cat-llm 0.0.69__py3-none-any.whl → 0.0.71__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: cat-llm
3
- Version: 0.0.69
3
+ Version: 0.0.71
4
4
  Summary: A tool for categorizing text data and images using LLMs and vision models
5
5
  Project-URL: Documentation, https://github.com/chrissoria/cat-llm#readme
6
6
  Project-URL: Issues, https://github.com/chrissoria/cat-llm/issues
@@ -1,10 +1,10 @@
1
1
  catllm/CERAD_functions.py,sha256=q4HbP5e2Yu8NnZZ-2eX4sImyj6u3i8xWcq0pYU81iis,22676
2
- catllm/__about__.py,sha256=qQkN04YWoxAJ5HglANO-XGwexy9aL_qFoZSv_CueaUs,430
2
+ catllm/__about__.py,sha256=U5toCN-CHJ2fGUD0C91NOtxn6tXIAU46NvNCz4qPm6k,430
3
3
  catllm/__init__.py,sha256=sf02zp7N0NW0mAQi7eQ4gliWR1EwoqvXkHN2HwwjcTE,372
4
4
  catllm/build_web_research.py,sha256=880dfE2bEQb-FrXP-42JoLLtyc9ox_sBULDr38xiTiQ,22655
5
5
  catllm/image_functions.py,sha256=8_FftRU285x1HT-AgNkaobefQVD-5q7ZY_t7JFdL3Sg,36177
6
6
  catllm/model_reference_list.py,sha256=37pWwMcgnf4biE3BVRluH5oz2P6ccdJJiCVNHodBH8k,2307
7
- catllm/text_functions.py,sha256=Vd9tAPDCDEhoXVW6O-jXeftJiZQmsyyrKeEUneYeobw,32533
7
+ catllm/text_functions.py,sha256=LBzxMyyB3pDF-FL_edjMBGfzfagpJlC0AmIDShRGxvI,32558
8
8
  catllm/calls/CoVe.py,sha256=Y9OGJbaeJ3Odwira92cPXUlnm_ADFqvpOSFSNjFzMMU,10847
9
9
  catllm/calls/__init__.py,sha256=fWuMwLeSGa6zXJYd4s8IyNblsD62G-1NMUsOKrNIkoI,725
10
10
  catllm/calls/all_calls.py,sha256=E25KpZ_MakMDeCpNCOOM8kQvlfex6UMjnGN1wHkA4AI,14356
@@ -13,7 +13,7 @@ catllm/images/cube.png,sha256=nFec3e5bmRe4zrBCJ8QK-HcJLrG7u7dYdKhmdMfacfE,77275
13
13
  catllm/images/diamond.png,sha256=rJDZKtsnBGRO8FPA0iHuA8FvHFGi9PkI_DWSFdw6iv0,99568
14
14
  catllm/images/overlapping_pentagons.png,sha256=VO5plI6eoVRnjfqinn1nNzsCP2WQhuQy71V0EASouW4,71208
15
15
  catllm/images/rectangles.png,sha256=2XM16HO9EYWj2yHgN4bPXaCwPfl7iYQy0tQUGaJX9xg,40692
16
- cat_llm-0.0.69.dist-info/METADATA,sha256=E2q6apmvq1sDDiisnfyyQZzxqjNnqjCSecpalb5MgWQ,22424
17
- cat_llm-0.0.69.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
18
- cat_llm-0.0.69.dist-info/licenses/LICENSE,sha256=Vje2sS5WV4TnIwY5uQHrF4qnBAM3YOk1pGpdH0ot-2o,34969
19
- cat_llm-0.0.69.dist-info/RECORD,,
16
+ cat_llm-0.0.71.dist-info/METADATA,sha256=WLv_NkghbAc_vHmqP76kg3cMFeEdsvN7VXxxaxfjQGI,22424
17
+ cat_llm-0.0.71.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
18
+ cat_llm-0.0.71.dist-info/licenses/LICENSE,sha256=Vje2sS5WV4TnIwY5uQHrF4qnBAM3YOk1pGpdH0ot-2o,34969
19
+ cat_llm-0.0.71.dist-info/RECORD,,
catllm/__about__.py CHANGED
@@ -1,7 +1,7 @@
1
1
  # SPDX-FileCopyrightText: 2025-present Christopher Soria <chrissoria@berkeley.edu>
2
2
  #
3
3
  # SPDX-License-Identifier: MIT
4
- __version__ = "0.0.69"
4
+ __version__ = "0.0.71"
5
5
  __author__ = "Chris Soria"
6
6
  __email__ = "chrissoria@berkeley.edu"
7
7
  __title__ = "cat-llm"
catllm/text_functions.py CHANGED
@@ -721,13 +721,16 @@ def multi_class(
721
721
  #converting to numeric
722
722
  cat_cols = [col for col in categorized_data.columns if col.startswith('category_')]
723
723
 
724
- categorized_data['processing_status'] = np.where(
725
- categorized_data[cat_cols].isna().all(axis=1),
726
- 'error',
727
- 'success'
724
+ categorized_data['processing_status'] = (
725
+ categorized_data[cat_cols].isna().all(axis=1)
726
+ .map({True: 'error', False: 'success'})
728
727
  )
729
728
 
730
- categorized_data.loc[categorized_data[cat_cols].apply(pd.to_numeric, errors='coerce').isna().any(axis=1), cat_cols] = np.nan
729
+ categorized_data.loc[
730
+ categorized_data[cat_cols].apply(pd.to_numeric, errors='coerce').isna().any(axis=1),
731
+ cat_cols
732
+ ] = pd.NA
733
+
731
734
  categorized_data[cat_cols] = categorized_data[cat_cols].astype('Int64')
732
735
 
733
736
  categorized_data['categories_present'] = categorized_data[cat_cols].apply(