cellarr-array 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of cellarr-array might be problematic. Click here for more details.

@@ -42,7 +42,8 @@ class CellArray(ABC):
42
42
  Defaults to None for automatic mode switching.
43
43
 
44
44
  config_or_context:
45
- Config or context object.
45
+ Optional config or context object.
46
+
46
47
  Defaults to None.
47
48
 
48
49
  validate:
@@ -53,14 +54,15 @@ class CellArray(ABC):
53
54
  self._mode = mode
54
55
 
55
56
  if config_or_context is None:
56
- config_or_context = tiledb.Config()
57
-
58
- if isinstance(config_or_context, tiledb.Config):
59
- ctx = tiledb.Ctx(config_or_context)
60
- elif isinstance(config_or_context, tiledb.Ctx):
61
- ctx = config_or_context
57
+ # config_or_context = tiledb.Config()
58
+ ctx = None
62
59
  else:
63
- raise TypeError("'config_or_context' must be either TileDB config or a context object.")
60
+ if isinstance(config_or_context, tiledb.Config):
61
+ ctx = tiledb.Ctx(config_or_context)
62
+ elif isinstance(config_or_context, tiledb.Ctx):
63
+ ctx = config_or_context
64
+ else:
65
+ raise TypeError("'config_or_context' must be either TileDB config or a context object.")
64
66
 
65
67
  self._ctx = ctx
66
68
  self._array = None
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: cellarr-array
3
- Version: 0.0.1
3
+ Version: 0.0.2
4
4
  Summary: Base class for handling TileDB backed arrays.
5
5
  Home-page: https://github.com/cellarr/cellarr-array
6
6
  Author: Jayaram Kancherla
@@ -26,7 +26,7 @@ Requires-Dist: pytest-cov; extra == "testing"
26
26
 
27
27
  # cellarr-array
28
28
 
29
- This package provided high-level wrappers for TileDB arrays optimized for handling genomic data matrices.
29
+ This package provided high-level wrappers for TileDB arrays, for handling genomic data matrices.
30
30
 
31
31
  ## Install
32
32
 
@@ -116,24 +116,43 @@ subset = dense_array[100:200, genes]
116
116
  ### Working with Sparse Arrays
117
117
 
118
118
  ```python
119
- # Create a sparse array with COO output format
120
- coo_array = SparseCellArray(
119
+ from cellarr_array import SparseCellArray
120
+
121
+ # Create a sparse array with CSR output format
122
+ csr_array = SparseCellArray(
121
123
  uri="sparse_matrix.tdb",
122
- return_coo=True
124
+ return_sparse=True
123
125
  )
124
126
 
125
- # Get result as COO matrix
126
- result = coo_array[100:200, 500:1000]
127
+ # Get result as CSR matrix
128
+ result = csr_array[100:200, 500:1000]
127
129
 
128
130
  # Result is scipy.sparse.coo_matrix
129
- assert sparse.isspmatrix_coo(result)
131
+ assert sparse.isspmatrix_csr(result)
130
132
 
131
133
  # Perform sparse operations
132
134
  nnz = result.nnz
133
135
  density = result.nnz / (result.shape[0] * result.shape[1])
134
136
 
135
137
  # Convert to other sparse formats if needed
136
- result_csr = result.tocsr()
138
+ result_csc = result.tocsc()
139
+ ```
140
+
141
+ Likewise create a CSC output format
142
+
143
+ ```python
144
+ from scipy import sparse
145
+
146
+ # Create a sparse array with CSC output format
147
+ csc_array = SparseCellArray(
148
+ uri="sparse_matrix.tdb",
149
+ return_sparse=True,
150
+ sparse_coerce=sparse.csc_matrix
151
+ )
152
+
153
+ # Get result as CSR matrix
154
+ result = csc_array[100:200, 500:1000]
155
+ print(result)
137
156
  ```
138
157
 
139
158
  ### Array Maintenance
@@ -144,7 +163,7 @@ array.consolidate()
144
163
 
145
164
  # Custom consolidation
146
165
  config = ConsolidationConfig(
147
- steps=["fragment"],
166
+ steps=2,
148
167
  vacuum_after=True
149
168
  )
150
169
  array.consolidate(config)
@@ -1,11 +1,11 @@
1
- cellarr_array/CellArray.py,sha256=vOaq-0FbVKeuS31992oc_N5IOBXclcVkczPNIbua5Ws,7498
1
+ cellarr_array/CellArray.py,sha256=sFD258mPp4w-8-xmjAgoicKo0Nbu0GGa-1gMXxt5cZ0,7570
2
2
  cellarr_array/DenseCellArray.py,sha256=iPrjFtGolnHB0BTi4A8ncEpoFI9FWe6oZHhA1Men3Wo,3745
3
3
  cellarr_array/SparseCellArray.py,sha256=8bajVOvUMaQhWU-_pZY0Cg9sD6kWRAJCu2G45uY-W4Q,7096
4
4
  cellarr_array/__init__.py,sha256=8m0_shRPKNNaNab5tGBL2l0K5XgkKCFuLAh7QGogfYo,778
5
5
  cellarr_array/config.py,sha256=67zBxpYY9N_v6TMdyljUIZmckbwOBcuLC99aJooGmfA,2917
6
6
  cellarr_array/helpers.py,sha256=O0RgDLIdYbWc01yp2Cw0EmjJ3g_uzlz2JnYE8W7PZEE,6182
7
- cellarr_array-0.0.1.dist-info/LICENSE.txt,sha256=qI2hRZobcUlj8gqFqXwqt522HeYyWvHLF00zCSZofHA,1084
8
- cellarr_array-0.0.1.dist-info/METADATA,sha256=UaSorFB0-5KuhVrM8pvdGuN98WQ6iSLgUUH6MtpJwXM,3747
9
- cellarr_array-0.0.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
10
- cellarr_array-0.0.1.dist-info/top_level.txt,sha256=oErp0D8ABZV-QPtTiXT8_F2z36Ic7ykuDg_1Y84HLZM,14
11
- cellarr_array-0.0.1.dist-info/RECORD,,
7
+ cellarr_array-0.0.2.dist-info/LICENSE.txt,sha256=qI2hRZobcUlj8gqFqXwqt522HeYyWvHLF00zCSZofHA,1084
8
+ cellarr_array-0.0.2.dist-info/METADATA,sha256=-VmLQZQmbUhNkD_Y9ZLeZkBgLf4H5YIXgO_rDj7zKmw,4098
9
+ cellarr_array-0.0.2.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
10
+ cellarr_array-0.0.2.dist-info/top_level.txt,sha256=oErp0D8ABZV-QPtTiXT8_F2z36Ic7ykuDg_1Y84HLZM,14
11
+ cellarr_array-0.0.2.dist-info/RECORD,,