cellarr-array 0.1.0__py3-none-any.whl → 0.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of cellarr-array might be problematic. Click here for more details.
- cellarr_array/__init__.py +2 -4
- cellarr_array/core/__init__.py +3 -0
- cellarr_array/{cellarray_base.py → core/base.py} +1 -1
- cellarr_array/{cellarray_dense.py → core/dense.py} +2 -3
- cellarr_array/{helpers.py → core/helpers.py} +77 -43
- cellarr_array/{cellarray_sparse.py → core/sparse.py} +11 -16
- cellarr_array/dataloaders/__init__.py +3 -0
- cellarr_array/dataloaders/denseloader.py +198 -0
- cellarr_array/dataloaders/iterabledataloader.py +320 -0
- cellarr_array/dataloaders/sparseloader.py +230 -0
- cellarr_array/dataloaders/utils.py +26 -0
- cellarr_array/utils/__init__.py +3 -0
- cellarr_array/utils/mock.py +167 -0
- {cellarr_array-0.1.0.dist-info → cellarr_array-0.2.0.dist-info}/METADATA +4 -1
- cellarr_array-0.2.0.dist-info/RECORD +19 -0
- {cellarr_array-0.1.0.dist-info → cellarr_array-0.2.0.dist-info}/WHEEL +1 -1
- cellarr_array-0.1.0.dist-info/RECORD +0 -11
- /cellarr_array/{config.py → utils/config.py} +0 -0
- {cellarr_array-0.1.0.dist-info → cellarr_array-0.2.0.dist-info}/licenses/LICENSE.txt +0 -0
- {cellarr_array-0.1.0.dist-info → cellarr_array-0.2.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,320 @@
|
|
|
1
|
+
from typing import Callable, Dict, Iterator, Optional, Union
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import scipy.sparse as sp
|
|
5
|
+
import tiledb
|
|
6
|
+
import torch
|
|
7
|
+
from torch.utils.data import DataLoader, IterableDataset
|
|
8
|
+
|
|
9
|
+
from .utils import seed_worker
|
|
10
|
+
|
|
11
|
+
__author__ = "Jayaram Kancherla"
|
|
12
|
+
__copyright__ = "Jayaram Kancherla"
|
|
13
|
+
__license__ = "MIT"
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class CellArrayIterableDataset(IterableDataset):
|
|
17
|
+
"""A PyTorch IterableDataset that yields batches of randomly sampled rows
|
|
18
|
+
from a TileDB array (dense or sparse) using cellarr-array.
|
|
19
|
+
|
|
20
|
+
An `IterableDataset` dataset is responsible for yielding entire batches of data,
|
|
21
|
+
giving us full control over how a batch is formed, including
|
|
22
|
+
performing a single bulk read from TileDB.
|
|
23
|
+
"""
|
|
24
|
+
|
|
25
|
+
def __init__(
|
|
26
|
+
self,
|
|
27
|
+
array_uri: str,
|
|
28
|
+
attribute_name: str,
|
|
29
|
+
num_rows: int,
|
|
30
|
+
num_columns: int,
|
|
31
|
+
is_sparse: bool,
|
|
32
|
+
batch_size: int = 1000,
|
|
33
|
+
num_yields_per_epoch_per_worker: Optional[int] = None,
|
|
34
|
+
cellarr_ctx_config: Optional[Dict] = None,
|
|
35
|
+
transform: Optional[Callable] = None,
|
|
36
|
+
):
|
|
37
|
+
"""Initializes the `CellArrayIterableDataset`.
|
|
38
|
+
|
|
39
|
+
Args:
|
|
40
|
+
array_uri:
|
|
41
|
+
URI of the TileDB array.
|
|
42
|
+
|
|
43
|
+
attribute_name:
|
|
44
|
+
Name of the TileDB attribute to read.
|
|
45
|
+
|
|
46
|
+
num_rows:
|
|
47
|
+
The total number of rows in the TileDB array.
|
|
48
|
+
|
|
49
|
+
num_columns:
|
|
50
|
+
The total number of columns in the TileDB array.
|
|
51
|
+
|
|
52
|
+
is_sparse:
|
|
53
|
+
True if the TileDB array is sparse, False if dense.
|
|
54
|
+
|
|
55
|
+
batch_size:
|
|
56
|
+
The number of random samples to include in each yielded batch. Defaults to 1000.
|
|
57
|
+
|
|
58
|
+
num_yields_per_epoch_per_worker:
|
|
59
|
+
The number of batches this dataset's iterator (per worker) will yield in one epoch.
|
|
60
|
+
If None, it defaults to roughly covering all samples once across all workers (approx).
|
|
61
|
+
The total batches seen by the training loop will be `num_workers * num_yields_per_epoch_per_worker`.
|
|
62
|
+
Defaults to None.
|
|
63
|
+
|
|
64
|
+
cellarr_ctx_config:
|
|
65
|
+
Configuration dictionary for the TileDB context used by cellarr-array. Defaults to None.
|
|
66
|
+
|
|
67
|
+
transform:
|
|
68
|
+
A function/transform that takes the entire fetched batch (NumPy array for dense,
|
|
69
|
+
SciPy sparse matrix for sparse) and returns a transformed version. Defaults to None.
|
|
70
|
+
"""
|
|
71
|
+
super().__init__()
|
|
72
|
+
|
|
73
|
+
if not isinstance(batch_size, int) or batch_size <= 0:
|
|
74
|
+
raise ValueError("batch_size must be a positive integer.")
|
|
75
|
+
|
|
76
|
+
if not isinstance(num_rows, int) or num_rows < 0:
|
|
77
|
+
raise ValueError("num_rows must be a non-negative integer.")
|
|
78
|
+
|
|
79
|
+
if not isinstance(num_columns, int) or num_columns <= 0:
|
|
80
|
+
raise ValueError("num_columns must be a positive integer.")
|
|
81
|
+
|
|
82
|
+
self.array_uri = array_uri
|
|
83
|
+
self.attribute_name = attribute_name
|
|
84
|
+
self.num_rows = num_rows
|
|
85
|
+
self.num_columns = num_columns
|
|
86
|
+
self.is_sparse = is_sparse
|
|
87
|
+
self.batch_size = batch_size
|
|
88
|
+
self.cellarr_ctx_config = cellarr_ctx_config
|
|
89
|
+
self.transform = transform
|
|
90
|
+
|
|
91
|
+
if num_yields_per_epoch_per_worker is None:
|
|
92
|
+
# Default to roughly one pass over the data across all workers
|
|
93
|
+
self.num_yields_per_epoch_per_worker = self.num_rows // self.batch_size
|
|
94
|
+
if self.num_yields_per_epoch_per_worker == 0 and self.num_rows > 0:
|
|
95
|
+
self.num_yields_per_epoch_per_worker = 1
|
|
96
|
+
else:
|
|
97
|
+
self.num_yields_per_epoch_per_worker = num_yields_per_epoch_per_worker
|
|
98
|
+
|
|
99
|
+
self.cell_array_instance = None
|
|
100
|
+
|
|
101
|
+
def _init_worker_state(self) -> None:
|
|
102
|
+
"""Initializes the cellarr-array instance (DenseCellArray or SparseCellArray)
|
|
103
|
+
for the current worker process.
|
|
104
|
+
|
|
105
|
+
This makes sure that each worker has its own TileDB array object.
|
|
106
|
+
"""
|
|
107
|
+
if self.cell_array_instance is None:
|
|
108
|
+
worker_info = torch.utils.data.get_worker_info()
|
|
109
|
+
worker_id = worker_info.id if worker_info else "Main"
|
|
110
|
+
print(f"Worker {worker_id}: Initializing CellArray instance.")
|
|
111
|
+
|
|
112
|
+
ctx = tiledb.Ctx(self.cellarr_ctx_config) if self.cellarr_ctx_config else None
|
|
113
|
+
if self.is_sparse:
|
|
114
|
+
from cellarr_array import SparseCellArray
|
|
115
|
+
|
|
116
|
+
self.cell_array_instance = SparseCellArray(
|
|
117
|
+
uri=self.array_uri,
|
|
118
|
+
attr=self.attribute_name,
|
|
119
|
+
mode="r",
|
|
120
|
+
config_or_context=ctx,
|
|
121
|
+
return_sparse=True,
|
|
122
|
+
sparse_coerce=sp.coo_matrix,
|
|
123
|
+
)
|
|
124
|
+
else:
|
|
125
|
+
from cellarr_array import DenseCellArray
|
|
126
|
+
|
|
127
|
+
self.cell_array_instance = DenseCellArray(
|
|
128
|
+
uri=self.array_uri, attr=self.attribute_name, mode="r", config_or_context=ctx
|
|
129
|
+
)
|
|
130
|
+
|
|
131
|
+
def _fetch_one_random_batch(self) -> Union[np.ndarray, sp.spmatrix]:
|
|
132
|
+
"""Randomly selects `self.batch_size` row indices and fetches them from
|
|
133
|
+
the TileDB array in a single multi-index read operation.
|
|
134
|
+
|
|
135
|
+
Returns:
|
|
136
|
+
A NumPy array (for dense) or SciPy sparse matrix (for sparse)
|
|
137
|
+
representing the fetched batch of data. The shape will be
|
|
138
|
+
(N, self.num_columns), where N is the number of successfully fetched rows
|
|
139
|
+
(usually self.batch_size, but could be less if num_rows < self.batch_size).
|
|
140
|
+
"""
|
|
141
|
+
if self.num_rows == 0:
|
|
142
|
+
if self.is_sparse:
|
|
143
|
+
return sp.coo_matrix((0, self.num_columns), dtype=np.float32)
|
|
144
|
+
else:
|
|
145
|
+
return np.empty((0, self.num_columns), dtype=np.float32)
|
|
146
|
+
|
|
147
|
+
actual_batch_size = min(self.batch_size, self.num_rows)
|
|
148
|
+
if actual_batch_size == 0:
|
|
149
|
+
if self.is_sparse:
|
|
150
|
+
return sp.coo_matrix((0, self.num_columns), dtype=np.float32)
|
|
151
|
+
else:
|
|
152
|
+
return np.empty((0, self.num_columns), dtype=np.float32)
|
|
153
|
+
|
|
154
|
+
random_indices = np.random.choice(
|
|
155
|
+
self.num_rows,
|
|
156
|
+
size=actual_batch_size,
|
|
157
|
+
replace=False,
|
|
158
|
+
)
|
|
159
|
+
|
|
160
|
+
random_indices.sort()
|
|
161
|
+
batch_slice_key = (list(random_indices), slice(None))
|
|
162
|
+
data_chunk = self.cell_array_instance[batch_slice_key]
|
|
163
|
+
|
|
164
|
+
return data_chunk
|
|
165
|
+
|
|
166
|
+
def __iter__(self) -> Iterator[Union[np.ndarray, sp.spmatrix]]:
|
|
167
|
+
"""Yields batches of randomly sampled data.
|
|
168
|
+
|
|
169
|
+
This method is called by the DataLoader for each worker.
|
|
170
|
+
"""
|
|
171
|
+
self._init_worker_state()
|
|
172
|
+
|
|
173
|
+
for _ in range(self.num_yields_per_epoch_per_worker):
|
|
174
|
+
if self.num_rows == 0:
|
|
175
|
+
if self.is_sparse:
|
|
176
|
+
yield sp.coo_matrix((0, self.num_columns), dtype=np.float32)
|
|
177
|
+
else:
|
|
178
|
+
yield np.empty((0, self.num_columns), dtype=np.float32)
|
|
179
|
+
|
|
180
|
+
break
|
|
181
|
+
|
|
182
|
+
batch_data = self._fetch_one_random_batch()
|
|
183
|
+
|
|
184
|
+
if self.transform:
|
|
185
|
+
batch_data = self.transform(batch_data)
|
|
186
|
+
yield batch_data
|
|
187
|
+
|
|
188
|
+
|
|
189
|
+
def dense_batch_collate_fn(numpy_batch: np.ndarray) -> torch.Tensor:
|
|
190
|
+
"""Collate function for a dense batch from CellArrayIterableDataset.
|
|
191
|
+
|
|
192
|
+
Receives the numpy_batch directly from the dataset's iterator.
|
|
193
|
+
"""
|
|
194
|
+
if numpy_batch is None or (hasattr(numpy_batch, "shape") and numpy_batch.shape[0] == 0):
|
|
195
|
+
print("CollateFn (Dense): Received batch_item that is None or has 0 rows.")
|
|
196
|
+
if numpy_batch is not None:
|
|
197
|
+
return torch.from_numpy(numpy_batch)
|
|
198
|
+
return torch.empty(0)
|
|
199
|
+
|
|
200
|
+
return torch.from_numpy(numpy_batch)
|
|
201
|
+
|
|
202
|
+
|
|
203
|
+
def sparse_batch_collate_fn(scipy_sparse_batch: sp.spmatrix) -> torch.Tensor:
|
|
204
|
+
"""Collate function for a sparse batch from CellArrayIterableDataset.
|
|
205
|
+
|
|
206
|
+
Receives the scipy_sparse_batch directly from the dataset's iterator.
|
|
207
|
+
"""
|
|
208
|
+
if scipy_sparse_batch is None or (hasattr(scipy_sparse_batch, "shape") and scipy_sparse_batch.shape[0] == 0):
|
|
209
|
+
print("CollateFn (Sparse): Received batch_item that is None or has 0 rows.")
|
|
210
|
+
num_cols = 0
|
|
211
|
+
dtype_to_use = torch.float32
|
|
212
|
+
if scipy_sparse_batch is not None:
|
|
213
|
+
num_cols = scipy_sparse_batch.shape[1]
|
|
214
|
+
try:
|
|
215
|
+
dtype_to_use = torch.from_numpy(scipy_sparse_batch.data[:0]).dtype
|
|
216
|
+
except (AttributeError, TypeError):
|
|
217
|
+
try:
|
|
218
|
+
if hasattr(scipy_sparse_batch, "dtype"):
|
|
219
|
+
if scipy_sparse_batch.dtype == np.float32:
|
|
220
|
+
dtype_to_use = torch.float32
|
|
221
|
+
elif scipy_sparse_batch.dtype == np.float64:
|
|
222
|
+
dtype_to_use = torch.float64
|
|
223
|
+
elif scipy_sparse_batch.dtype == np.int32:
|
|
224
|
+
dtype_to_use = torch.int32
|
|
225
|
+
except Exception:
|
|
226
|
+
pass
|
|
227
|
+
|
|
228
|
+
return torch.sparse_coo_tensor(
|
|
229
|
+
torch.empty((2, 0), dtype=torch.long),
|
|
230
|
+
torch.empty(0, dtype=dtype_to_use),
|
|
231
|
+
(0, num_cols),
|
|
232
|
+
)
|
|
233
|
+
|
|
234
|
+
if not isinstance(scipy_sparse_batch, sp.coo_matrix):
|
|
235
|
+
scipy_sparse_batch = scipy_sparse_batch.tocoo()
|
|
236
|
+
|
|
237
|
+
if scipy_sparse_batch.nnz == 0:
|
|
238
|
+
return torch.sparse_coo_tensor(
|
|
239
|
+
torch.empty((2, 0), dtype=torch.long),
|
|
240
|
+
torch.empty(0, dtype=torch.from_numpy(scipy_sparse_batch.data[:0]).dtype),
|
|
241
|
+
torch.Size(scipy_sparse_batch.shape),
|
|
242
|
+
)
|
|
243
|
+
|
|
244
|
+
values = torch.from_numpy(scipy_sparse_batch.data)
|
|
245
|
+
indices = torch.from_numpy(np.vstack((scipy_sparse_batch.row, scipy_sparse_batch.col))).long()
|
|
246
|
+
sparse_shape = torch.Size(scipy_sparse_batch.shape)
|
|
247
|
+
|
|
248
|
+
return torch.sparse_coo_tensor(indices, values, sparse_shape)
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
def construct_iterable_dataloader(
|
|
252
|
+
array_uri: str,
|
|
253
|
+
is_sparse: bool,
|
|
254
|
+
attribute_name: str = "data",
|
|
255
|
+
num_rows: int = None,
|
|
256
|
+
num_columns: int = None,
|
|
257
|
+
batch_size: int = 1000,
|
|
258
|
+
num_workers_dl: int = 2,
|
|
259
|
+
num_yields_per_worker: int = 5,
|
|
260
|
+
) -> DataLoader:
|
|
261
|
+
"""Construct an instance of `CellArrayIterableDataset` with PyTorch DataLoader.
|
|
262
|
+
|
|
263
|
+
Args:
|
|
264
|
+
array_uri:
|
|
265
|
+
URI of the TileDB array.
|
|
266
|
+
|
|
267
|
+
attribute_name:
|
|
268
|
+
Name of the attribute to read from.
|
|
269
|
+
|
|
270
|
+
num_rows:
|
|
271
|
+
The total number of rows in the TileDB array.
|
|
272
|
+
|
|
273
|
+
num_columns:
|
|
274
|
+
The total number of columns in the TileDB array.
|
|
275
|
+
|
|
276
|
+
is_sparse:
|
|
277
|
+
True if the array is sparse, False for dense.
|
|
278
|
+
|
|
279
|
+
batch_size:
|
|
280
|
+
Number of random samples per batch generated by the dataset.
|
|
281
|
+
|
|
282
|
+
num_workers_dl:
|
|
283
|
+
Number of worker processes for the DataLoader.
|
|
284
|
+
|
|
285
|
+
num_yields_per_worker:
|
|
286
|
+
Number of batches each worker should yield per epoch.
|
|
287
|
+
"""
|
|
288
|
+
tiledb_ctx_config = {
|
|
289
|
+
"sm.tile_cache_size": 2000 * 1024**2, # 2000MB tile cache
|
|
290
|
+
"sm.num_reader_threads": 4,
|
|
291
|
+
}
|
|
292
|
+
|
|
293
|
+
if num_rows is None or num_columns is None:
|
|
294
|
+
raise ValueError("num_rows and num_columns must be provided for CellArrayIterableDataset.")
|
|
295
|
+
|
|
296
|
+
dataset = CellArrayIterableDataset(
|
|
297
|
+
array_uri=array_uri,
|
|
298
|
+
attribute_name=attribute_name,
|
|
299
|
+
num_rows=num_rows,
|
|
300
|
+
num_columns=num_columns,
|
|
301
|
+
is_sparse=is_sparse,
|
|
302
|
+
batch_size=batch_size,
|
|
303
|
+
num_yields_per_epoch_per_worker=num_yields_per_worker,
|
|
304
|
+
cellarr_ctx_config=tiledb_ctx_config,
|
|
305
|
+
)
|
|
306
|
+
|
|
307
|
+
collate_to_use = sparse_batch_collate_fn if is_sparse else dense_batch_collate_fn
|
|
308
|
+
|
|
309
|
+
dataloader = DataLoader(
|
|
310
|
+
dataset,
|
|
311
|
+
batch_size=None,
|
|
312
|
+
num_workers=num_workers_dl,
|
|
313
|
+
worker_init_fn=seed_worker,
|
|
314
|
+
collate_fn=collate_to_use,
|
|
315
|
+
pin_memory=not is_sparse and torch.cuda.is_available() and num_workers_dl > 0,
|
|
316
|
+
persistent_workers=True if num_workers_dl > 0 else False,
|
|
317
|
+
prefetch_factor=2 if num_workers_dl > 0 else None,
|
|
318
|
+
)
|
|
319
|
+
|
|
320
|
+
return dataloader
|
|
@@ -0,0 +1,230 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
from warnings import warn
|
|
3
|
+
|
|
4
|
+
import scipy.sparse as sp
|
|
5
|
+
import tiledb
|
|
6
|
+
import torch
|
|
7
|
+
from torch.utils.data import DataLoader, Dataset
|
|
8
|
+
|
|
9
|
+
from ..core.sparse import SparseCellArray
|
|
10
|
+
|
|
11
|
+
__author__ = "Jayaram Kancherla"
|
|
12
|
+
__copyright__ = "Jayaram Kancherla"
|
|
13
|
+
__license__ = "MIT"
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class SparseArrayDataset(Dataset):
|
|
17
|
+
def __init__(
|
|
18
|
+
self,
|
|
19
|
+
array_uri: str,
|
|
20
|
+
attribute_name: str = "data",
|
|
21
|
+
num_rows: Optional[int] = None,
|
|
22
|
+
num_columns: Optional[int] = None,
|
|
23
|
+
sparse_format=sp.csr_matrix,
|
|
24
|
+
cellarr_ctx_config: Optional[dict] = None,
|
|
25
|
+
transform=None,
|
|
26
|
+
):
|
|
27
|
+
"""PyTorch Dataset for sparse TileDB arrays accessed via SparseCellArray.
|
|
28
|
+
|
|
29
|
+
Args:
|
|
30
|
+
array_uri:
|
|
31
|
+
URI of the TileDB sparse array.
|
|
32
|
+
|
|
33
|
+
attribute_name:
|
|
34
|
+
Name of the attribute to read from.
|
|
35
|
+
|
|
36
|
+
num_rows:
|
|
37
|
+
Total number of rows in the dataset.
|
|
38
|
+
If None, will infer from `array.shape[0]`.
|
|
39
|
+
|
|
40
|
+
num_columns:
|
|
41
|
+
The number of columns in the dataset.
|
|
42
|
+
If None, will attempt to infer `from array.shape[1]`.
|
|
43
|
+
|
|
44
|
+
sparse_format:
|
|
45
|
+
Format to return, defaults to csr_matrix.
|
|
46
|
+
|
|
47
|
+
cellarr_ctx_config:
|
|
48
|
+
Optional TileDB context configuration dict for CellArray.
|
|
49
|
+
|
|
50
|
+
transform:
|
|
51
|
+
Optional transform to be applied on a sample.
|
|
52
|
+
"""
|
|
53
|
+
self.array_uri = array_uri
|
|
54
|
+
self.attribute_name = attribute_name
|
|
55
|
+
self.sparse_format = sparse_format
|
|
56
|
+
self.cellarr_ctx_config = cellarr_ctx_config
|
|
57
|
+
self.transform = transform
|
|
58
|
+
self.cell_array_instance = None
|
|
59
|
+
|
|
60
|
+
if num_rows is not None and num_columns is not None:
|
|
61
|
+
self._len = num_rows
|
|
62
|
+
self.num_columns = num_columns
|
|
63
|
+
else:
|
|
64
|
+
print(f"Dataset '{array_uri}': num_rows or num_columns not provided. Probing sparse array...")
|
|
65
|
+
init_ctx_config = tiledb.Config(self.cellarr_ctx_config) if self.cellarr_ctx_config else None
|
|
66
|
+
try:
|
|
67
|
+
temp_arr = SparseCellArray(
|
|
68
|
+
uri=self.array_uri,
|
|
69
|
+
attr=self.attribute_name,
|
|
70
|
+
config_or_context=init_ctx_config,
|
|
71
|
+
return_sparse=True,
|
|
72
|
+
sparse_format=self.sparse_format,
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
if temp_arr.ndim == 1:
|
|
76
|
+
self._len = num_rows if num_rows is not None else temp_arr.shape[0]
|
|
77
|
+
self.num_columns = 1
|
|
78
|
+
elif temp_arr.ndim == 2:
|
|
79
|
+
self._len = num_rows if num_rows is not None else temp_arr.shape[0]
|
|
80
|
+
self.num_columns = num_columns if num_columns is not None else temp_arr.shape[1]
|
|
81
|
+
else:
|
|
82
|
+
raise ValueError(f"Array ndim {temp_arr.ndim} not supported.")
|
|
83
|
+
|
|
84
|
+
print(f"Dataset '{array_uri}': Inferred sparse shape. Rows: {self._len}, Columns: {self.num_columns}")
|
|
85
|
+
|
|
86
|
+
except Exception as e:
|
|
87
|
+
if num_rows is None or num_columns is None:
|
|
88
|
+
raise ValueError(
|
|
89
|
+
f"num_rows and num_columns must be provided if inferring sparse array shape fails for '{array_uri}'. Original error: {e}"
|
|
90
|
+
) from e
|
|
91
|
+
self._len = num_rows if num_rows is not None else 0
|
|
92
|
+
self.num_columns = num_columns if num_columns is not None else 0
|
|
93
|
+
warn(
|
|
94
|
+
f"Falling back to provided or zero dimensions for sparse '{array_uri}' due to inference error: {e}",
|
|
95
|
+
RuntimeWarning,
|
|
96
|
+
)
|
|
97
|
+
|
|
98
|
+
if self.num_columns is None or self.num_columns <= 0 and self._len > 0:
|
|
99
|
+
raise ValueError(
|
|
100
|
+
f"num_columns ({self.num_columns}) is invalid or could not be determined for sparse array '{array_uri}'."
|
|
101
|
+
)
|
|
102
|
+
|
|
103
|
+
if self._len == 0:
|
|
104
|
+
warn(f"SparseDataset for '{array_uri}' has length 0.", RuntimeWarning)
|
|
105
|
+
|
|
106
|
+
def _init_worker_state(self):
|
|
107
|
+
if self.cell_array_instance is None:
|
|
108
|
+
ctx = tiledb.Ctx(self.cellarr_ctx_config) if self.cellarr_ctx_config else None
|
|
109
|
+
self.cell_array_instance = SparseCellArray(
|
|
110
|
+
uri=self.array_uri,
|
|
111
|
+
attr=self.attribute_name,
|
|
112
|
+
mode="r",
|
|
113
|
+
config_or_context=ctx,
|
|
114
|
+
return_sparse=True,
|
|
115
|
+
sparse_coerce=self.sparse_format,
|
|
116
|
+
)
|
|
117
|
+
|
|
118
|
+
def __len__(self):
|
|
119
|
+
return self._len
|
|
120
|
+
|
|
121
|
+
def __getitem__(self, idx):
|
|
122
|
+
if not 0 <= idx < self._len:
|
|
123
|
+
raise IndexError(f"Index {idx} out of bounds for dataset of length {self._len}.")
|
|
124
|
+
|
|
125
|
+
self._init_worker_state()
|
|
126
|
+
|
|
127
|
+
item_slice = (slice(idx, idx + 1), slice(None))
|
|
128
|
+
|
|
129
|
+
scipy_sparse_sample = self.cell_array_instance[item_slice]
|
|
130
|
+
|
|
131
|
+
if self.transform: # e.g., convert to COO for easier collation
|
|
132
|
+
scipy_sparse_sample = self.transform(scipy_sparse_sample)
|
|
133
|
+
|
|
134
|
+
if not isinstance(scipy_sparse_sample, sp.coo_matrix):
|
|
135
|
+
scipy_sparse_sample = scipy_sparse_sample.tocoo()
|
|
136
|
+
|
|
137
|
+
return scipy_sparse_sample
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
def sparse_coo_collate_fn(batch):
|
|
141
|
+
"""Custom collate_fn for a batch of SciPy COO sparse matrices.
|
|
142
|
+
|
|
143
|
+
Converts them into a single batched PyTorch sparse COO tensor.
|
|
144
|
+
|
|
145
|
+
Each item in 'batch' is a SciPy coo_matrix representing one sample.
|
|
146
|
+
"""
|
|
147
|
+
all_data = []
|
|
148
|
+
all_row_indices = []
|
|
149
|
+
all_col_indices = []
|
|
150
|
+
|
|
151
|
+
for i, scipy_coo in enumerate(batch):
|
|
152
|
+
if scipy_coo.nnz > 0:
|
|
153
|
+
all_data.append(torch.from_numpy(scipy_coo.data))
|
|
154
|
+
all_row_indices.append(torch.full_like(torch.from_numpy(scipy_coo.row), fill_value=i, dtype=torch.long))
|
|
155
|
+
all_col_indices.append(torch.from_numpy(scipy_coo.col))
|
|
156
|
+
|
|
157
|
+
if not all_data:
|
|
158
|
+
num_columns = batch[0].shape[1] if batch else 0
|
|
159
|
+
return torch.sparse_coo_tensor(torch.empty((2, 0), dtype=torch.long), torch.empty(0), (len(batch), num_columns))
|
|
160
|
+
|
|
161
|
+
data_cat = torch.cat(all_data)
|
|
162
|
+
row_indices_cat = torch.cat(all_row_indices)
|
|
163
|
+
col_indices_cat = torch.cat(all_col_indices)
|
|
164
|
+
|
|
165
|
+
indices = torch.stack([row_indices_cat, col_indices_cat], dim=0)
|
|
166
|
+
num_columns = batch[0].shape[1]
|
|
167
|
+
batch_size = len(batch)
|
|
168
|
+
|
|
169
|
+
sparse_tensor = torch.sparse_coo_tensor(indices, data_cat, (batch_size, num_columns))
|
|
170
|
+
return sparse_tensor
|
|
171
|
+
|
|
172
|
+
|
|
173
|
+
def construct_sparse_array_dataloader(
|
|
174
|
+
array_uri: str,
|
|
175
|
+
attribute_name: str = "data",
|
|
176
|
+
num_rows: Optional[int] = None,
|
|
177
|
+
num_columns: Optional[int] = None,
|
|
178
|
+
batch_size: int = 1000,
|
|
179
|
+
num_workers_dl: int = 2,
|
|
180
|
+
) -> DataLoader:
|
|
181
|
+
"""Construct an instance of `SparseArrayDataset` with PyTorch DataLoader.
|
|
182
|
+
|
|
183
|
+
Args:
|
|
184
|
+
array_uri:
|
|
185
|
+
URI of the TileDB array.
|
|
186
|
+
|
|
187
|
+
attribute_name:
|
|
188
|
+
Name of the attribute to read from.
|
|
189
|
+
|
|
190
|
+
num_rows:
|
|
191
|
+
The total number of rows in the TileDB array.
|
|
192
|
+
|
|
193
|
+
num_columns:
|
|
194
|
+
The total number of columns in the TileDB array.
|
|
195
|
+
|
|
196
|
+
batch_size:
|
|
197
|
+
Number of random samples per batch generated by the dataset.
|
|
198
|
+
|
|
199
|
+
num_workers_dl:
|
|
200
|
+
Number of worker processes for the DataLoader.
|
|
201
|
+
"""
|
|
202
|
+
tiledb_ctx_config = {
|
|
203
|
+
"sm.tile_cache_size": 1000 * 1024**2,
|
|
204
|
+
"sm.num_reader_threads": 4,
|
|
205
|
+
}
|
|
206
|
+
|
|
207
|
+
dataset = SparseArrayDataset(
|
|
208
|
+
array_uri=array_uri,
|
|
209
|
+
attribute_name=attribute_name,
|
|
210
|
+
num_rows=num_rows,
|
|
211
|
+
num_columns=num_columns,
|
|
212
|
+
sparse_format=sp.coo_matrix,
|
|
213
|
+
cellarr_ctx_config=tiledb_ctx_config,
|
|
214
|
+
)
|
|
215
|
+
|
|
216
|
+
if len(dataset) == 0:
|
|
217
|
+
print("Dataset is empty, cannot create DataLoader.")
|
|
218
|
+
return
|
|
219
|
+
|
|
220
|
+
dataloader = DataLoader(
|
|
221
|
+
dataset,
|
|
222
|
+
batch_size=batch_size,
|
|
223
|
+
shuffle=True,
|
|
224
|
+
num_workers=num_workers_dl,
|
|
225
|
+
collate_fn=sparse_coo_collate_fn,
|
|
226
|
+
pin_memory=False,
|
|
227
|
+
persistent_workers=True if num_workers_dl > 0 else False,
|
|
228
|
+
)
|
|
229
|
+
|
|
230
|
+
return dataloader
|
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
import random
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
5
|
+
__author__ = "Jayaram Kancherla"
|
|
6
|
+
__copyright__ = "Jayaram Kancherla"
|
|
7
|
+
__license__ = "MIT"
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def seed_worker(worker_id: int):
|
|
11
|
+
"""Generate seeds for a PyTorch DataLoader worker.
|
|
12
|
+
|
|
13
|
+
This ensures that if multiple workers are sampling randomly, they use
|
|
14
|
+
different sequences of random numbers.
|
|
15
|
+
|
|
16
|
+
Args:
|
|
17
|
+
worker_id:
|
|
18
|
+
The ID of the worker process.
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
import torch
|
|
22
|
+
|
|
23
|
+
worker_seed = torch.initial_seed() % 2**32
|
|
24
|
+
np.random.seed(worker_seed)
|
|
25
|
+
random.seed(worker_seed)
|
|
26
|
+
# print(f"Worker {worker_id} seeded with {worker_seed}")
|