catocli 3.0.26__py3-none-any.whl → 3.0.30__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of catocli might be problematic. Click here for more details.

@@ -44,6 +44,12 @@ catocli query appStats '{
44
44
  ### Additional Examples
45
45
  - Query to export user activity as in flows_created, for distinct users (user_name) for the last day
46
46
  - Query to export application_name, user_name and risk_score with traffic sum(upstream, downstream, trafffic) for last day
47
+ - Track daily user engagement and flow creation
48
+ - Analyze applications by usage and security risk
49
+ - Analyze applications by usage and security risk:
50
+ - Top applications weekly by bandwidth
51
+ - Daily per-user bandwidth consumption
52
+ - Monthly traffic patterns by country
47
53
 
48
54
  # Query to export user activity as in flows_created, for distinct users (user_name) for the last day
49
55
 
@@ -107,6 +113,127 @@ catocli query appStats '{
107
113
  }' -f csv --csv-filename app_user_account_metrics_report.csv
108
114
  ```
109
115
 
116
+ # Track daily user engagement and flow creation
117
+
118
+ ```bash
119
+ # Track daily user engagement and flow creation
120
+ catocli query appStats '{
121
+ "dimension": [
122
+ {"fieldName": "user_name"},
123
+ {"fieldName": "domain"}
124
+ ],
125
+ "measure": [
126
+ {"aggType": "sum", "fieldName": "flows_created"},
127
+ {"aggType": "count_distinct", "fieldName": "user_name"},
128
+ {"aggType": "sum", "fieldName": "traffic"}
129
+ ],
130
+ "timeFrame": "last.P1D"
131
+ }' -f csv --csv-filename=appstats_user_activity.csv
132
+ ```
133
+
134
+ # Analyze applications by usage and security risk
135
+
136
+ ```bash
137
+ # Analyze applications by usage and security risk:
138
+ catocli query appStats '{
139
+ "dimension": [
140
+ {"fieldName": "application_name"},
141
+ {"fieldName": "user_name"},
142
+ {"fieldName": "risk_score"}
143
+ ],
144
+ "measure": [
145
+ {"aggType": "sum", "fieldName": "downstream"},
146
+ {"aggType": "sum", "fieldName": "upstream"},
147
+ {"aggType": "sum", "fieldName": "traffic"}
148
+ ],
149
+ "timeFrame": "last.P1D"
150
+ }' -f csv --csv-filename=appstats_user_risk_report.csv
151
+ ```
152
+
153
+ # Top applications weekly by bandwidth
154
+
155
+ ```bash
156
+ # Top applications weekly by bandwidth
157
+ catocli query appStats '{
158
+ "dimension": [{"fieldName": "application_name"}],
159
+ "measure": [
160
+ {"aggType": "sum", "fieldName": "traffic"},
161
+ {"aggType": "sum", "fieldName": "flows_created"}
162
+ ],
163
+ "appStatsSort": [
164
+ {"fieldName": "traffic", "order": "desc"}
165
+ ],
166
+ "timeFrame": "last.P7D"
167
+ }' -f csv --csv-filename=appstats_app_utilization.csv
168
+ ```
169
+
170
+ # Daily per-user bandwidth consumption
171
+
172
+ ```bash
173
+ # Daily per-user bandwidth consumption
174
+ catocli query appStats '{
175
+ "dimension": [
176
+ {"fieldName": "user_name"}
177
+ ],
178
+ "measure": [
179
+ {"aggType": "sum", "fieldName": "downstream"},
180
+ {"aggType": "sum", "fieldName": "upstream"},
181
+ {"aggType": "sum", "fieldName": "traffic"},
182
+ {"aggType": "sum", "fieldName": "flows_created"}
183
+ ],
184
+ "timeFrame": "last.P1D"
185
+ }' -f csv --csv-filename=appstats_user_bw.csv
186
+ ```
187
+
188
+ ### 5. High-Risk Application Analysis
189
+
190
+ Focus on applications with elevated risk scores:
191
+
192
+ ```bash
193
+ catocli query appStats '{
194
+ "appStatsFilter": [
195
+ {
196
+ "fieldName": "risk_score",
197
+ "operator": "gte",
198
+ "values": ["5"]
199
+ }
200
+ ],
201
+ "appStatsSort": [
202
+ {
203
+ "fieldName": "risk_score",
204
+ "order": "desc"
205
+ }
206
+ ],
207
+ "dimension": [
208
+ {"fieldName": "application_name"},
209
+ {"fieldName": "risk_score"},
210
+ {"fieldName": "user_name"}
211
+ ],
212
+ "measure": [
213
+ {"aggType": "sum", "fieldName": "traffic"},
214
+ {"aggType": "sum", "fieldName": "flows_created"}
215
+ ],
216
+ "timeFrame": "last.P7D"
217
+ }' -f csv --csv-filename=appstats_app_by_risk.csv
218
+ ```
219
+
220
+ # Monthly traffic patterns by country
221
+
222
+ ```bash
223
+ # Monthly traffic patterns by country
224
+ catocli query appStats '{
225
+ "dimension": [
226
+ {"fieldName": "site_country"},
227
+ {"fieldName": "src_site_country_code"}
228
+ ],
229
+ "measure": [
230
+ {"aggType": "sum", "fieldName": "traffic"},
231
+ {"aggType": "count_distinct", "fieldName": "user_name"}
232
+ ],
233
+ "timeFrame": "last.P1M"
234
+ }' -f csv --csv-filename=appstats_by_country.csv
235
+ ```
236
+
110
237
 
111
238
 
112
239
 
@@ -41,7 +41,12 @@ catocli query appStatsTimeSeries '{
41
41
  ## Advanced Usage
42
42
  ### Additional Examples
43
43
  - Query to export upstream, downstream and traffic for user_name and application_name for last day broken into 1 hour buckets
44
- - Query to export WANBOUND traffic including upstream, downstream and traffic for user_name and application_name for last day broken into 1 hour buckets
44
+ - Traffic patterns throughout the day
45
+ - Wanbound traffic with hourly breakdown
46
+ - Usage patterns over a full week
47
+ - 5-minute intervals for detailed monitoring
48
+ - Business hours with 15-minute granularity
49
+ - User activity patterns with application usage
45
50
 
46
51
  # Query to export upstream, downstream and traffic for user_name and application_name for last day broken into 1 hour buckets
47
52
 
@@ -74,51 +79,130 @@ catocli query appStatsTimeSeries '{
74
79
  }
75
80
  ],
76
81
  "timeFrame": "last.P1D"
77
- }'
82
+ }' -f csv --csv-filename=appStatsTimeSeries_app_bw.csv
78
83
  ```
79
84
 
80
- # Query to export WANBOUND traffic including upstream, downstream and traffic for user_name and application_name for last day broken into 1 hour buckets
85
+
86
+ # Traffic patterns throughout the day
81
87
 
82
88
  ```bash
83
- # Query to export WANBOUND traffic including upstream, downstream and traffic for user_name and application_name for last day broken into 1 hour buckets
89
+ # Traffic patterns throughout the day
90
+ catocli query appStatsTimeSeries '{
91
+ "buckets": 24,
92
+ "dimension": [
93
+ {"fieldName": "user_name"},
94
+ {"fieldName": "application_name"}
95
+ ],
96
+ "perSecond": false,
97
+ "measure": [
98
+ {"aggType": "sum", "fieldName": "upstream"},
99
+ {"aggType": "sum", "fieldName": "downstream"},
100
+ {"aggType": "sum", "fieldName": "traffic"}
101
+ ],
102
+ "timeFrame": "last.P1D"
103
+ }' -f csv --csv-filename=appStatsTimeSeries_user_app.csv
104
+ ```
105
+
106
+ # Wanbound traffic with hourly breakdown
107
+
108
+ ```bash
109
+ # Wanbound traffic with hourly breakdown
84
110
  catocli query appStatsTimeSeries '{
85
111
  "appStatsFilter": [
86
112
  {
87
113
  "fieldName": "traffic_direction",
88
114
  "operator": "is",
89
- "values": [
90
- "WANBOUND"
91
- ]
115
+ "values": ["WANBOUND"]
92
116
  }
93
117
  ],
94
118
  "buckets": 24,
95
119
  "dimension": [
96
- {
97
- "fieldName": "application_name"
98
- },
99
- {
100
- "fieldName": "user_name"
101
- }
120
+ {"fieldName": "application_name"},
121
+ {"fieldName": "user_name"}
102
122
  ],
103
123
  "perSecond": false,
104
124
  "measure": [
105
- {
106
- "aggType": "sum",
107
- "fieldName": "traffic"
108
- },
109
- {
110
- "aggType": "sum",
111
- "fieldName": "upstream"
112
- },
113
- {
114
- "aggType": "sum",
115
- "fieldName": "downstream"
116
- }
125
+ {"aggType": "sum", "fieldName": "traffic"},
126
+ {"aggType": "sum", "fieldName": "upstream"},
127
+ {"aggType": "sum", "fieldName": "downstream"}
117
128
  ],
118
129
  "timeFrame": "last.P1D"
119
- }'
130
+ }' -f csv --csv-filename=appStatsTimeSeries_user_wan.csv
131
+ ```
132
+
133
+ # Usage patterns over a full week
134
+
135
+ ```bash
136
+ # Usage patterns over a full week
137
+ catocli query appStatsTimeSeries '{
138
+ "buckets": 168,
139
+ "dimension": [
140
+ {"fieldName": "category"},
141
+ {"fieldName": "src_site_name"}
142
+ ],
143
+ "perSecond": false,
144
+ "measure": [
145
+ {"aggType": "sum", "fieldName": "traffic"},
146
+ {"aggType": "sum", "fieldName": "flows_created"}
147
+ ],
148
+ "timeFrame": "last.P7D"
149
+ }' -f csv --csv-filename appStatsTimeSeries_weekly_usage_category.csv
120
150
  ```
121
151
 
152
+ # 5-minute intervals for detailed monitoring
153
+
154
+ ```bash
155
+ # 5-minute intervals for detailed monitoring
156
+ catocli query appStatsTimeSeries '{
157
+ "buckets": 72,
158
+ "dimension": [
159
+ {"fieldName": "user_name"}
160
+ ],
161
+ "perSecond": false,
162
+ "measure": [
163
+ {"aggType": "sum", "fieldName": "traffic"}
164
+ ],
165
+ "timeFrame": "last.PT6H"
166
+ }' -f csv --csv-filename appStatsTimeSeries_high_resolution_user.csv
167
+ ```
168
+
169
+ # Business hours with 15-minute granularity
170
+
171
+ ```bash
172
+ # Business hours with 15-minute granularity
173
+ catocli query appStatsTimeSeries '{
174
+ "buckets": 32,
175
+ "dimension": [
176
+ {"fieldName": "application_name"}
177
+ ],
178
+ "perSecond": false,
179
+ "measure": [
180
+ {"aggType": "sum", "fieldName": "traffic"},
181
+ {"aggType": "sum", "fieldName": "flows_created"}
182
+ ],
183
+ "timeFrame": "utc.2025-10-{15/08:00:00--15/16:00:00}"
184
+ }' -f csv --csv-filename appStatsTimeSeries_bus_hours.csv
185
+ ```
186
+
187
+ # User activity patterns with application usage
188
+
189
+ ```bash
190
+ # User activity patterns with application usage
191
+ catocli query appStatsTimeSeries '{
192
+ "buckets": 48,
193
+ "dimension": [
194
+ {"fieldName": "user_name"},
195
+ {"fieldName": "categories"}
196
+ ],
197
+ "perSecond": false,
198
+ "measure": [
199
+ {"aggType": "sum", "fieldName": "flows_created"}
200
+ ],
201
+ "timeFrame": "last.P2D"
202
+ }' -f csv --csv-filename appStatsTimeSeries_user_by_category.csv
203
+ ```
204
+
205
+
122
206
 
123
207
 
124
208
  #### TimeFrame Parameter Examples
@@ -42,15 +42,13 @@ catocli query eventsTimeSeries '{
42
42
  ### Additional Examples
43
43
  - Weekly break down by hour of Internet Firewall events by rule_name
44
44
  - Weekly hourly breakdown by hour of sum of site events
45
- - 1 hour in 5 min increments of sum of site events used for detecting throttling
46
- - Basic Event Count Query with enhanced formatting
47
- - Basic Event Count Query - Returns formatted JSON with granularity-adjusted values
45
+ - 1 hour 5 min increment of sum of site events used for detecting throttling
46
+ - 1 hour 5 min increments of sum of site events used for detecting throttling
47
+ - Basic event count - weekly hourly
48
48
  - Security Events Analysis
49
49
  - Security Events Analysis - Daily breakdown of security events
50
50
  - Connectivity Events by Country
51
51
  - Connectivity Events by Country - Weekly breakdown with country dimensions
52
- - Threat Analysis with Trend
53
- - Threat Analysis with Trend - Monthly threat score analysis
54
52
  - Socket Connectivity Analysis
55
53
  - Socket Connectivity Analysis - Connection events by socket interface
56
54
 
@@ -80,15 +78,16 @@ catocli query eventsTimeSeries '{
80
78
  "fieldName": "event_count"
81
79
  }
82
80
  ],
83
- "timeFrame": "last.P7D"
84
- }'
81
+ "perSecond": false,
82
+ "timeFrame": "last.P1D"
83
+ }' -f csv --csv-filename=eventsTimeSeries_by_subType.csv
85
84
  ```
86
85
 
87
86
  # Weekly hourly breakdown by hour of sum of site events
88
87
 
89
88
  ```bash
90
89
  # Weekly hourly breakdown by hour of sum of site events
91
- catocli query eventsTimeSeries -accountID=15412 '{
90
+ catocli query eventsTimeSeries '{
92
91
  "buckets": 168,
93
92
  "eventsDimension": [],
94
93
  "eventsFilter": [
@@ -106,17 +105,18 @@ catocli query eventsTimeSeries -accountID=15412 '{
106
105
  "fieldName": "event_count"
107
106
  }
108
107
  ],
108
+ "perSecond": false,
109
109
  "timeFrame": "last.P7D"
110
- }'
110
+ }' -f csv --csv-filename=eventsTimeSeries_hourly_site_events.csv
111
111
  ```
112
112
 
113
113
 
114
- # 1 hour in 5 min increments of sum of site events used for detecting throttling
114
+ # 1 hour 5 min increment of sum of site events used for detecting throttling
115
115
 
116
116
  ```bash
117
- # 1 hour in 5 min increments of sum of site events used for detecting throttling
118
- catocli query eventsTimeSeries -accountID=15412 '{
119
- "buckets": 12,
117
+ # 1 hour 5 min increments of sum of site events used for detecting throttling
118
+ catocli query eventsTimeSeries '{
119
+ "buckets": 168,
120
120
  "eventsDimension": [],
121
121
  "eventsFilter": [
122
122
  {
@@ -133,20 +133,22 @@ catocli query eventsTimeSeries -accountID=15412 '{
133
133
  "fieldName": "event_count"
134
134
  }
135
135
  ],
136
+ "perSecond": false,
136
137
  "timeFrame": "last.P1D"
137
- }'
138
+ }' -f csv --csv-filename=eventsTimeSeries_15_min_site_events.csv
138
139
  ```
139
140
 
140
-
141
-
142
-
143
- # Basic Event Count Query with enhanced formatting
141
+ # Basic event count - weekly hourly
144
142
 
145
143
  ```bash
146
- # Basic Event Count Query - Returns formatted JSON with granularity-adjusted values
144
+ # Basic event count - weekly hourly
147
145
  catocli query eventsTimeSeries '{
148
- "buckets": 4,
149
- "eventsDimension": [],
146
+ "buckets": 168,
147
+ "eventsDimension": [
148
+ {
149
+ "fieldName": "rule_name"
150
+ }
151
+ ],
150
152
  "eventsFilter": [],
151
153
  "eventsMeasure": [
152
154
  {
@@ -154,8 +156,9 @@ catocli query eventsTimeSeries '{
154
156
  "fieldName": "event_count"
155
157
  }
156
158
  ],
157
- "timeFrame": "utc.2023-02-{28/00:00:00--28/23:59:59}"
158
- }'
159
+ "perSecond": false,
160
+ "timeFrame": "last.P7D"
161
+ }' -f csv --csv-filename=eventsTimeSeries_weekly_hourly_events.csv
159
162
  ```
160
163
 
161
164
  # Security Events Analysis
@@ -178,8 +181,9 @@ catocli query eventsTimeSeries '{
178
181
  "fieldName": "event_count"
179
182
  }
180
183
  ],
181
- "timeFrame": "utc.2023-02-{28/00:00:00--28/23:59:59}"
182
- }'
184
+ "perSecond": false,
185
+ "timeFrame": "last.P1D"
186
+ }' -f csv --csv-filename=eventsTimeSeries_daily_security_events.csv
183
187
  ```
184
188
 
185
189
  # Connectivity Events by Country
@@ -206,37 +210,9 @@ catocli query eventsTimeSeries '{
206
210
  "fieldName": "event_count"
207
211
  }
208
212
  ],
209
- "timeFrame": "utc.2023-03-{01/00:00:00--07/23:59:59}"
210
- }'
211
- ```
212
-
213
- # Threat Analysis with Trend
214
-
215
- ```bash
216
- # Threat Analysis with Trend - Monthly threat score analysis
217
- catocli query eventsTimeSeries '{
218
- "buckets": 31,
219
- "eventsDimension": [],
220
- "eventsFilter": [
221
- {
222
- "fieldName": "event_type",
223
- "operator": "is",
224
- "values": ["Security"]
225
- },
226
- {
227
- "fieldName": "threat_score",
228
- "operator": "gt",
229
- "values": ["50"]
230
- }
231
- ],
232
- "eventsMeasure": [
233
- {
234
- "aggType": "avg",
235
- "fieldName": "threat_score"
236
- }
237
- ],
238
- "timeFrame": "utc.2023-01-{01/00:00:00--31/23:59:59}"
239
- }'
213
+ "perSecond": false,
214
+ "timeFrame": "last.P1D"
215
+ }' -f csv --csv-filename=eventsTimeSeries_weekly_daily_by_country.csv
240
216
  ```
241
217
 
242
218
  # Socket Connectivity Analysis
@@ -244,7 +220,7 @@ catocli query eventsTimeSeries '{
244
220
  ```bash
245
221
  # Socket Connectivity Analysis - Connection events by socket interface
246
222
  catocli query eventsTimeSeries '{
247
- "buckets": 28,
223
+ "buckets": 7,
248
224
  "eventsDimension": [
249
225
  {
250
226
  "fieldName": "socket_interface"
@@ -268,8 +244,9 @@ catocli query eventsTimeSeries '{
268
244
  "fieldName": "event_count"
269
245
  }
270
246
  ],
271
- "timeFrame": "utc.2023-02-{01/00:00:00--28/23:59:59}"
272
- }'
247
+ "perSecond": false,
248
+ "timeFrame": "last.P7D"
249
+ }' -f csv --csv-filename=eventsTimeSeries_daily_socket_connect.csv
273
250
  ```
274
251
 
275
252
  ## Output Format Options
@@ -43,6 +43,8 @@ catocli query socketPortMetrics '{
43
43
  ## Advanced Usage
44
44
  ### Additional Examples
45
45
  - 1 Day sum of traffic by site, socket_interface, device_id
46
+ - Traffic patterns by site and interface
47
+ - Traffic distribution across devices
46
48
 
47
49
  # 1 Day sum of traffic by site, socket_interface, device_id
48
50
 
@@ -83,6 +85,68 @@ catocli query socketPortMetrics '{
83
85
  }'
84
86
  ```
85
87
 
88
+ # Traffic patterns by site and interface
89
+
90
+ ```bash
91
+ # Traffic patterns by site and interface
92
+ catocli query socketPortMetrics '{
93
+ "socketPortMetricsDimension": [
94
+ {"fieldName": "socket_interface"},
95
+ {"fieldName": "device_id"},
96
+ {"fieldName": "site_id"},
97
+ {"fieldName": "site_name"}
98
+ ],
99
+ "socketPortMetricsMeasure": [
100
+ {"aggType": "sum", "fieldName": "bytes_upstream"},
101
+ {"aggType": "sum", "fieldName": "bytes_downstream"},
102
+ {"aggType": "sum", "fieldName": "bytes_total"}
103
+ ],
104
+ "socketPortMetricsSort": [
105
+ {"fieldName": "bytes_total", "order": "desc"}
106
+ ],
107
+ "timeFrame": "last.P1D"
108
+ }' -f csv --csv-filename socketPortMetrics_traffic_by_site_interface.csv
109
+ ```
110
+
111
+ # Traffic distribution across devices
112
+
113
+ ```bash
114
+ # Traffic distribution across devices
115
+ catocli query socketPortMetrics '{
116
+ "socketPortMetricsDimension": [
117
+ {
118
+ "fieldName": "device_id"
119
+ },
120
+ {
121
+ "fieldName": "site_name"
122
+ }
123
+ ],
124
+ "socketPortMetricsFilter": [],
125
+ "socketPortMetricsMeasure": [
126
+ {
127
+ "aggType": "sum",
128
+ "fieldName": "bytes_total"
129
+ },
130
+ {
131
+ "aggType": "avg",
132
+ "fieldName": "throughput_downstream"
133
+ },
134
+ {
135
+ "aggType": "avg",
136
+ "fieldName": "throughput_upstream"
137
+ }
138
+ ],
139
+ "socketPortMetricsSort": [
140
+ {
141
+ "fieldName": "bytes_total",
142
+ "order": "desc"
143
+ }
144
+ ],
145
+ "timeFrame": "last.P1D"
146
+ }' -f csv --csv-filename socketPortMetrics_site_bw_by_device.csv
147
+ ```
148
+
149
+
86
150
 
87
151
 
88
152
  #### TimeFrame Parameter Examples