ccs-llmconnector 1.0.6__py3-none-any.whl → 1.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ccs-llmconnector
3
- Version: 1.0.6
3
+ Version: 1.1.0
4
4
  Summary: Lightweight wrapper around different LLM provider Python SDK Responses APIs.
5
5
  Author: CCS
6
6
  License: MIT
@@ -9,9 +9,16 @@ Requires-Python: >=3.8
9
9
  Description-Content-Type: text/markdown
10
10
  License-File: LICENSE
11
11
  Requires-Dist: openai>=1.0.0
12
- Requires-Dist: google-genai
13
- Requires-Dist: anthropic
14
- Requires-Dist: xai-sdk
12
+ Provides-Extra: gemini
13
+ Requires-Dist: google-genai; extra == "gemini"
14
+ Provides-Extra: anthropic
15
+ Requires-Dist: anthropic; extra == "anthropic"
16
+ Provides-Extra: xai
17
+ Requires-Dist: xai-sdk; extra == "xai"
18
+ Provides-Extra: all
19
+ Requires-Dist: google-genai; extra == "all"
20
+ Requires-Dist: anthropic; extra == "all"
21
+ Requires-Dist: xai-sdk; extra == "all"
15
22
  Dynamic: license-file
16
23
 
17
24
  # ccs-llmconnector
@@ -29,16 +36,24 @@ the models available to your account with each provider.
29
36
  # from PyPI (normalized project name)
30
37
  pip install ccs-llmconnector
31
38
 
39
+ # install additional providers
40
+ pip install "ccs-llmconnector[gemini]"
41
+ pip install "ccs-llmconnector[anthropic]"
42
+ pip install "ccs-llmconnector[xai]"
43
+ pip install "ccs-llmconnector[all]"
44
+
32
45
  # or from source (this repository)
33
46
  pip install .
34
47
  ```
35
48
 
36
49
  ### Requirements
37
50
 
38
- - `openai` (installed automatically with the package)
39
- - `google-genai` (installed automatically with the package)
40
- - `anthropic` (installed automatically with the package)
41
- - `xai-sdk` (installed automatically with the package; requires Python 3.10+)
51
+ - `openai` (installed automatically with the base package)
52
+ - Optional extras:
53
+ - `ccs-llmconnector[gemini]` -> `google-genai`
54
+ - `ccs-llmconnector[anthropic]` -> `anthropic`
55
+ - `ccs-llmconnector[xai]` -> `xai-sdk` (Python 3.10+)
56
+ - `ccs-llmconnector[all]` -> all providers
42
57
 
43
58
  ## Components
44
59
 
@@ -48,6 +63,17 @@ pip install .
48
63
  - `GrokClient` - wrapper around the xAI Grok chat API, usable when `xai-sdk` is installed. Includes a model discovery helper.
49
64
  - `LLMClient` - provider router that delegates to registered clients (OpenAI included by default) so additional vendors can be added without changing call sites.
50
65
 
66
+ ## Common Options
67
+
68
+ All clients expose the same optional controls:
69
+
70
+ - `messages`: list of `{role, content}` entries (e.g., `system`, `user`, `assistant`). If both `prompt` and `messages` are provided, `prompt` is appended as the last user message.
71
+ - `request_id`: free-form request identifier for tracing/logging.
72
+ - `timeout_s`: optional timeout in seconds (best-effort depending on provider).
73
+ - `max_retries` and `retry_backoff_s`: retry count and exponential backoff base delay.
74
+
75
+ Async counterparts are available as `async_generate_response`, `async_generate_image`, and `async_list_models`.
76
+
51
77
  ## GeminiClient
52
78
 
53
79
  ### Usage
@@ -326,6 +352,15 @@ response_via_router = llm_client.generate_response(
326
352
  max_tokens=1500,
327
353
  )
328
354
 
355
+ # async usage
356
+ # response_via_router = await llm_client.async_generate_response(
357
+ # provider="openai",
358
+ # api_key="sk-your-api-key",
359
+ # messages=[{"role": "system", "content": "You are concise."}],
360
+ # prompt="Summarize the plan.",
361
+ # model="gpt-4o-mini",
362
+ # )
363
+
329
364
  gemini_response = llm_client.generate_response(
330
365
  provider="gemini", # google-genai is installed with llmconnector
331
366
  api_key="your-gemini-api-key",
@@ -373,10 +408,15 @@ for model in llm_client.list_models(provider="openai", api_key="sk-your-api-key"
373
408
  | `provider` | `str` | Yes | Registered provider key (default registry includes `'openai'`, `'gemini'`, `'anthropic'`, `'grok'`/`'xai'`). |
374
409
  | `api_key` | `str` | Yes | Provider-specific API key. |
375
410
  | `prompt` | `Optional[str]` | Conditional | Plain-text prompt. Required unless `images` is supplied. |
411
+ | `messages` | `Optional[Sequence[dict]]` | No | Chat-style messages (`role`, `content`). |
376
412
  | `model` | `str` | Yes | Provider-specific model identifier. |
377
413
  | `max_tokens` | `int` | No | Defaults to `32000`. |
378
414
  | `reasoning_effort` | `Optional[str]` | No | Reasoning hint forwarded when supported. |
379
415
  | `images` | `Optional[Sequence[str \| Path]]` | No | Image references forwarded to the provider implementation. |
416
+ | `request_id` | `Optional[str]` | No | Request identifier for tracing/logging. |
417
+ | `timeout_s` | `Optional[float]` | No | Timeout in seconds (best-effort). |
418
+ | `max_retries` | `Optional[int]` | No | Retry count for transient failures. |
419
+ | `retry_backoff_s` | `Optional[float]` | No | Base delay (seconds) for exponential backoff. |
380
420
 
381
421
  Use `LLMClient.register_provider(name, client)` to add additional providers that implement
382
422
  `generate_response` with the same signature.
@@ -399,6 +439,9 @@ Examples:
399
439
  # Generate a response
400
440
  client_cli respond --provider openai --model gpt-4o --prompt "Hello!"
401
441
 
442
+ # Generate with retry/timeout controls
443
+ client_cli respond --provider openai --model gpt-4o --prompt "Hello!" --timeout-s 30 --max-retries 2
444
+
402
445
  # List models for one provider (human-readable)
403
446
  client_cli models --provider gemini
404
447
 
@@ -0,0 +1,16 @@
1
+ ccs_llmconnector-1.1.0.dist-info/licenses/LICENSE,sha256=rPcz2YmBB9VUWZTLJcRO_B4jKDpqmGRYi2eSI-unysg,1083
2
+ llmconnector/__init__.py,sha256=eSsSwcrSbQAMxz6DkmN4XaLNZn1_ClQVFj7USRp3geU,1337
3
+ llmconnector/anthropic_client.py,sha256=nR7gZJ5fa_cJ334SkeNsBuwTkEAF0pF4C0ew-VuhSRY,12995
4
+ llmconnector/client.py,sha256=2emUbeuOZEGRB7_bpzwCzdhY2zoHlRFKR0gcv1rfU_8,13560
5
+ llmconnector/client_cli.py,sha256=8-C275ah4VrYW1noiPr78p8BB-rf7utiMFYMbFLuUVc,11421
6
+ llmconnector/gemini_client.py,sha256=BbtVoUi6D-HcMs80OF18GLiJsrrjbXAY0LDw2Kw8QA8,18697
7
+ llmconnector/grok_client.py,sha256=oHqY6ooeuCSAGhkPpUprAzbXxmdLlnI-Gk8XDCvWW_0,10986
8
+ llmconnector/openai_client.py,sha256=WibOK2ErJyaX31SMM-siHtenhd-e1Du0uV9B2R_CN6s,10795
9
+ llmconnector/py.typed,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
10
+ llmconnector/types.py,sha256=Rs9K78L5BBjQn_JuK2APCu123ANPSNeSaO6jHsgYEJA,1239
11
+ llmconnector/utils.py,sha256=iUzjnSINn5cX2Jq3E0CIjMUR_yBLblHCvCcB8NuXUiM,1970
12
+ ccs_llmconnector-1.1.0.dist-info/METADATA,sha256=4XLz7J-BscL7FIMmReoys5FsGxPRjq5bnW4GCADWyNk,17001
13
+ ccs_llmconnector-1.1.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
14
+ ccs_llmconnector-1.1.0.dist-info/entry_points.txt,sha256=eFvLY3nHAG_QhaKlemhhK7echfezW0KiMdSNMZOStLc,60
15
+ ccs_llmconnector-1.1.0.dist-info/top_level.txt,sha256=Doer7TAUsN8UXQfPHPNsuBXVNCz2uV-Q0v4t4fwv_MM,13
16
+ ccs_llmconnector-1.1.0.dist-info/RECORD,,
llmconnector/__init__.py CHANGED
@@ -2,17 +2,27 @@
2
2
 
3
3
  from __future__ import annotations
4
4
 
5
- from typing import TYPE_CHECKING, Any
6
-
7
- from .client import LLMClient
8
-
9
- if TYPE_CHECKING:
10
- from .anthropic_client import AnthropicClient
11
- from .gemini_client import GeminiClient
12
- from .grok_client import GrokClient
13
- from .openai_client import OpenAIResponsesClient
14
-
15
- __all__ = ["LLMClient", "OpenAIResponsesClient", "GeminiClient", "AnthropicClient", "GrokClient"]
5
+ from typing import TYPE_CHECKING, Any
6
+
7
+ from .client import LLMClient
8
+ from .types import ImageInput, Message, MessageSequence
9
+
10
+ if TYPE_CHECKING:
11
+ from .anthropic_client import AnthropicClient
12
+ from .gemini_client import GeminiClient
13
+ from .grok_client import GrokClient
14
+ from .openai_client import OpenAIResponsesClient
15
+
16
+ __all__ = [
17
+ "LLMClient",
18
+ "OpenAIResponsesClient",
19
+ "GeminiClient",
20
+ "AnthropicClient",
21
+ "GrokClient",
22
+ "ImageInput",
23
+ "Message",
24
+ "MessageSequence",
25
+ ]
16
26
 
17
27
 
18
28
  def __getattr__(name: str) -> Any:
@@ -2,42 +2,53 @@
2
2
 
3
3
  from __future__ import annotations
4
4
 
5
- import base64
6
- import mimetypes
7
- from pathlib import Path
8
- import logging
9
- from typing import Optional, Sequence, Union
10
- from urllib.error import URLError
11
- from urllib.request import urlopen
12
-
13
- from anthropic import APIError, Anthropic
14
-
15
- ImageInput = Union[str, Path]
16
- logger = logging.getLogger(__name__)
5
+ import base64
6
+ import mimetypes
7
+ from pathlib import Path
8
+ import logging
9
+ from typing import Optional, Sequence
10
+ from urllib.request import urlopen
11
+
12
+ from anthropic import APIError, Anthropic
13
+
14
+ from .types import ImageInput, MessageSequence, normalize_messages
15
+ from .utils import clamp_retries, run_sync_in_thread, run_with_retries
16
+
17
+ logger = logging.getLogger(__name__)
17
18
 
18
19
 
19
20
  class AnthropicClient:
20
21
  """Convenience wrapper around the Anthropic Messages API."""
21
22
 
22
- def generate_response(
23
- self,
24
- *,
25
- api_key: str,
26
- prompt: str,
27
- model: str,
28
- max_tokens: int = 32000,
29
- reasoning_effort: Optional[str] = None,
30
- images: Optional[Sequence[ImageInput]] = None,
31
- ) -> str:
23
+ def generate_response(
24
+ self,
25
+ *,
26
+ api_key: str,
27
+ prompt: Optional[str] = None,
28
+ model: str,
29
+ max_tokens: int = 32000,
30
+ reasoning_effort: Optional[str] = None,
31
+ images: Optional[Sequence[ImageInput]] = None,
32
+ messages: Optional[MessageSequence] = None,
33
+ request_id: Optional[str] = None,
34
+ timeout_s: Optional[float] = None,
35
+ max_retries: Optional[int] = None,
36
+ retry_backoff_s: float = 0.5,
37
+ ) -> str:
32
38
  """Generate a response from the specified Anthropic model.
33
39
 
34
40
  Args:
35
41
  api_key: API key used to authenticate with Anthropic.
36
- prompt: Natural-language instruction or query for the model.
37
- model: Identifier of the Anthropic model to target (for example, ``"claude-3-5-sonnet-20241022"``).
38
- max_tokens: Cap for tokens across the entire exchange, defaults to 32000.
39
- reasoning_effort: Included for API parity; currently unused by the Anthropic SDK.
40
- images: Optional collection of image references (local paths, URLs, or data URLs).
42
+ prompt: Natural-language instruction or query for the model.
43
+ model: Identifier of the Anthropic model to target (for example, ``"claude-3-5-sonnet-20241022"``).
44
+ max_tokens: Cap for tokens across the entire exchange, defaults to 32000.
45
+ reasoning_effort: Included for API parity; currently unused by the Anthropic SDK.
46
+ images: Optional collection of image references (local paths, URLs, or data URLs).
47
+ messages: Optional list of chat-style messages (role/content).
48
+ request_id: Optional request identifier for tracing/logging.
49
+ timeout_s: Optional request timeout in seconds.
50
+ max_retries: Optional retry count for transient failures.
51
+ retry_backoff_s: Base delay (seconds) for exponential backoff between retries.
41
52
 
42
53
  Returns:
43
54
  The text output produced by the model.
@@ -46,108 +57,240 @@ class AnthropicClient:
46
57
  ValueError: If required arguments are missing or the request payload is empty.
47
58
  URLError: If an image URL cannot be retrieved.
48
59
  APIError: If the underlying Anthropic request fails.
49
- """
50
- if not api_key:
51
- raise ValueError("api_key must be provided.")
52
- if not prompt and not images:
53
- raise ValueError("At least one of prompt or images must be provided.")
54
- if not model:
55
- raise ValueError("model must be provided.")
56
-
57
- content_blocks: list[dict] = []
58
- if prompt:
59
- content_blocks.append({"type": "text", "text": prompt})
60
-
61
- if images:
62
- for image in images:
63
- content_blocks.append(self._to_image_block(image))
64
-
65
- if not content_blocks:
66
- raise ValueError("No content provided for response generation.")
67
-
68
- client = Anthropic(api_key=api_key)
69
-
70
- try:
71
- response = client.messages.create(
72
- model=model,
73
- max_tokens=max_tokens,
74
- messages=[{"role": "user", "content": content_blocks}],
75
- )
76
- except Exception as exc:
77
- logger.exception("Anthropic messages.create failed: %s", exc)
78
- raise
79
-
80
- text_blocks: list[str] = []
81
- for block in getattr(response, "content", []) or []:
82
- if getattr(block, "type", None) == "text":
83
- text = getattr(block, "text", None)
84
- if text:
85
- text_blocks.append(text)
86
-
87
- if text_blocks:
88
- result_text = "".join(text_blocks)
89
- logger.info(
90
- "Anthropic messages.create succeeded: model=%s images=%d text_len=%d",
91
- model,
92
- len(images or []),
93
- len(result_text or ""),
94
- )
95
- return result_text
96
-
97
- # Treat successful calls without textual content as a successful, empty response
98
- # rather than raising. This aligns with callers that handle empty outputs gracefully.
99
- logger.info(
100
- "Anthropic messages.create succeeded with no text: model=%s images=%d",
101
- model,
102
- len(images or []),
103
- )
104
- return ""
105
-
106
- def generate_image(
107
- self,
108
- *,
109
- api_key: str,
110
- prompt: str,
60
+ """
61
+ if not api_key:
62
+ raise ValueError("api_key must be provided.")
63
+ if not prompt and not messages and not images:
64
+ raise ValueError("At least one of prompt, messages, or images must be provided.")
65
+ if not model:
66
+ raise ValueError("model must be provided.")
67
+
68
+ normalized_messages = normalize_messages(prompt=prompt, messages=messages)
69
+ message_payloads: list[dict] = []
70
+ for message in normalized_messages:
71
+ blocks: list[dict] = []
72
+ if message["content"]:
73
+ blocks.append({"type": "text", "text": message["content"]})
74
+ message_payloads.append({"role": message["role"], "content": blocks})
75
+
76
+ if images:
77
+ image_blocks = [self._to_image_block(image) for image in images]
78
+ target_index = next(
79
+ (
80
+ index
81
+ for index in range(len(message_payloads) - 1, -1, -1)
82
+ if message_payloads[index]["role"] == "user"
83
+ ),
84
+ None,
85
+ )
86
+ if target_index is None:
87
+ message_payloads.append({"role": "user", "content": image_blocks})
88
+ else:
89
+ message_payloads[target_index]["content"].extend(image_blocks)
90
+
91
+ if not message_payloads or not any(msg["content"] for msg in message_payloads):
92
+ raise ValueError("No content provided for response generation.")
93
+
94
+ retry_count = clamp_retries(max_retries)
95
+
96
+ def _run_request() -> str:
97
+ client_kwargs = {"api_key": api_key}
98
+ if timeout_s is not None:
99
+ client_kwargs["timeout"] = timeout_s
100
+ client = Anthropic(**client_kwargs)
101
+
102
+ try:
103
+ response = client.messages.create(
104
+ model=model,
105
+ max_tokens=max_tokens,
106
+ messages=message_payloads,
107
+ )
108
+ except Exception as exc:
109
+ logger.exception(
110
+ "Anthropic messages.create failed: %s request_id=%s",
111
+ exc,
112
+ request_id,
113
+ )
114
+ raise
115
+
116
+ text_blocks: list[str] = []
117
+ for block in getattr(response, "content", []) or []:
118
+ if getattr(block, "type", None) == "text":
119
+ text = getattr(block, "text", None)
120
+ if text:
121
+ text_blocks.append(text)
122
+
123
+ if text_blocks:
124
+ result_text = "".join(text_blocks)
125
+ logger.info(
126
+ "Anthropic messages.create succeeded: model=%s images=%d text_len=%d request_id=%s",
127
+ model,
128
+ len(images or []),
129
+ len(result_text or ""),
130
+ request_id,
131
+ )
132
+ return result_text
133
+
134
+ # Treat successful calls without textual content as a successful, empty response
135
+ # rather than raising. This aligns with callers that handle empty outputs gracefully.
136
+ logger.info(
137
+ "Anthropic messages.create succeeded with no text: model=%s images=%d request_id=%s",
138
+ model,
139
+ len(images or []),
140
+ request_id,
141
+ )
142
+ return ""
143
+
144
+ return run_with_retries(
145
+ func=_run_request,
146
+ max_retries=retry_count,
147
+ retry_backoff_s=retry_backoff_s,
148
+ request_id=request_id,
149
+ )
150
+
151
+ async def async_generate_response(
152
+ self,
153
+ *,
154
+ api_key: str,
155
+ prompt: Optional[str] = None,
156
+ model: str,
157
+ max_tokens: int = 32000,
158
+ reasoning_effort: Optional[str] = None,
159
+ images: Optional[Sequence[ImageInput]] = None,
160
+ messages: Optional[MessageSequence] = None,
161
+ request_id: Optional[str] = None,
162
+ timeout_s: Optional[float] = None,
163
+ max_retries: Optional[int] = None,
164
+ retry_backoff_s: float = 0.5,
165
+ ) -> str:
166
+ return await run_sync_in_thread(
167
+ lambda: self.generate_response(
168
+ api_key=api_key,
169
+ prompt=prompt,
170
+ model=model,
171
+ max_tokens=max_tokens,
172
+ reasoning_effort=reasoning_effort,
173
+ images=images,
174
+ messages=messages,
175
+ request_id=request_id,
176
+ timeout_s=timeout_s,
177
+ max_retries=max_retries,
178
+ retry_backoff_s=retry_backoff_s,
179
+ )
180
+ )
181
+
182
+ def generate_image(
183
+ self,
184
+ *,
185
+ api_key: str,
186
+ prompt: str,
111
187
  model: str,
112
188
  image_size: str = "2K",
113
189
  image: Optional[ImageInput] = None,
114
190
  ) -> bytes:
115
191
  """Generate an image using the Anthropic API.
116
192
 
117
- Raises:
118
- NotImplementedError: This method is not yet implemented for Anthropic.
119
- """
120
- raise NotImplementedError("Image generation is not implemented for Anthropic.")
121
-
122
- def list_models(self, *, api_key: str) -> list[dict[str, Optional[str]]]:
123
- """Return the models available to the authenticated Anthropic account."""
124
- if not api_key:
125
- raise ValueError("api_key must be provided.")
126
-
127
- client = Anthropic(api_key=api_key)
128
- models: list[dict[str, Optional[str]]] = []
129
-
130
- try:
131
- iterator = client.models.list()
132
- except Exception as exc:
133
- logger.exception("Anthropic list models failed: %s", exc)
134
- raise
135
-
136
- for model in iterator:
137
- model_id = getattr(model, "id", None)
138
- if model_id is None and isinstance(model, dict):
139
- model_id = model.get("id")
140
- if not model_id:
141
- continue
142
-
143
- display_name = getattr(model, "display_name", None)
144
- if display_name is None and isinstance(model, dict):
145
- display_name = model.get("display_name")
146
-
147
- models.append({"id": model_id, "display_name": display_name})
148
-
149
- logger.info("Anthropic list_models succeeded: count=%d", len(models))
150
- return models
193
+ Raises:
194
+ NotImplementedError: This method is not yet implemented for Anthropic.
195
+ """
196
+ raise NotImplementedError("Image generation is not implemented for Anthropic.")
197
+
198
+ async def async_generate_image(
199
+ self,
200
+ *,
201
+ api_key: str,
202
+ prompt: str,
203
+ model: str,
204
+ image_size: str = "2K",
205
+ image: Optional[ImageInput] = None,
206
+ ) -> bytes:
207
+ return await run_sync_in_thread(
208
+ lambda: self.generate_image(
209
+ api_key=api_key,
210
+ prompt=prompt,
211
+ model=model,
212
+ image_size=image_size,
213
+ image=image,
214
+ )
215
+ )
216
+
217
+ def list_models(
218
+ self,
219
+ *,
220
+ api_key: str,
221
+ request_id: Optional[str] = None,
222
+ timeout_s: Optional[float] = None,
223
+ max_retries: Optional[int] = None,
224
+ retry_backoff_s: float = 0.5,
225
+ ) -> list[dict[str, Optional[str]]]:
226
+ """Return the models available to the authenticated Anthropic account."""
227
+ if not api_key:
228
+ raise ValueError("api_key must be provided.")
229
+
230
+ retry_count = clamp_retries(max_retries)
231
+
232
+ def _run_request() -> list[dict[str, Optional[str]]]:
233
+ client_kwargs = {"api_key": api_key}
234
+ if timeout_s is not None:
235
+ client_kwargs["timeout"] = timeout_s
236
+ client = Anthropic(**client_kwargs)
237
+ models: list[dict[str, Optional[str]]] = []
238
+
239
+ try:
240
+ iterator = client.models.list()
241
+ except Exception as exc:
242
+ logger.exception(
243
+ "Anthropic list models failed: %s request_id=%s",
244
+ exc,
245
+ request_id,
246
+ )
247
+ raise
248
+
249
+ for model in iterator:
250
+ model_id = getattr(model, "id", None)
251
+ if model_id is None and isinstance(model, dict):
252
+ model_id = model.get("id")
253
+ if not model_id:
254
+ continue
255
+
256
+ display_name = getattr(model, "display_name", None)
257
+ if display_name is None and isinstance(model, dict):
258
+ display_name = model.get("display_name")
259
+
260
+ models.append({"id": model_id, "display_name": display_name})
261
+
262
+ logger.info(
263
+ "Anthropic list_models succeeded: count=%d request_id=%s",
264
+ len(models),
265
+ request_id,
266
+ )
267
+ return models
268
+
269
+ return run_with_retries(
270
+ func=_run_request,
271
+ max_retries=retry_count,
272
+ retry_backoff_s=retry_backoff_s,
273
+ request_id=request_id,
274
+ )
275
+
276
+ async def async_list_models(
277
+ self,
278
+ *,
279
+ api_key: str,
280
+ request_id: Optional[str] = None,
281
+ timeout_s: Optional[float] = None,
282
+ max_retries: Optional[int] = None,
283
+ retry_backoff_s: float = 0.5,
284
+ ) -> list[dict[str, Optional[str]]]:
285
+ return await run_sync_in_thread(
286
+ lambda: self.list_models(
287
+ api_key=api_key,
288
+ request_id=request_id,
289
+ timeout_s=timeout_s,
290
+ max_retries=max_retries,
291
+ retry_backoff_s=retry_backoff_s,
292
+ )
293
+ )
151
294
 
152
295
  @staticmethod
153
296
  def _to_image_block(image: ImageInput) -> dict: