cdc-cluster 0.2.0__py3-none-any.whl → 0.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {cdc_cluster-0.2.0.dist-info → cdc_cluster-0.2.1.dist-info}/METADATA +3 -3
- cdc_cluster-0.2.1.dist-info/RECORD +7 -0
- cdc_cluster-0.2.1.dist-info/top_level.txt +1 -0
- cdc_cluster-0.2.0.dist-info/RECORD +0 -7
- cdc_cluster-0.2.0.dist-info/top_level.txt +0 -1
- {cdc → cdc_cluster}/__init__.py +0 -0
- {cdc → cdc_cluster}/_cdc.py +0 -0
- {cdc_cluster-0.2.0.dist-info → cdc_cluster-0.2.1.dist-info}/LICENSE +0 -0
- {cdc_cluster-0.2.0.dist-info → cdc_cluster-0.2.1.dist-info}/WHEEL +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: cdc-cluster
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.1
|
|
4
4
|
Summary: A novel Clustering algorithm by measuring Direction Centrality (CDC) locally. It adopts a density-independent metric based on the distribution of K-nearest neighbors (KNNs) to distinguish between internal and boundary points. The boundary points generate enclosed cages to bind the connections of internal points.
|
|
5
5
|
Author-email: pdh <pengdh@whu.edu.cn>
|
|
6
6
|
Project-URL: Homepage, https://github.com/ZPGuiGroupWhu/CDC-pkg
|
|
@@ -52,7 +52,7 @@ The CDC algorithm is refactored to be a scikit-learn compatible estimator. It pr
|
|
|
52
52
|
|
|
53
53
|
### Class-based Usage
|
|
54
54
|
```python
|
|
55
|
-
from
|
|
55
|
+
from cdc_cluster import CDC
|
|
56
56
|
import numpy as np
|
|
57
57
|
import matplotlib.pyplot as plt
|
|
58
58
|
from sklearn.datasets import make_moons
|
|
@@ -78,7 +78,7 @@ plt.show()
|
|
|
78
78
|
|
|
79
79
|
### Function-based Usage
|
|
80
80
|
```python
|
|
81
|
-
from
|
|
81
|
+
from cdc_cluster import cdc_cluster
|
|
82
82
|
from sklearn.datasets import make_blobs
|
|
83
83
|
|
|
84
84
|
X, _ = make_blobs(n_samples=200, centers=3, random_state=42)
|
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
cdc_cluster/__init__.py,sha256=EoQJ9Aq3pw3ByIBftRsUu3XM6JE9ur_1jglRMzaMfRw,72
|
|
2
|
+
cdc_cluster/_cdc.py,sha256=GJJ1vaYSlKo9txoHqEt5dkWsWaRltAD4B8AlUDbvs90,9297
|
|
3
|
+
cdc_cluster-0.2.1.dist-info/LICENSE,sha256=IyCvvVrd9j3Kpzn3Tdmb5IWIb6E33-rvsDTNnUUVyB4,1091
|
|
4
|
+
cdc_cluster-0.2.1.dist-info/METADATA,sha256=NwckNMCXukWMNoV2DUbUCSYrJ-fNWjyJdwyL4YhiQTA,4313
|
|
5
|
+
cdc_cluster-0.2.1.dist-info/WHEEL,sha256=WnJ8fYhv8N4SYVK2lLYNI6N0kVATA7b0piVUNvqIIJE,91
|
|
6
|
+
cdc_cluster-0.2.1.dist-info/top_level.txt,sha256=MQGoT-vx9ATQ2q5YqLE2HddyMir5SIijrkfxYPqmanY,12
|
|
7
|
+
cdc_cluster-0.2.1.dist-info/RECORD,,
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
cdc_cluster
|
|
@@ -1,7 +0,0 @@
|
|
|
1
|
-
cdc/__init__.py,sha256=EoQJ9Aq3pw3ByIBftRsUu3XM6JE9ur_1jglRMzaMfRw,72
|
|
2
|
-
cdc/_cdc.py,sha256=GJJ1vaYSlKo9txoHqEt5dkWsWaRltAD4B8AlUDbvs90,9297
|
|
3
|
-
cdc_cluster-0.2.0.dist-info/LICENSE,sha256=IyCvvVrd9j3Kpzn3Tdmb5IWIb6E33-rvsDTNnUUVyB4,1091
|
|
4
|
-
cdc_cluster-0.2.0.dist-info/METADATA,sha256=Kj4P7iG9t8hkis711es_eCKh0f1nlDc0WA2pwAvfKeU,4297
|
|
5
|
-
cdc_cluster-0.2.0.dist-info/WHEEL,sha256=WnJ8fYhv8N4SYVK2lLYNI6N0kVATA7b0piVUNvqIIJE,91
|
|
6
|
-
cdc_cluster-0.2.0.dist-info/top_level.txt,sha256=v6FEwUWlqiNBwmV7tCXDaBp-LmuRmw309T6GQ7Vd5XQ,4
|
|
7
|
-
cdc_cluster-0.2.0.dist-info/RECORD,,
|
|
@@ -1 +0,0 @@
|
|
|
1
|
-
cdc
|
{cdc → cdc_cluster}/__init__.py
RENAMED
|
File without changes
|
{cdc → cdc_cluster}/_cdc.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|