pair(self):
|
|
2035
|
+
|
|
2036
|
+
# 1) recolor the neighbor marker
|
|
2037
|
+
print(f'Reference cell: {self.reference_track_of_interest}, neighbor cell: {self.neighbor_track_of_interest}')
|
|
2038
|
+
|
|
2039
|
+
_, tracks, colors, _ = self.get_neighbor_sets()
|
|
2040
|
+
self.neigh_cell_loc_idx = []
|
|
2041
|
+
self.neigh_cell_loc_t = []
|
|
2042
|
+
self.neigh_previous_color = []
|
|
2043
|
+
|
|
2044
|
+
for t in range(len(tracks)):
|
|
2045
|
+
indices_picked = np.where(tracks[t]==self.neighbor_track_of_interest)[0]
|
|
2046
|
+
if len(indices_picked)>0:
|
|
2047
|
+
self.neigh_cell_loc_t.append(t)
|
|
2048
|
+
self.neigh_cell_loc_idx.append(indices_picked[0])
|
|
2049
|
+
|
|
2050
|
+
for t,idx in zip(self.neigh_cell_loc_t,self.neigh_cell_loc_idx):
|
|
2051
|
+
self.neigh_previous_color.append(colors[t][idx].copy())
|
|
2052
|
+
colors[t][idx] = 'lime'
|
|
2053
|
+
|
|
2054
|
+
# 2) identify the pair line and recolor it
|
|
2055
|
+
for t in range(self.len_movie):
|
|
2056
|
+
|
|
2057
|
+
self.lines_colors_status[t][:, :2] = self.lines_colors_status[t][:, :2].astype(float)
|
|
2058
|
+
indices1 = np.where((self.lines_colors_status[t][:, 0] == self.reference_track_of_interest)&(self.lines_colors_status[t][:, 1] == self.neighbor_track_of_interest))[0]
|
|
2059
|
+
|
|
2060
|
+
self.lines_colors_class[t][:, :2] = self.lines_colors_class[t][:, :2].astype(float)
|
|
2061
|
+
indices2 = np.where((self.lines_colors_class[t][:, 0] == self.reference_track_of_interest)&(self.lines_colors_class[t][:, 1] == self.neighbor_track_of_interest))[0]
|
|
2062
|
+
|
|
2063
|
+
self.lines_colors_status[t][indices1, 2] = 'lime'
|
|
2064
|
+
self.lines_colors_class[t][indices2, 2] = 'lime'
|
|
2065
|
+
# Maybe do the symmetrical neighborhood when same populations?
|
|
2066
|
+
|
|
2067
|
+
self.pair_selection.append(tuple([self.reference_track_of_interest, self.neighbor_track_of_interest]))
|
|
2068
|
+
self.neighbor_selection.append(self.neighbor_track_of_interest)
|
|
2069
|
+
self.give_neighbor_cell_information()
|
|
2070
|
+
self.give_pair_information()
|
|
2071
|
+
|
|
2072
|
+
# Allow pair signal options
|
|
2073
|
+
for i in range(self.n_signals):
|
|
2074
|
+
self.neighbor_pop_option_buttons[i].setEnabled(True)
|
|
2075
|
+
self.relative_pop_option_buttons[i].setEnabled(True)
|
|
2076
|
+
|
|
2077
|
+
self.plot_signals()
|
|
2078
|
+
|
|
2079
|
+
# Allow pair annotation
|
|
2080
|
+
self.correct_btn.setEnabled(True)
|
|
2081
|
+
self.cancel_btn.setEnabled(True)
|
|
2082
|
+
|
|
2083
|
+
|
|
2084
|
+
def get_neighbor_sets(self):
|
|
2085
|
+
|
|
2086
|
+
if self.reference_population != self.neighbor_population:
|
|
2087
|
+
if self.reference_population=='effectors':
|
|
2088
|
+
return self.target_positions, self.target_tracks, self.target_colors, self.initial_target_colors
|
|
2089
|
+
elif self.reference_population=='targets':
|
|
2090
|
+
return self.effector_positions, self.effector_tracks, self.effector_colors, self.initial_effector_colors
|
|
2091
|
+
else:
|
|
2092
|
+
if self.reference_population=='effectors':
|
|
2093
|
+
return self.effector_positions, self.effector_tracks, self.effector_colors, self.initial_effector_colors
|
|
2094
|
+
elif self.reference_population=='targets':
|
|
2095
|
+
return self.target_positions, self.target_tracks, self.target_colors, self.initial_target_colors
|
|
2096
|
+
|
|
2097
|
+
def get_reference_sets(self):
|
|
2098
|
+
|
|
2099
|
+
if self.reference_population == 'effectors':
|
|
2100
|
+
return self.effector_positions, self.effector_tracks, self.effector_colors, self.initial_effector_colors
|
|
2101
|
+
elif self.reference_population == 'targets':
|
|
2102
|
+
return self.target_positions, self.target_tracks, self.target_colors, self.initial_target_colors
|
|
2103
|
+
|
|
2104
|
+
def trace_neighbors(self):
|
|
2105
|
+
|
|
2106
|
+
self.lines_data = {}
|
|
2107
|
+
self.points_data={}
|
|
2108
|
+
self.connections={}
|
|
2109
|
+
self.line_connections={}
|
|
2110
|
+
|
|
2111
|
+
positions, tracks, colors, _ = self.get_neighbor_sets()
|
|
2112
|
+
|
|
2113
|
+
# Look for neighbors
|
|
2114
|
+
for neigh in self.neighbors:
|
|
2115
|
+
|
|
2116
|
+
self.neighbor_loc_t = []
|
|
2117
|
+
self.neighbor_loc_idx = []
|
|
2118
|
+
|
|
2119
|
+
for t in range(len(tracks)):
|
|
2120
|
+
indices = np.where(tracks[t]==neigh)[0]
|
|
2121
|
+
if len(indices)>0:
|
|
2122
|
+
self.neighbor_loc_t.append(t)
|
|
2123
|
+
self.neighbor_loc_idx.append(indices[0])
|
|
2124
|
+
|
|
2125
|
+
self.neighbor_previous_color = []
|
|
2126
|
+
for t, idx in zip(self.neighbor_loc_t, self.neighbor_loc_idx):
|
|
2127
|
+
|
|
2128
|
+
try:
|
|
2129
|
+
|
|
2130
|
+
neigh_x = positions[t][idx, 0]
|
|
2131
|
+
neigh_y = positions[t][idx, 1]
|
|
2132
|
+
x_m_point = (self.reference_x[t] + neigh_x) / 2
|
|
2133
|
+
y_m_point = (self.reference_y[t] + neigh_y) / 2
|
|
2134
|
+
|
|
2135
|
+
if t not in self.lines_data.keys():
|
|
2136
|
+
self.lines_data[t]=[([self.reference_x[t], neigh_x], [self.reference_y[t], neigh_y])]
|
|
2137
|
+
self.points_data[t]=[(x_m_point, y_m_point)]
|
|
2138
|
+
else:
|
|
2139
|
+
self.lines_data[t].append(([self.reference_x[t], neigh_x], [self.reference_y[t], neigh_y]))
|
|
2140
|
+
self.points_data[t].append((x_m_point, y_m_point))
|
|
2141
|
+
|
|
2142
|
+
self.connections[(x_m_point, y_m_point)] = [(self.reference_track_of_interest, neigh)]
|
|
2143
|
+
self.line_connections[(self.reference_x[t], neigh_x, self.reference_y[t], neigh_y)]=[(self.reference_track_of_interest, neigh)]
|
|
2144
|
+
|
|
2145
|
+
self.neighbor_previous_color.append(colors[t][idx].copy())
|
|
2146
|
+
except Exception as e:
|
|
2147
|
+
print(e)
|
|
2148
|
+
pass
|
|
2149
|
+
#colors[t][idx] = 'salmon'
|
|
2150
|
+
|
|
2151
|
+
# for t in range(len(colors)):
|
|
2152
|
+
# for idx in range(len(colors[t])):
|
|
2153
|
+
# if colors[t][idx].any() != 'salmon':
|
|
2154
|
+
# if colors[t][idx].any() != 'magenta':
|
|
2155
|
+
# #init_color[t][idx] = colors[t][idx].copy()
|
|
2156
|
+
# colors[t][idx] = 'black'
|
|
2157
|
+
|
|
2158
|
+
def recolor_selection(self):
|
|
2159
|
+
|
|
2160
|
+
positions, tracks, colors, init_colors = self.get_reference_sets()
|
|
2161
|
+
|
|
2162
|
+
self.reference_loc_t = []
|
|
2163
|
+
self.reference_loc_idx = []
|
|
2164
|
+
self.reference_loc_t_not_picked = []
|
|
2165
|
+
self.reference_loc_idx_not_picked=[]
|
|
2166
|
+
|
|
2167
|
+
for t in range(len(tracks)):
|
|
2168
|
+
|
|
2169
|
+
indices_picked = np.where(tracks[t]==self.reference_track_of_interest)[0]
|
|
2170
|
+
indices_not_picked = np.where(tracks[t]!=self.reference_track_of_interest)[0]
|
|
2171
|
+
self.reference_loc_t_not_picked.append(t)
|
|
2172
|
+
self.reference_loc_idx_not_picked.append(indices_not_picked)
|
|
2173
|
+
if len(indices_picked)>0:
|
|
2174
|
+
self.reference_loc_t.append(t)
|
|
2175
|
+
self.reference_loc_idx.append(indices_picked[0])
|
|
2176
|
+
|
|
2177
|
+
self.reference_previous_color = []
|
|
2178
|
+
self.reference_not_picked_initial_colors=[]
|
|
2179
|
+
self.reference_x = []
|
|
2180
|
+
self.reference_y = []
|
|
2181
|
+
|
|
2182
|
+
# Recolor selected cell
|
|
2183
|
+
for t,idx in zip(self.reference_loc_t,self.reference_loc_idx):
|
|
2184
|
+
self.reference_x.append(positions[t][idx, 0])
|
|
2185
|
+
self.reference_y.append(positions[t][idx, 1])
|
|
2186
|
+
self.reference_previous_color.append(colors[t][idx].copy())
|
|
2187
|
+
colors[t][idx] = 'lime'
|
|
2188
|
+
|
|
2189
|
+
# Recolor all other cells in black
|
|
2190
|
+
for t, idx in zip(self.reference_loc_t_not_picked, self.reference_loc_idx_not_picked):
|
|
2191
|
+
self.reference_not_picked_initial_colors.append(colors[t][idx].copy())
|
|
2192
|
+
init_colors[t][idx] = colors[t][idx].copy()
|
|
2193
|
+
colors[t][idx] = 'black'
|
|
2194
|
+
|
|
2195
|
+
|
|
2196
|
+
def get_neighbors_of_selected_cell(self, selected_cell):
|
|
2197
|
+
|
|
2198
|
+
self.neighbors = self.df_relative.loc[(self.df_relative['REFERENCE_ID'] == selected_cell)&(~self.df_relative['status_'+self.current_neighborhood].isnull())&(self.df_relative['reference_population']==self.reference_population),'NEIGHBOR_ID']
|
|
2199
|
+
self.neighbors = np.unique(self.neighbors)
|
|
2200
|
+
# if len(self.neighbors)>0:
|
|
2201
|
+
# first_neighbor = np.min(self.neighbors)
|
|
2202
|
+
# self.neighbor_track_of_interest = first_neighbor
|
|
2203
|
+
# else:
|
|
2204
|
+
self.neighbor_track_of_interest = None
|
|
2205
|
+
|
|
2206
|
+
def identify_closest_marker(self, event):
|
|
2207
|
+
|
|
2208
|
+
ind = event.ind
|
|
2209
|
+
label = event.artist.get_label()
|
|
2210
|
+
print(f'{label=}')
|
|
2211
|
+
|
|
2212
|
+
# Identify the nature of the selected object (target/effector/pair)
|
|
2213
|
+
self.pair_selected = False
|
|
2214
|
+
if label == '_child1':
|
|
2215
|
+
self.selected_population = 'targets'
|
|
2216
|
+
elif label == '_child3':
|
|
2217
|
+
self.selected_population = 'effectors'
|
|
2218
|
+
else:
|
|
2219
|
+
number = int(label.split('_child')[1])
|
|
2220
|
+
if number>4:
|
|
2221
|
+
print('A pair is selected...')
|
|
2222
|
+
self.pair_selected = True
|
|
2223
|
+
|
|
2224
|
+
if self.selected_population=='effectors':
|
|
2225
|
+
positions = self.effector_positions
|
|
2226
|
+
elif self.selected_population=='targets':
|
|
2227
|
+
positions = self.target_positions
|
|
2228
|
+
|
|
2229
|
+
if len(ind)==1:
|
|
2230
|
+
self.index = ind[0]
|
|
2231
|
+
elif len(ind)>1:
|
|
2232
|
+
# More than one point in vicinity
|
|
2233
|
+
datax,datay = [positions[self.framedata][i,0] for i in ind],[positions[self.framedata][i,1] for i in ind]
|
|
2234
|
+
msx, msy = event.mouseevent.xdata, event.mouseevent.ydata
|
|
2235
|
+
dist = np.sqrt((np.array(datax)-msx)**2+(np.array(datay)-msy)**2)
|
|
2236
|
+
self.index = ind[np.argmin(dist)]
|
|
2237
|
+
else:
|
|
2238
|
+
self.index = None
|
|
2239
|
+
|
|
2240
|
+
|
|
2241
|
+
def show_annotation_buttons(self):
|
|
2242
|
+
|
|
2243
|
+
for a in self.annotation_btns_to_hide:
|
|
2244
|
+
a.show()
|
|
2245
|
+
|
|
2246
|
+
cclass = self.df_relative.loc[(self.df_relative['REFERENCE_ID'] == self.reference_track_of_interest)&(self.df_relative['NEIGHBOR_ID']==self.neighbor_track_of_interest)&
|
|
2247
|
+
(self.df_relative['reference_population']==self.reference_population)&(self.df_relative['neighbor_population']==self.neighbor_population)&(~self.df_relative['status_'+self.current_neighborhood].isnull()), self.pair_class_name].to_numpy()[0]
|
|
2248
|
+
t0 = self.df_relative.loc[(self.df_relative['REFERENCE_ID'] == self.reference_track_of_interest)&(self.df_relative['NEIGHBOR_ID']==self.neighbor_track_of_interest)&
|
|
2249
|
+
(self.df_relative['reference_population']==self.reference_population)&(self.df_relative['neighbor_population']==self.neighbor_population)&(~self.df_relative['status_'+self.current_neighborhood].isnull()), self.pair_time_name].to_numpy()[0]
|
|
2250
|
+
|
|
2251
|
+
if cclass == 0:
|
|
2252
|
+
self.event_btn.setChecked(True)
|
|
2253
|
+
self.time_of_interest_le.setText(str(t0))
|
|
2254
|
+
elif cclass == 1:
|
|
2255
|
+
self.no_event_btn.setChecked(True)
|
|
2256
|
+
elif cclass == 2:
|
|
2257
|
+
self.else_btn.setChecked(True)
|
|
2258
|
+
elif cclass > 2:
|
|
2259
|
+
self.suppr_btn.setChecked(True)
|
|
2260
|
+
|
|
2261
|
+
self.enable_time_of_interest()
|
|
2262
|
+
self.correct_btn.setText('submit')
|
|
2263
|
+
|
|
2264
|
+
self.correct_btn.disconnect()
|
|
2265
|
+
self.correct_btn.clicked.connect(self.apply_modification)
|
|
2266
|
+
|
|
2267
|
+
def shortcut_suppr(self):
|
|
2268
|
+
self.correct_btn.click()
|
|
2269
|
+
self.suppr_btn.click()
|
|
2270
|
+
self.correct_btn.click()
|
|
2271
|
+
|
|
2272
|
+
def shortcut_no_event(self):
|
|
2273
|
+
self.correct_btn.click()
|
|
2274
|
+
self.no_event_btn.click()
|
|
2275
|
+
self.correct_btn.click()
|
|
2276
|
+
|
|
2277
|
+
def configure_ylims(self):
|
|
2278
|
+
|
|
2279
|
+
try:
|
|
2280
|
+
min_values = []
|
|
2281
|
+
max_values = []
|
|
2282
|
+
for i in range(len(self.signal_choices)):
|
|
2283
|
+
signal = self.signal_choices[i].currentText()
|
|
2284
|
+
if signal=='--':
|
|
2285
|
+
continue
|
|
2286
|
+
else:
|
|
2287
|
+
if i==0:
|
|
2288
|
+
if self.reference_button1.isChecked():
|
|
2289
|
+
df_ref=self.dataframes[self.reference_population]
|
|
2290
|
+
maxx_target = np.nanpercentile(df_ref.loc[:,signal].to_numpy().flatten(),99)
|
|
2291
|
+
minn_target = np.nanpercentile(df_ref.loc[:,signal].to_numpy().flatten(),1)
|
|
2292
|
+
min_values.append(minn_target)
|
|
2293
|
+
max_values.append(maxx_target)
|
|
2294
|
+
if self.neighbor_button1.isChecked():
|
|
2295
|
+
df_neigh=self.dataframes[self.neighbor_population]
|
|
2296
|
+
maxx_target = np.nanpercentile(df_neigh.loc[:, signal].to_numpy().flatten(), 99)
|
|
2297
|
+
minn_target = np.nanpercentile(df_neigh.loc[:, signal].to_numpy().flatten(), 1)
|
|
2298
|
+
min_values.append(minn_target)
|
|
2299
|
+
max_values.append(maxx_target)
|
|
2300
|
+
if self.relative_button1.isChecked():
|
|
2301
|
+
maxx_relative = np.nanpercentile(self.df_relative.loc[:, signal].to_numpy().flatten(), 99)
|
|
2302
|
+
minn_relative = np.nanpercentile(self.df_relative.loc[:, signal].to_numpy().flatten(), 1)
|
|
2303
|
+
min_values.append(minn_relative)
|
|
2304
|
+
max_values.append(maxx_relative)
|
|
2305
|
+
elif i==1:
|
|
2306
|
+
if self.reference_button2.isChecked():
|
|
2307
|
+
df_ref=self.dataframes[self.reference_population]
|
|
2308
|
+
maxx_effector = np.nanpercentile(df_ref.loc[:,signal].to_numpy().flatten(),99)
|
|
2309
|
+
minn_effector = np.nanpercentile(df_ref.loc[:,signal].to_numpy().flatten(),1)
|
|
2310
|
+
min_values.append(minn_effector)
|
|
2311
|
+
max_values.append(maxx_effector)
|
|
2312
|
+
if self.neighbor_button2.isChecked():
|
|
2313
|
+
df_neigh=self.dataframes[self.neighbor_population]
|
|
2314
|
+
maxx_effector = np.nanpercentile(df_neigh.loc[:, signal].to_numpy().flatten(), 99)
|
|
2315
|
+
minn_effector = np.nanpercentile(df_neigh.loc[:, signal].to_numpy().flatten(), 1)
|
|
2316
|
+
min_values.append(minn_effector)
|
|
2317
|
+
max_values.append(maxx_effector)
|
|
2318
|
+
if self.relative_button2.isChecked():
|
|
2319
|
+
maxx_relative = np.nanpercentile(self.df_relative.loc[:, signal].to_numpy().flatten(), 99)
|
|
2320
|
+
minn_relative = np.nanpercentile(self.df_relative.loc[:, signal].to_numpy().flatten(), 1)
|
|
2321
|
+
min_values.append(minn_relative)
|
|
2322
|
+
max_values.append(maxx_relative)
|
|
2323
|
+
else:
|
|
2324
|
+
if self.reference_button3.isChecked():
|
|
2325
|
+
df_ref=self.dataframes[self.reference_population]
|
|
2326
|
+
maxx_relative = np.nanpercentile(df_ref.loc[:,signal].to_numpy().flatten(),99)
|
|
2327
|
+
minn_relative = np.nanpercentile(df_ref.loc[:,signal].to_numpy().flatten(),1)
|
|
2328
|
+
min_values.append(minn_relative)
|
|
2329
|
+
max_values.append(maxx_relative)
|
|
2330
|
+
if self.neighbor_button3.isChecked():
|
|
2331
|
+
df_neigh=self.dataframes[self.neighbor_population]
|
|
2332
|
+
|
|
2333
|
+
maxx_relative = np.nanpercentile(df_neigh.loc[:, signal].to_numpy().flatten(), 99)
|
|
2334
|
+
minn_relative = np.nanpercentile(df_neigh.loc[:, signal].to_numpy().flatten(), 1)
|
|
2335
|
+
min_values.append(minn_relative)
|
|
2336
|
+
max_values.append(maxx_relative)
|
|
2337
|
+
if self.relative_button3.isChecked():
|
|
2338
|
+
maxx_relative = np.nanpercentile(self.df_relative.loc[:, signal].to_numpy().flatten(), 99)
|
|
2339
|
+
minn_relative = np.nanpercentile(self.df_relative.loc[:, signal].to_numpy().flatten(), 1)
|
|
2340
|
+
min_values.append(minn_relative)
|
|
2341
|
+
max_values.append(maxx_relative)
|
|
2342
|
+
|
|
2343
|
+
if len(min_values)>0:
|
|
2344
|
+
self.cell_ax.set_ylim(np.amin(min_values), np.amax(max_values))
|
|
2345
|
+
except Exception as e:
|
|
2346
|
+
print(e)
|
|
2347
|
+
|
|
2348
|
+
def draw_frame(self, framedata):
|
|
2349
|
+
|
|
2350
|
+
"""
|
|
2351
|
+
Update plot elements at each timestep of the loop.
|
|
2352
|
+
"""
|
|
2353
|
+
|
|
2354
|
+
self.framedata = framedata
|
|
2355
|
+
self.frame_lbl.setText(f'frame: {self.framedata}')
|
|
2356
|
+
self.im.set_array(self.stack[self.framedata])
|
|
2357
|
+
#if self.reference_population=='targets':
|
|
2358
|
+
|
|
2359
|
+
if self.df_effectors is not None:
|
|
2360
|
+
|
|
2361
|
+
self.effector_status_scatter.set_visible(True)
|
|
2362
|
+
self.effector_status_scatter.set_picker(True)
|
|
2363
|
+
self.effector_class_scatter.set_visible(True)
|
|
2364
|
+
self.effector_status_scatter.set_offsets(self.effector_positions[self.framedata])
|
|
2365
|
+
self.effector_status_scatter.set_color(self.effector_colors[self.framedata][:, 1])
|
|
2366
|
+
self.effector_class_scatter.set_offsets(self.effector_positions[self.framedata])
|
|
2367
|
+
self.effector_class_scatter.set_edgecolor(self.effector_colors[self.framedata][:, 0])
|
|
2368
|
+
|
|
2369
|
+
if self.df_targets is not None:
|
|
2370
|
+
self.target_status_scatter.set_visible(True)
|
|
2371
|
+
self.target_status_scatter.set_picker(True)
|
|
2372
|
+
self.target_class_scatter.set_visible(True)
|
|
2373
|
+
self.target_status_scatter.set_offsets(self.target_positions[self.framedata])
|
|
2374
|
+
self.target_status_scatter.set_color(self.target_colors[self.framedata][:, 1])
|
|
2375
|
+
self.target_class_scatter.set_offsets(self.target_positions[self.framedata])
|
|
2376
|
+
self.target_class_scatter.set_edgecolor(self.target_colors[self.framedata][:, 0])
|
|
2377
|
+
|
|
2378
|
+
self.lines_list=[]
|
|
2379
|
+
|
|
2380
|
+
for key in self.lines_data:
|
|
2381
|
+
if key==self.framedata:
|
|
2382
|
+
for line in self.lines_data[key]:
|
|
2383
|
+
x_coords, y_coords = line
|
|
2384
|
+
pair=self.line_connections[x_coords[0],x_coords[1],y_coords[0],y_coords[1]]
|
|
2385
|
+
|
|
2386
|
+
this_frame=self.lines_colors_class[self.framedata]
|
|
2387
|
+
|
|
2388
|
+
try:
|
|
2389
|
+
this_pair=this_frame[(this_frame[:, 0] == pair[0][0]) & (this_frame[:, 1] == pair[0][1])]
|
|
2390
|
+
self.lines_plot=self.ax.plot(x_coords, y_coords, alpha=1, linewidth=2,color=this_pair[0][2])
|
|
2391
|
+
self.lines_list.append(self.lines_plot[0])
|
|
2392
|
+
except Exception as e:
|
|
2393
|
+
print(e)
|
|
2394
|
+
pass
|
|
2395
|
+
# Plot points
|
|
2396
|
+
try:
|
|
2397
|
+
self.points.set_offsets(self.points_data[key])
|
|
2398
|
+
colors_at_this_frame = self.lines_colors_status[self.framedata]
|
|
2399
|
+
colors = [colors_at_this_frame[(colors_at_this_frame[:, 0] == self.connections[point[0],point[1]][0][0]) & (colors_at_this_frame[:, 1] == self.connections[point[0],point[1]][0][1])][0][2] for point in self.points_data[key]]
|
|
2400
|
+
self.points.set_color(colors)
|
|
2401
|
+
except Exception as e:
|
|
2402
|
+
print(e)
|
|
2403
|
+
|
|
2404
|
+
if self.lines_list!=[]:
|
|
2405
|
+
return [self.im,self.target_status_scatter,self.target_class_scatter,self.effector_status_scatter,self.effector_class_scatter] +self.lines_list + [self.points]
|
|
2406
|
+
else:
|
|
2407
|
+
return [self.im, self.target_status_scatter, self.target_class_scatter, self.effector_status_scatter,
|
|
2408
|
+
self.effector_class_scatter,]
|
|
2409
|
+
|
|
2410
|
+
def stop(self):
|
|
2411
|
+
# # On stop we disconnect all of our events.
|
|
2412
|
+
self.stop_btn.hide()
|
|
2413
|
+
self.start_btn.show()
|
|
2414
|
+
self.anim.pause()
|
|
2415
|
+
self.stop_btn.clicked.connect(self.start)
|
|
2416
|
+
|
|
2417
|
+
|
|
2418
|
+
def start(self):
|
|
2419
|
+
'''
|
|
2420
|
+
Starts interactive animation. Adds the draw frame command to the GUI
|
|
2421
|
+
handler, calls show to start the event loop.
|
|
2422
|
+
'''
|
|
2423
|
+
self.start_btn.setShortcut(QKeySequence(""))
|
|
2424
|
+
|
|
2425
|
+
self.last_frame_btn.setEnabled(True)
|
|
2426
|
+
self.last_frame_btn.clicked.connect(self.set_last_frame)
|
|
2427
|
+
|
|
2428
|
+
self.first_frame_btn.setEnabled(True)
|
|
2429
|
+
self.first_frame_btn.clicked.connect(self.set_first_frame)
|
|
2430
|
+
|
|
2431
|
+
|
|
2432
|
+
self.start_btn.hide()
|
|
2433
|
+
self.stop_btn.show()
|
|
2434
|
+
|
|
2435
|
+
self.anim.event_source.start()
|
|
2436
|
+
self.stop_btn.clicked.connect(self.stop)
|
|
2437
|
+
|
|
2438
|
+
def give_reference_cell_information(self):
|
|
2439
|
+
|
|
2440
|
+
df_reference = self.dataframes[self.reference_population]
|
|
2441
|
+
if self.reference_track_of_interest is not None:
|
|
2442
|
+
reference_cell_selected = f"reference cell: {self.reference_track_of_interest}\n"
|
|
2443
|
+
reference_cell_population = f"population: {self.reference_population}\n"
|
|
2444
|
+
#reference_cell_class = f"class: {df_reference[df_reference['TRACK_ID']==self.reference_track_of_interest, self.reference_event_choice_cb.currentText()].values[0]}\n"
|
|
2445
|
+
#reference_cell_time = f"time of interest: {df_reference[df_reference['TRACK_ID']==self.reference_track_of_interest, ''].values[0]}\n"
|
|
2446
|
+
self.reference_cell_info.setText(reference_cell_selected+reference_cell_population)
|
|
2447
|
+
else:
|
|
2448
|
+
reference_cell_selected = f"reference cell: None\n"
|
|
2449
|
+
reference_cell_population = f"population: {self.reference_population}\n"
|
|
2450
|
+
self.reference_cell_info.setText(reference_cell_selected+reference_cell_population)
|
|
2451
|
+
|
|
2452
|
+
def give_neighbor_cell_information(self):
|
|
2453
|
+
|
|
2454
|
+
if self.neighbor_track_of_interest is not None:
|
|
2455
|
+
neighbor_cell_selected = f"neighbor cell: {self.neighbor_track_of_interest}\n"
|
|
2456
|
+
neighbor_cell_population = f"population: {self.neighbor_population}\n"
|
|
2457
|
+
#neighbor_cell_time = f"time of interest: {self.df_relative.loc[(self.df_relative['REFERENCE_ID']==self.reference_track_of_interest)&(self.df_relative['NEIGHBOR_ID']==self.neighbor_track_of_interest), self.pair_time_name].to_numpy()[0]}\n"
|
|
2458
|
+
#neighbor_cell_class = f"class: {self.df_relative.loc[(self.df_relative['REFERENCE_ID']==self.reference_track_of_interest)&(self.df_relative['NEIGHBOR_ID']==self.neighbor_track_of_interest), self.pair_class_name].to_numpy()[0]}\n"
|
|
2459
|
+
self.neighbor_cell_info.setText(neighbor_cell_selected+neighbor_cell_population) #neighbor_cell_class+neighbor_cell_time
|
|
2460
|
+
else:
|
|
2461
|
+
neighbor_cell_selected = f"neighbor cell: None\n"
|
|
2462
|
+
neighbor_cell_population = f"population: {self.neighbor_population}\n"
|
|
2463
|
+
self.neighbor_cell_info.setText(neighbor_cell_selected+neighbor_cell_population)
|
|
2464
|
+
|
|
2465
|
+
def give_pair_information(self):
|
|
2466
|
+
|
|
2467
|
+
if self.neighbor_track_of_interest is not None and self.reference_track_of_interest is not None:
|
|
2468
|
+
pair_selected = f"(reference/neighbor) pair: ({self.reference_track_of_interest},{self.neighbor_track_of_interest})\n"
|
|
2469
|
+
pair_populations = f"populations: ({self.reference_population}, {self.neighbor_population})\n"
|
|
2470
|
+
current_class = self.relative_class_choice_cb.currentText()
|
|
2471
|
+
pair_class = f"interaction event class: {self.df_relative.loc[(self.df_relative['REFERENCE_ID']==self.reference_track_of_interest)&(self.df_relative['NEIGHBOR_ID']==self.neighbor_track_of_interest)&(self.df_relative['reference_population']==self.reference_population)&(self.df_relative['neighbor_population']==self.neighbor_population)&(~self.df_relative['status_'+self.current_neighborhood].isnull()), current_class].values[0]}\n"
|
|
2472
|
+
pair_time = f"time of interest: {self.df_relative.loc[(self.df_relative['REFERENCE_ID']==self.reference_track_of_interest)&(self.df_relative['NEIGHBOR_ID']==self.neighbor_track_of_interest)&(self.df_relative['reference_population']==self.reference_population)&(self.df_relative['neighbor_population']==self.neighbor_population)&(~self.df_relative['status_'+self.current_neighborhood].isnull()), self.pair_time_name].values[0]}\n"
|
|
2473
|
+
self.pair_info.setText(pair_selected+pair_populations+pair_class+pair_time)
|
|
2474
|
+
else:
|
|
2475
|
+
pair_selected = f"(reference/neighbor) pair: None\n"
|
|
2476
|
+
pair_populations = f"populations: ({self.reference_population}, {self.neighbor_population})\n"
|
|
2477
|
+
self.pair_info.setText(pair_selected+pair_populations)
|
|
2478
|
+
|
|
2479
|
+
|
|
2480
|
+
#def hide_neighbor_cell_info(self):
|
|
2481
|
+
#neighbor_cell_selected.hide()
|
|
2482
|
+
#neighbor_cell_population.hide()
|
|
2483
|
+
|
|
2484
|
+
def hide_target_cell_info(self):
|
|
2485
|
+
|
|
2486
|
+
self.target_cell_info.setText('')
|
|
2487
|
+
|
|
2488
|
+
# def give_effector_cell_information(self):
|
|
2489
|
+
# self.effector_cell_info.setSpacing(0)
|
|
2490
|
+
# self.effector_cell_info.setContentsMargins(0, 20, 0, 30)
|
|
2491
|
+
# self.neigh_eff_combo=QComboBox()
|
|
2492
|
+
# #self.neighb_eff_combo.addItems(self.df_relative.loc[(self.df_relative['target']==self.target_track_of_interest),'effecor'])
|
|
2493
|
+
# neighs=self.df_relative.loc[(self.df_relative['REFERENCE_ID']==self.target_track_of_interest),'NEIGHBOR_ID'].to_numpy()
|
|
2494
|
+
# neighs=np.unique(neighs)
|
|
2495
|
+
# for effector in neighs:
|
|
2496
|
+
# self.neigh_eff_combo.addItem(str(effector))
|
|
2497
|
+
# if self.effector_track_of_interest not in neighs:
|
|
2498
|
+
# self.neigh_eff_combo.addItem(str(self.effector_track_of_interest))
|
|
2499
|
+
# self.neigh_eff_combo.setCurrentText(str(self.effector_track_of_interest))
|
|
2500
|
+
# self.eff_cell_sel=QHBoxLayout()
|
|
2501
|
+
# #effector_cell_selected = f"effector cell: {self.effector_track_of_interest}"
|
|
2502
|
+
# self.effector_cell_selected = f"effector cell: "
|
|
2503
|
+
# self.eff_cell = QLabel(self.effector_cell_selected)
|
|
2504
|
+
# # self.eff_cell_sel.removeWidget(self.eff_cell)
|
|
2505
|
+
# # self.eff_cell_sel.removeWidget(self.neigh_eff_combo)
|
|
2506
|
+
# self.eff_cell_sel.addWidget(self.eff_cell)
|
|
2507
|
+
# self.eff_cell_sel.addWidget(self.neigh_eff_combo, alignment=Qt.AlignLeft)
|
|
2508
|
+
# try:
|
|
2509
|
+
# self.effector_cell_class = f"class: {self.df_effectors.loc[self.df_effectors['TRACK_ID']==self.effector_track_of_interest, self.effector_class_name].to_numpy()[0]}"
|
|
2510
|
+
# except:
|
|
2511
|
+
# self.effector_cell_class = f"class: {self.df_effectors.loc[self.df_effectors['ID'] == self.effector_track_of_interest, self.effector_class_name].to_numpy()[0]}"
|
|
2512
|
+
|
|
2513
|
+
# self.eff_cls = QLabel(self.effector_cell_class)
|
|
2514
|
+
# try:
|
|
2515
|
+
# self.effector_cell_time = f"time of interest: {self.df_effectors.loc[self.df_effectors['TRACK_ID']==self.effector_track_of_interest, self.effector_time_name].to_numpy()[0]}"
|
|
2516
|
+
# except:
|
|
2517
|
+
# self.effector_cell_time = f"time of interest: {self.df_effectors.loc[self.df_effectors['ID']==self.effector_track_of_interest, self.effector_time_name].to_numpy()[0]}"
|
|
2518
|
+
|
|
2519
|
+
# self.eff_tm=QLabel(self.effector_cell_time)
|
|
2520
|
+
# # try:
|
|
2521
|
+
# # self.effector_probabilty = f"probability: {self.df_relative.loc[(self.df_relative['REFERENCE_ID']==self.target_track_of_interest)&(self.df_relative['NEIGHBOR_ID']==self.effector_track_of_interest),'probability'].to_numpy()[0]}"
|
|
2522
|
+
# # except:
|
|
2523
|
+
# # self.effector_probabilty=f"probability: 0"
|
|
2524
|
+
# # self.eff_prb=QLabel(self.effector_probabilty)
|
|
2525
|
+
# #self.effector_cell_info.setText(effector_cell_selected+effector_cell_class+effector_cell_time+effector_probabilty)
|
|
2526
|
+
# # self.effector_cell_info.removeWidget(self.eff_cls)
|
|
2527
|
+
# # self.effector_cell_info.removeWidget(self.eff_tm)
|
|
2528
|
+
# # self.effector_cell_info.removeWidget(self.eff_prb)
|
|
2529
|
+
# self.effector_cell_info.addLayout(self.eff_cell_sel)
|
|
2530
|
+
# self.effector_cell_info.addWidget(self.eff_cls)
|
|
2531
|
+
# self.effector_cell_info.addWidget(self.eff_tm)
|
|
2532
|
+
# #self.effector_cell_info.addWidget(self.eff_prb)
|
|
2533
|
+
# self.neigh_eff_combo.currentIndexChanged.connect(self.update_effector_info)
|
|
2534
|
+
# self.eff_info_to_hide=[self.eff_cell,self.neigh_eff_combo,self.eff_cls,self.eff_tm]#self.eff_prb
|
|
2535
|
+
|
|
2536
|
+
|
|
2537
|
+
# def hide_effector_cell_info(self):
|
|
2538
|
+
# self.eff_cls.clear()
|
|
2539
|
+
# self.eff_tm.clear()
|
|
2540
|
+
# #self.eff_prb.clear()
|
|
2541
|
+
|
|
2542
|
+
# for info in self.eff_info_to_hide:
|
|
2543
|
+
# info.hide()
|
|
2544
|
+
|
|
2545
|
+
|
|
2546
|
+
def save_trajectories(self):
|
|
2547
|
+
|
|
2548
|
+
if self.normalized_signals:
|
|
2549
|
+
self.normalize_features_btn.click()
|
|
2550
|
+
self.cancel_selection()
|
|
2551
|
+
|
|
2552
|
+
self.relative_class_name = self.relative_class_choice_cb.currentText()
|
|
2553
|
+
self.df_relative = self.df_relative.drop(self.df_relative[self.df_relative[self.relative_class_name]>2].index)
|
|
2554
|
+
self.df_relative.to_csv(self.relative_trajectories_path, index=False)
|
|
2555
|
+
print('relative table saved.')
|
|
2556
|
+
|
|
2557
|
+
|
|
2558
|
+
def set_last_frame(self):
|
|
2559
|
+
|
|
2560
|
+
self.last_frame_btn.setEnabled(False)
|
|
2561
|
+
self.last_frame_btn.disconnect()
|
|
2562
|
+
|
|
2563
|
+
self.last_key = len(self.stack) - 1
|
|
2564
|
+
while len(np.where(self.stack[self.last_key].flatten()==0)[0]) > 0.99*len(self.stack[self.last_key].flatten()):
|
|
2565
|
+
self.last_key -= 1
|
|
2566
|
+
print(f'Last frame is {len(self.stack) - 1}; last not black is {self.last_key}')
|
|
2567
|
+
self.anim._drawn_artists = self.draw_frame(self.last_key)
|
|
2568
|
+
self.anim._drawn_artists = sorted(self.anim._drawn_artists, key=lambda x: x.get_zorder())
|
|
2569
|
+
for a in self.anim._drawn_artists:
|
|
2570
|
+
a.set_visible(True)
|
|
2571
|
+
|
|
2572
|
+
self.fig.canvas.draw()
|
|
2573
|
+
self.anim.event_source.stop()
|
|
2574
|
+
|
|
2575
|
+
#self.cell_plot.draw()
|
|
2576
|
+
self.stop_btn.hide()
|
|
2577
|
+
self.start_btn.show()
|
|
2578
|
+
self.stop_btn.clicked.connect(self.start)
|
|
2579
|
+
self.start_btn.setShortcut(QKeySequence("l"))
|
|
2580
|
+
|
|
2581
|
+
def set_first_frame(self):
|
|
2582
|
+
|
|
2583
|
+
self.first_frame_btn.setEnabled(False)
|
|
2584
|
+
self.first_frame_btn.disconnect()
|
|
2585
|
+
|
|
2586
|
+
self.first_key = 0
|
|
2587
|
+
print(f'First frame is {0}')
|
|
2588
|
+
self.anim._drawn_artists = self.draw_frame(0)
|
|
2589
|
+
self.anim._drawn_artists = sorted(self.anim._drawn_artists, key=lambda x: x.get_zorder())
|
|
2590
|
+
for a in self.anim._drawn_artists:
|
|
2591
|
+
a.set_visible(True)
|
|
2592
|
+
|
|
2593
|
+
self.fig.canvas.draw()
|
|
2594
|
+
self.anim.event_source.stop()
|
|
2595
|
+
|
|
2596
|
+
#self.cell_plot.draw()
|
|
2597
|
+
self.stop_btn.hide()
|
|
2598
|
+
self.start_btn.show()
|
|
2599
|
+
self.stop_btn.clicked.connect(self.start)
|
|
2600
|
+
self.start_btn.setShortcut(QKeySequence("f"))
|
|
2601
|
+
|
|
2602
|
+
def export_signals(self):
|
|
2603
|
+
|
|
2604
|
+
auto_dataset_name = self.pos.split(os.sep)[-4] + '_' + self.pos.split(os.sep)[-2] + '.npy'
|
|
2605
|
+
|
|
2606
|
+
if self.normalized_signals:
|
|
2607
|
+
self.normalize_features_btn.click()
|
|
2608
|
+
|
|
2609
|
+
training_set = []
|
|
2610
|
+
|
|
2611
|
+
pair_filter = (self.df_relative['reference_population']==self.reference_population)&(self.df_relative['neighbor_population']==self.neighbor_population)&(~self.df_relative['status_'+self.current_neighborhood].isnull())
|
|
2612
|
+
|
|
2613
|
+
for pair, group in self.df_relative.loc[pair_filter, :].groupby(['REFERENCE_ID', 'NEIGHBOR_ID']):
|
|
2614
|
+
|
|
2615
|
+
signals = {}
|
|
2616
|
+
|
|
2617
|
+
time_of_interest = group[self.pair_time_name].values[0]
|
|
2618
|
+
cclass = group[self.pair_class_name].values[0]
|
|
2619
|
+
signals.update({"time_of_interest": time_of_interest, "class": cclass, "neighborhood_of_interest": self.current_neighborhood, 'reference_population': self.reference_population, 'neighbor_population': self.neighbor_population})
|
|
2620
|
+
|
|
2621
|
+
# Pair signals
|
|
2622
|
+
reference_cell = pair[0]; neighbor_cell = pair[1]
|
|
2623
|
+
for col in list(group.columns):
|
|
2624
|
+
if is_numeric_dtype(group[col]):
|
|
2625
|
+
signals.update({'pair_'+col: group[col].to_numpy()})
|
|
2626
|
+
|
|
2627
|
+
# Reference signals
|
|
2628
|
+
df_reference = self.dataframes[self.reference_population]
|
|
2629
|
+
reference_filter = df_reference['TRACK_ID']==reference_cell
|
|
2630
|
+
for col in list(df_reference.columns):
|
|
2631
|
+
if not col.startswith('neighborhood') and is_numeric_dtype(df_reference.loc[reference_filter, col]):
|
|
2632
|
+
signals.update({'reference_'+col: df_reference.loc[reference_filter, col].to_numpy()})
|
|
2633
|
+
|
|
2634
|
+
# Reference signals
|
|
2635
|
+
df_neighbor = self.dataframes[self.neighbor_population]
|
|
2636
|
+
neighbor_filter = df_neighbor['TRACK_ID']==neighbor_cell
|
|
2637
|
+
for col in list(df_neighbor.columns):
|
|
2638
|
+
if not col.startswith('neighborhood') and is_numeric_dtype(df_neighbor.loc[neighbor_filter, col]):
|
|
2639
|
+
signals.update({'neighbor_'+col: df_neighbor.loc[neighbor_filter, col].to_numpy()})
|
|
2640
|
+
|
|
2641
|
+
training_set.append(signals)
|
|
2642
|
+
|
|
2643
|
+
pathsave = QFileDialog.getSaveFileName(self, "Select file name", self.exp_dir + auto_dataset_name, ".npy")[0]
|
|
2644
|
+
if pathsave != '':
|
|
2645
|
+
if not pathsave.endswith(".npy"):
|
|
2646
|
+
pathsave += ".npy"
|
|
2647
|
+
try:
|
|
2648
|
+
np.save(pathsave, training_set)
|
|
2649
|
+
print(f'File successfully written in {pathsave}.')
|
|
2650
|
+
except Exception as e:
|
|
2651
|
+
print(f"Error {e}...")
|
|
2652
|
+
|
|
2653
|
+
def normalize_features(self):
|
|
2654
|
+
|
|
2655
|
+
if self.df_effectors is not None:
|
|
2656
|
+
x_effectors = self.df_effectors[self.effector_columns].values
|
|
2657
|
+
if self.df_targets is not None:
|
|
2658
|
+
x_targets = self.df_targets[self.target_columns].values
|
|
2659
|
+
if self.df_relative is not None:
|
|
2660
|
+
x_pairs = self.df_relative[self.pair_columns].values
|
|
2661
|
+
|
|
2662
|
+
if not self.normalized_signals:
|
|
2663
|
+
|
|
2664
|
+
if self.df_effectors is not None:
|
|
2665
|
+
self.df_effectors[self.effector_columns] = self.MinMaxScaler_effectors.transform(x_effectors)
|
|
2666
|
+
if self.df_targets is not None:
|
|
2667
|
+
self.df_targets[self.target_columns] = self.MinMaxScaler_targets.transform(x_targets)
|
|
2668
|
+
if self.df_relative is not None:
|
|
2669
|
+
self.df_relative[self.pair_columns] = self.MinMaxScaler_pairs.transform(x_pairs)
|
|
2670
|
+
|
|
2671
|
+
self.plot_signals()
|
|
2672
|
+
self.normalized_signals = True
|
|
2673
|
+
self.normalize_features_btn.setIcon(icon(MDI6.arrow_collapse_vertical, color="#1565c0"))
|
|
2674
|
+
self.normalize_features_btn.setIconSize(QSize(25, 25))
|
|
2675
|
+
else:
|
|
2676
|
+
|
|
2677
|
+
if self.df_effectors is not None:
|
|
2678
|
+
self.df_effectors[self.effector_columns] = self.MinMaxScaler_effectors.inverse_transform(x_effectors)
|
|
2679
|
+
if self.df_targets is not None:
|
|
2680
|
+
self.df_targets[self.target_columns] = self.MinMaxScaler_targets.inverse_transform(x_targets)
|
|
2681
|
+
if self.df_relative is not None:
|
|
2682
|
+
self.df_relative[self.pair_columns] = self.MinMaxScaler_pairs.inverse_transform(x_pairs)
|
|
2683
|
+
|
|
2684
|
+
self.plot_signals()
|
|
2685
|
+
self.normalized_signals = False
|
|
2686
|
+
self.normalize_features_btn.setIcon(icon(MDI6.arrow_collapse_vertical, color="black"))
|
|
2687
|
+
self.normalize_features_btn.setIconSize(QSize(25, 25))
|
|
2688
|
+
|
|
2689
|
+
def switch_to_log(self):
|
|
2690
|
+
|
|
2691
|
+
"""
|
|
2692
|
+
Better would be to create a log(quantity) and plot it...
|
|
2693
|
+
"""
|
|
2694
|
+
|
|
2695
|
+
try:
|
|
2696
|
+
if self.cell_ax.get_yscale()=='linear':
|
|
2697
|
+
ymin,ymax = self.cell_ax.get_ylim()
|
|
2698
|
+
self.cell_ax.set_yscale('log')
|
|
2699
|
+
self.log_btn.setIcon(icon(MDI6.math_log,color="#1565c0"))
|
|
2700
|
+
self.cell_ax.set_ylim(self.value_magnitude, ymax)
|
|
2701
|
+
else:
|
|
2702
|
+
self.cell_ax.set_yscale('linear')
|
|
2703
|
+
self.log_btn.setIcon(icon(MDI6.math_log,color="black"))
|
|
2704
|
+
except Exception as e:
|
|
2705
|
+
print(e)
|
|
2706
|
+
|
|
2707
|
+
#self.cell_ax.autoscale()
|
|
2708
|
+
self.cell_fcanvas.canvas.draw_idle()
|