cat-llm 0.0.25__py3-none-any.whl → 0.0.26__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {cat_llm-0.0.25.dist-info → cat_llm-0.0.26.dist-info}/METADATA +1 -1
- cat_llm-0.0.26.dist-info/RECORD +9 -0
- catllm/CERAD_functions.py +15 -9
- catllm/__about__.py +1 -1
- catllm/__init__.py +2 -1
- catllm/cat_llm.py +0 -1008
- catllm/image_functions.py +689 -0
- cat_llm-0.0.25.dist-info/RECORD +0 -8
- {cat_llm-0.0.25.dist-info → cat_llm-0.0.26.dist-info}/WHEEL +0 -0
- {cat_llm-0.0.25.dist-info → cat_llm-0.0.26.dist-info}/licenses/LICENSE +0 -0
catllm/cat_llm.py
CHANGED
|
@@ -393,1011 +393,3 @@ Provide your work in JSON format where the number belonging to each category is
|
|
|
393
393
|
|
|
394
394
|
return categorized_data
|
|
395
395
|
|
|
396
|
-
# image multi-class (binary) function
|
|
397
|
-
def extract_image_multi_class(
|
|
398
|
-
image_description,
|
|
399
|
-
image_input,
|
|
400
|
-
categories,
|
|
401
|
-
api_key,
|
|
402
|
-
columns="numbered",
|
|
403
|
-
user_model="gpt-4o-2024-11-20",
|
|
404
|
-
creativity=0,
|
|
405
|
-
to_csv=False,
|
|
406
|
-
safety=False,
|
|
407
|
-
filename="categorized_data.csv",
|
|
408
|
-
save_directory=None,
|
|
409
|
-
model_source="OpenAI"
|
|
410
|
-
):
|
|
411
|
-
import os
|
|
412
|
-
import json
|
|
413
|
-
import pandas as pd
|
|
414
|
-
import regex
|
|
415
|
-
from tqdm import tqdm
|
|
416
|
-
import glob
|
|
417
|
-
import base64
|
|
418
|
-
from pathlib import Path
|
|
419
|
-
|
|
420
|
-
if save_directory is not None and not os.path.isdir(save_directory):
|
|
421
|
-
# Directory doesn't exist - raise an exception to halt execution
|
|
422
|
-
raise FileNotFoundError(f"Directory {save_directory} doesn't exist")
|
|
423
|
-
|
|
424
|
-
image_extensions = [
|
|
425
|
-
'*.png', '*.jpg', '*.jpeg',
|
|
426
|
-
'*.gif', '*.webp', '*.svg', '*.svgz', '*.avif', '*.apng',
|
|
427
|
-
'*.tif', '*.tiff', '*.bmp',
|
|
428
|
-
'*.heif', '*.heic', '*.ico',
|
|
429
|
-
'*.psd'
|
|
430
|
-
]
|
|
431
|
-
|
|
432
|
-
if not isinstance(image_input, list):
|
|
433
|
-
# If image_input is a filepath (string)
|
|
434
|
-
image_files = []
|
|
435
|
-
for ext in image_extensions:
|
|
436
|
-
image_files.extend(glob.glob(os.path.join(image_input, ext)))
|
|
437
|
-
|
|
438
|
-
print(f"Found {len(image_files)} images.")
|
|
439
|
-
else:
|
|
440
|
-
# If image_files is already a list
|
|
441
|
-
image_files = image_input
|
|
442
|
-
print(f"Provided a list of {len(image_input)} images.")
|
|
443
|
-
|
|
444
|
-
categories_str = "\n".join(f"{i + 1}. {cat}" for i, cat in enumerate(categories))
|
|
445
|
-
cat_num = len(categories)
|
|
446
|
-
category_dict = {str(i+1): "0" for i in range(cat_num)}
|
|
447
|
-
example_JSON = json.dumps(category_dict, indent=4)
|
|
448
|
-
|
|
449
|
-
# ensure number of categories is what user wants
|
|
450
|
-
print("Categories to classify:")
|
|
451
|
-
for i, cat in enumerate(categories, 1):
|
|
452
|
-
print(f"{i}. {cat}")
|
|
453
|
-
|
|
454
|
-
link1 = []
|
|
455
|
-
extracted_jsons = []
|
|
456
|
-
|
|
457
|
-
for i, img_path in enumerate(tqdm(image_files, desc="Categorising images"), start=0):
|
|
458
|
-
# Check validity first
|
|
459
|
-
if img_path is None or not os.path.exists(img_path):
|
|
460
|
-
link1.append("Skipped NaN input or invalid path")
|
|
461
|
-
extracted_jsons.append("""{"no_valid_image": 1}""")
|
|
462
|
-
continue # Skip the rest of the loop iteration
|
|
463
|
-
|
|
464
|
-
# Only open the file if path is valid
|
|
465
|
-
with open(img_path, "rb") as f:
|
|
466
|
-
encoded = base64.b64encode(f.read()).decode("utf-8")
|
|
467
|
-
|
|
468
|
-
# Handle extension safely
|
|
469
|
-
ext = Path(img_path).suffix.lstrip(".").lower()
|
|
470
|
-
encoded_image = f"data:image/{ext};base64,{encoded}"
|
|
471
|
-
|
|
472
|
-
prompt = [
|
|
473
|
-
{
|
|
474
|
-
"type": "text",
|
|
475
|
-
"text": (
|
|
476
|
-
f"You are an image-tagging assistant.\n"
|
|
477
|
-
f"Task ► Examine the attached image and decide, **for each category below**, "
|
|
478
|
-
f"whether it is PRESENT (1) or NOT PRESENT (0).\n\n"
|
|
479
|
-
f"Image is expected to show: {image_description}\n\n"
|
|
480
|
-
f"Categories:\n{categories_str}\n\n"
|
|
481
|
-
f"Output format ► Respond with **only** a JSON object whose keys are the "
|
|
482
|
-
f"quoted category numbers ('1', '2', …) and whose values are 1 or 0. "
|
|
483
|
-
f"No additional keys, comments, or text.\n\n"
|
|
484
|
-
f"Example (three categories):\n"
|
|
485
|
-
f"{example_JSON}"
|
|
486
|
-
),
|
|
487
|
-
},
|
|
488
|
-
{
|
|
489
|
-
"type": "image_url",
|
|
490
|
-
"image_url": {"url": encoded_image, "detail": "high"},
|
|
491
|
-
},
|
|
492
|
-
]
|
|
493
|
-
if model_source == "OpenAI":
|
|
494
|
-
from openai import OpenAI
|
|
495
|
-
client = OpenAI(api_key=api_key)
|
|
496
|
-
try:
|
|
497
|
-
response_obj = client.chat.completions.create(
|
|
498
|
-
model=user_model,
|
|
499
|
-
messages=[{'role': 'user', 'content': prompt}],
|
|
500
|
-
temperature=creativity
|
|
501
|
-
)
|
|
502
|
-
reply = response_obj.choices[0].message.content
|
|
503
|
-
link1.append(reply)
|
|
504
|
-
except Exception as e:
|
|
505
|
-
print(f"An error occurred: {e}")
|
|
506
|
-
link1.append(f"Error processing input: {e}")
|
|
507
|
-
|
|
508
|
-
elif model_source == "Perplexity":
|
|
509
|
-
from openai import OpenAI
|
|
510
|
-
client = OpenAI(api_key=api_key, base_url="https://api.perplexity.ai")
|
|
511
|
-
try:
|
|
512
|
-
response_obj = client.chat.completions.create(
|
|
513
|
-
model=user_model,
|
|
514
|
-
messages=[{'role': 'user', 'content': prompt}],
|
|
515
|
-
temperature=creativity
|
|
516
|
-
)
|
|
517
|
-
reply = response_obj.choices[0].message.content
|
|
518
|
-
link1.append(reply)
|
|
519
|
-
except Exception as e:
|
|
520
|
-
print(f"An error occurred: {e}")
|
|
521
|
-
link1.append(f"Error processing input: {e}")
|
|
522
|
-
elif model_source == "Anthropic":
|
|
523
|
-
import anthropic
|
|
524
|
-
client = anthropic.Anthropic(api_key=api_key)
|
|
525
|
-
try:
|
|
526
|
-
message = client.messages.create(
|
|
527
|
-
model=user_model,
|
|
528
|
-
max_tokens=1024,
|
|
529
|
-
temperature=creativity,
|
|
530
|
-
messages=[{"role": "user", "content": prompt}]
|
|
531
|
-
)
|
|
532
|
-
reply = message.content[0].text # Anthropic returns content as list
|
|
533
|
-
link1.append(reply)
|
|
534
|
-
except Exception as e:
|
|
535
|
-
print(f"An error occurred: {e}")
|
|
536
|
-
link1.append(f"Error processing input: {e}")
|
|
537
|
-
elif model_source == "Mistral":
|
|
538
|
-
from mistralai import Mistral
|
|
539
|
-
client = Mistral(api_key=api_key)
|
|
540
|
-
try:
|
|
541
|
-
response = client.chat.complete(
|
|
542
|
-
model=user_model,
|
|
543
|
-
messages=[
|
|
544
|
-
{'role': 'user', 'content': prompt}
|
|
545
|
-
],
|
|
546
|
-
temperature=creativity
|
|
547
|
-
)
|
|
548
|
-
reply = response.choices[0].message.content
|
|
549
|
-
link1.append(reply)
|
|
550
|
-
except Exception as e:
|
|
551
|
-
print(f"An error occurred: {e}")
|
|
552
|
-
link1.append(f"Error processing input: {e}")
|
|
553
|
-
else:
|
|
554
|
-
raise ValueError("Unknown source! Choose from OpenAI, Anthropic, Perplexity, or Mistral")
|
|
555
|
-
# in situation that no JSON is found
|
|
556
|
-
if reply is not None:
|
|
557
|
-
extracted_json = regex.findall(r'\{(?:[^{}]|(?R))*\}', reply, regex.DOTALL)
|
|
558
|
-
if extracted_json:
|
|
559
|
-
cleaned_json = extracted_json[0].replace('[', '').replace(']', '').replace('\n', '').replace(" ", '').replace(" ", '')
|
|
560
|
-
extracted_jsons.append(cleaned_json)
|
|
561
|
-
#print(cleaned_json)
|
|
562
|
-
else:
|
|
563
|
-
error_message = """{"1":"e"}"""
|
|
564
|
-
extracted_jsons.append(error_message)
|
|
565
|
-
print(error_message)
|
|
566
|
-
else:
|
|
567
|
-
error_message = """{"1":"e"}"""
|
|
568
|
-
extracted_jsons.append(error_message)
|
|
569
|
-
#print(error_message)
|
|
570
|
-
|
|
571
|
-
# --- Safety Save ---
|
|
572
|
-
if safety:
|
|
573
|
-
#print(f"Saving CSV to: {save_directory}")
|
|
574
|
-
# Save progress so far
|
|
575
|
-
temp_df = pd.DataFrame({
|
|
576
|
-
'image_input': image_files[:i+1],
|
|
577
|
-
'link1': link1,
|
|
578
|
-
'json': extracted_jsons
|
|
579
|
-
})
|
|
580
|
-
# Normalize processed jsons so far
|
|
581
|
-
normalized_data_list = []
|
|
582
|
-
for json_str in extracted_jsons:
|
|
583
|
-
try:
|
|
584
|
-
parsed_obj = json.loads(json_str)
|
|
585
|
-
normalized_data_list.append(pd.json_normalize(parsed_obj))
|
|
586
|
-
except json.JSONDecodeError:
|
|
587
|
-
normalized_data_list.append(pd.DataFrame({"1": ["e"]}))
|
|
588
|
-
normalized_data = pd.concat(normalized_data_list, ignore_index=True)
|
|
589
|
-
temp_df = pd.concat([temp_df, normalized_data], axis=1)
|
|
590
|
-
# Save to CSV
|
|
591
|
-
if save_directory is None:
|
|
592
|
-
save_directory = os.getcwd()
|
|
593
|
-
temp_df.to_csv(os.path.join(save_directory, filename), index=False)
|
|
594
|
-
|
|
595
|
-
# --- Final DataFrame ---
|
|
596
|
-
normalized_data_list = []
|
|
597
|
-
for json_str in extracted_jsons:
|
|
598
|
-
try:
|
|
599
|
-
parsed_obj = json.loads(json_str)
|
|
600
|
-
normalized_data_list.append(pd.json_normalize(parsed_obj))
|
|
601
|
-
except json.JSONDecodeError:
|
|
602
|
-
normalized_data_list.append(pd.DataFrame({"1": ["e"]}))
|
|
603
|
-
normalized_data = pd.concat(normalized_data_list, ignore_index=True)
|
|
604
|
-
|
|
605
|
-
categorized_data = pd.DataFrame({
|
|
606
|
-
'image_input': image_files,
|
|
607
|
-
'link1': pd.Series(link1).reset_index(drop=True),
|
|
608
|
-
'json': pd.Series(extracted_jsons).reset_index(drop=True)
|
|
609
|
-
})
|
|
610
|
-
categorized_data = pd.concat([categorized_data, normalized_data], axis=1)
|
|
611
|
-
|
|
612
|
-
if columns != "numbered": #if user wants text columns
|
|
613
|
-
categorized_data.columns = list(categorized_data.columns[:3]) + categories[:len(categorized_data.columns) - 3]
|
|
614
|
-
|
|
615
|
-
if to_csv:
|
|
616
|
-
if save_directory is None:
|
|
617
|
-
save_directory = os.getcwd()
|
|
618
|
-
categorized_data.to_csv(os.path.join(save_directory, filename), index=False)
|
|
619
|
-
|
|
620
|
-
return categorized_data
|
|
621
|
-
|
|
622
|
-
#image score function
|
|
623
|
-
def extract_image_score(
|
|
624
|
-
reference_image_description,
|
|
625
|
-
image_input,
|
|
626
|
-
reference_image,
|
|
627
|
-
api_key,
|
|
628
|
-
columns="numbered",
|
|
629
|
-
user_model="gpt-4o-2024-11-20",
|
|
630
|
-
creativity=0,
|
|
631
|
-
to_csv=False,
|
|
632
|
-
safety=False,
|
|
633
|
-
filename="categorized_data.csv",
|
|
634
|
-
save_directory=None,
|
|
635
|
-
model_source="OpenAI"
|
|
636
|
-
):
|
|
637
|
-
import os
|
|
638
|
-
import json
|
|
639
|
-
import pandas as pd
|
|
640
|
-
import regex
|
|
641
|
-
from tqdm import tqdm
|
|
642
|
-
import glob
|
|
643
|
-
import base64
|
|
644
|
-
from pathlib import Path
|
|
645
|
-
|
|
646
|
-
if save_directory is not None and not os.path.isdir(save_directory):
|
|
647
|
-
# Directory doesn't exist - raise an exception to halt execution
|
|
648
|
-
raise FileNotFoundError(f"Directory {save_directory} doesn't exist")
|
|
649
|
-
|
|
650
|
-
image_extensions = [
|
|
651
|
-
'*.png', '*.jpg', '*.jpeg',
|
|
652
|
-
'*.gif', '*.webp', '*.svg', '*.svgz', '*.avif', '*.apng',
|
|
653
|
-
'*.tif', '*.tiff', '*.bmp',
|
|
654
|
-
'*.heif', '*.heic', '*.ico',
|
|
655
|
-
'*.psd'
|
|
656
|
-
]
|
|
657
|
-
|
|
658
|
-
if not isinstance(image_input, list):
|
|
659
|
-
# If image_input is a filepath (string)
|
|
660
|
-
image_files = []
|
|
661
|
-
for ext in image_extensions:
|
|
662
|
-
image_files.extend(glob.glob(os.path.join(image_input, ext)))
|
|
663
|
-
|
|
664
|
-
print(f"Found {len(image_files)} images.")
|
|
665
|
-
else:
|
|
666
|
-
# If image_files is already a list
|
|
667
|
-
image_files = image_input
|
|
668
|
-
print(f"Provided a list of {len(image_input)} images.")
|
|
669
|
-
|
|
670
|
-
with open(reference_image, 'rb') as f:
|
|
671
|
-
reference_image = f"data:image/{reference_image.split('.')[-1]};base64,{base64.b64encode(f.read()).decode('utf-8')}"
|
|
672
|
-
|
|
673
|
-
link1 = []
|
|
674
|
-
extracted_jsons = []
|
|
675
|
-
|
|
676
|
-
for i, img_path in enumerate(tqdm(image_files, desc="Categorising images"), start=0):
|
|
677
|
-
# Check validity first
|
|
678
|
-
if img_path is None or not os.path.exists(img_path):
|
|
679
|
-
link1.append("Skipped NaN input or invalid path")
|
|
680
|
-
extracted_jsons.append("""{"no_valid_image": 1}""")
|
|
681
|
-
continue # Skip the rest of the loop iteration
|
|
682
|
-
|
|
683
|
-
# Only open the file if path is valid
|
|
684
|
-
with open(img_path, "rb") as f:
|
|
685
|
-
encoded = base64.b64encode(f.read()).decode("utf-8")
|
|
686
|
-
|
|
687
|
-
# Handle extension safely
|
|
688
|
-
ext = Path(img_path).suffix.lstrip(".").lower()
|
|
689
|
-
encoded_image = f"data:image/{ext};base64,{encoded}"
|
|
690
|
-
|
|
691
|
-
prompt = [
|
|
692
|
-
{
|
|
693
|
-
"type": "text",
|
|
694
|
-
"text": (
|
|
695
|
-
f"You are a visual similarity assessment system.\n"
|
|
696
|
-
f"Task ► Compare these two images:\n"
|
|
697
|
-
f"1. REFERENCE (left): {reference_image_description}\n"
|
|
698
|
-
f"2. INPUT (right): User-provided drawing\n\n"
|
|
699
|
-
f"Rating criteria:\n"
|
|
700
|
-
f"1: No meaningful similarity (fundamentally different)\n"
|
|
701
|
-
f"2: Barely recognizable similarity (25% match)\n"
|
|
702
|
-
f"3: Partial match (50% key features)\n"
|
|
703
|
-
f"4: Strong alignment (75% features)\n"
|
|
704
|
-
f"5: Near-perfect match (90%+ similarity)\n\n"
|
|
705
|
-
f"Output format ► Return ONLY:\n"
|
|
706
|
-
"{\n"
|
|
707
|
-
' "score": [1-5],\n'
|
|
708
|
-
' "summary": "reason you scored"\n'
|
|
709
|
-
"}\n\n"
|
|
710
|
-
f"Critical rules:\n"
|
|
711
|
-
f"- Score must reflect shape, proportions, and key details\n"
|
|
712
|
-
f"- List only concrete matching elements from reference\n"
|
|
713
|
-
f"- No markdown or additional text"
|
|
714
|
-
),
|
|
715
|
-
},
|
|
716
|
-
{"type": "image_url",
|
|
717
|
-
"image_url": {"url": reference_image, "detail": "high"}
|
|
718
|
-
},
|
|
719
|
-
{
|
|
720
|
-
"type": "image_url",
|
|
721
|
-
|
|
722
|
-
"image_url": {"url": encoded_image, "detail": "high"},
|
|
723
|
-
},
|
|
724
|
-
]
|
|
725
|
-
if model_source == "OpenAI":
|
|
726
|
-
from openai import OpenAI
|
|
727
|
-
client = OpenAI(api_key=api_key)
|
|
728
|
-
try:
|
|
729
|
-
response_obj = client.chat.completions.create(
|
|
730
|
-
model=user_model,
|
|
731
|
-
messages=[{'role': 'user', 'content': prompt}],
|
|
732
|
-
temperature=creativity
|
|
733
|
-
)
|
|
734
|
-
reply = response_obj.choices[0].message.content
|
|
735
|
-
link1.append(reply)
|
|
736
|
-
except Exception as e:
|
|
737
|
-
print(f"An error occurred: {e}")
|
|
738
|
-
link1.append(f"Error processing input: {e}")
|
|
739
|
-
|
|
740
|
-
elif model_source == "Perplexity":
|
|
741
|
-
from openai import OpenAI
|
|
742
|
-
client = OpenAI(api_key=api_key, base_url="https://api.perplexity.ai")
|
|
743
|
-
try:
|
|
744
|
-
response_obj = client.chat.completions.create(
|
|
745
|
-
model=user_model,
|
|
746
|
-
messages=[{'role': 'user', 'content': prompt}],
|
|
747
|
-
temperature=creativity
|
|
748
|
-
)
|
|
749
|
-
reply = response_obj.choices[0].message.content
|
|
750
|
-
link1.append(reply)
|
|
751
|
-
except Exception as e:
|
|
752
|
-
print(f"An error occurred: {e}")
|
|
753
|
-
link1.append(f"Error processing input: {e}")
|
|
754
|
-
elif model_source == "Anthropic":
|
|
755
|
-
import anthropic
|
|
756
|
-
client = anthropic.Anthropic(api_key=api_key)
|
|
757
|
-
try:
|
|
758
|
-
message = client.messages.create(
|
|
759
|
-
model=user_model,
|
|
760
|
-
max_tokens=1024,
|
|
761
|
-
temperature=creativity,
|
|
762
|
-
messages=[{"role": "user", "content": prompt}]
|
|
763
|
-
)
|
|
764
|
-
reply = message.content[0].text # Anthropic returns content as list
|
|
765
|
-
link1.append(reply)
|
|
766
|
-
except Exception as e:
|
|
767
|
-
print(f"An error occurred: {e}")
|
|
768
|
-
link1.append(f"Error processing input: {e}")
|
|
769
|
-
elif model_source == "Mistral":
|
|
770
|
-
from mistralai import Mistral
|
|
771
|
-
client = Mistral(api_key=api_key)
|
|
772
|
-
try:
|
|
773
|
-
response = client.chat.complete(
|
|
774
|
-
model=user_model,
|
|
775
|
-
messages=[
|
|
776
|
-
{'role': 'user', 'content': prompt}
|
|
777
|
-
],
|
|
778
|
-
temperature=creativity
|
|
779
|
-
)
|
|
780
|
-
reply = response.choices[0].message.content
|
|
781
|
-
link1.append(reply)
|
|
782
|
-
except Exception as e:
|
|
783
|
-
print(f"An error occurred: {e}")
|
|
784
|
-
link1.append(f"Error processing input: {e}")
|
|
785
|
-
else:
|
|
786
|
-
raise ValueError("Unknown source! Choose from OpenAI, Anthropic, Perplexity, or Mistral")
|
|
787
|
-
# in situation that no JSON is found
|
|
788
|
-
if reply is not None:
|
|
789
|
-
extracted_json = regex.findall(r'\{(?:[^{}]|(?R))*\}', reply, regex.DOTALL)
|
|
790
|
-
if extracted_json:
|
|
791
|
-
cleaned_json = extracted_json[0].replace('[', '').replace(']', '').replace('\n', '').replace(" ", '').replace(" ", '')
|
|
792
|
-
extracted_jsons.append(cleaned_json)
|
|
793
|
-
#print(cleaned_json)
|
|
794
|
-
else:
|
|
795
|
-
error_message = """{"1":"e"}"""
|
|
796
|
-
extracted_jsons.append(error_message)
|
|
797
|
-
print(error_message)
|
|
798
|
-
else:
|
|
799
|
-
error_message = """{"1":"e"}"""
|
|
800
|
-
extracted_jsons.append(error_message)
|
|
801
|
-
#print(error_message)
|
|
802
|
-
|
|
803
|
-
# --- Safety Save ---
|
|
804
|
-
if safety:
|
|
805
|
-
# Save progress so far
|
|
806
|
-
temp_df = pd.DataFrame({
|
|
807
|
-
'image_input': image_files[:i+1],
|
|
808
|
-
'link1': link1,
|
|
809
|
-
'json': extracted_jsons
|
|
810
|
-
})
|
|
811
|
-
# Normalize processed jsons so far
|
|
812
|
-
normalized_data_list = []
|
|
813
|
-
for json_str in extracted_jsons:
|
|
814
|
-
try:
|
|
815
|
-
parsed_obj = json.loads(json_str)
|
|
816
|
-
normalized_data_list.append(pd.json_normalize(parsed_obj))
|
|
817
|
-
except json.JSONDecodeError:
|
|
818
|
-
normalized_data_list.append(pd.DataFrame({"1": ["e"]}))
|
|
819
|
-
normalized_data = pd.concat(normalized_data_list, ignore_index=True)
|
|
820
|
-
temp_df = pd.concat([temp_df, normalized_data], axis=1)
|
|
821
|
-
# Save to CSV
|
|
822
|
-
if save_directory is None:
|
|
823
|
-
save_directory = os.getcwd()
|
|
824
|
-
temp_df.to_csv(os.path.join(save_directory, filename), index=False)
|
|
825
|
-
|
|
826
|
-
# --- Final DataFrame ---
|
|
827
|
-
normalized_data_list = []
|
|
828
|
-
for json_str in extracted_jsons:
|
|
829
|
-
try:
|
|
830
|
-
parsed_obj = json.loads(json_str)
|
|
831
|
-
normalized_data_list.append(pd.json_normalize(parsed_obj))
|
|
832
|
-
except json.JSONDecodeError:
|
|
833
|
-
normalized_data_list.append(pd.DataFrame({"1": ["e"]}))
|
|
834
|
-
normalized_data = pd.concat(normalized_data_list, ignore_index=True)
|
|
835
|
-
|
|
836
|
-
categorized_data = pd.DataFrame({
|
|
837
|
-
'image_input': image_files,
|
|
838
|
-
'link1': pd.Series(link1).reset_index(drop=True),
|
|
839
|
-
'json': pd.Series(extracted_jsons).reset_index(drop=True)
|
|
840
|
-
})
|
|
841
|
-
categorized_data = pd.concat([categorized_data, normalized_data], axis=1)
|
|
842
|
-
|
|
843
|
-
if to_csv:
|
|
844
|
-
if save_directory is None:
|
|
845
|
-
save_directory = os.getcwd()
|
|
846
|
-
categorized_data.to_csv(os.path.join(save_directory, filename), index=False)
|
|
847
|
-
|
|
848
|
-
return categorized_data
|
|
849
|
-
|
|
850
|
-
# image features function
|
|
851
|
-
def extract_image_features(
|
|
852
|
-
image_description,
|
|
853
|
-
image_input,
|
|
854
|
-
features_to_extract,
|
|
855
|
-
api_key,
|
|
856
|
-
columns="numbered",
|
|
857
|
-
user_model="gpt-4o-2024-11-20",
|
|
858
|
-
creativity=0,
|
|
859
|
-
to_csv=False,
|
|
860
|
-
safety=False,
|
|
861
|
-
filename="categorized_data.csv",
|
|
862
|
-
save_directory=None,
|
|
863
|
-
model_source="OpenAI"
|
|
864
|
-
):
|
|
865
|
-
import os
|
|
866
|
-
import json
|
|
867
|
-
import pandas as pd
|
|
868
|
-
import regex
|
|
869
|
-
from tqdm import tqdm
|
|
870
|
-
import glob
|
|
871
|
-
import base64
|
|
872
|
-
from pathlib import Path
|
|
873
|
-
|
|
874
|
-
if save_directory is not None and not os.path.isdir(save_directory):
|
|
875
|
-
# Directory doesn't exist - raise an exception to halt execution
|
|
876
|
-
raise FileNotFoundError(f"Directory {save_directory} doesn't exist")
|
|
877
|
-
|
|
878
|
-
image_extensions = [
|
|
879
|
-
'*.png', '*.jpg', '*.jpeg',
|
|
880
|
-
'*.gif', '*.webp', '*.svg', '*.svgz', '*.avif', '*.apng',
|
|
881
|
-
'*.tif', '*.tiff', '*.bmp',
|
|
882
|
-
'*.heif', '*.heic', '*.ico',
|
|
883
|
-
'*.psd'
|
|
884
|
-
]
|
|
885
|
-
|
|
886
|
-
if not isinstance(image_input, list):
|
|
887
|
-
# If image_input is a filepath (string)
|
|
888
|
-
image_files = []
|
|
889
|
-
for ext in image_extensions:
|
|
890
|
-
image_files.extend(glob.glob(os.path.join(image_input, ext)))
|
|
891
|
-
|
|
892
|
-
print(f"Found {len(image_files)} images.")
|
|
893
|
-
else:
|
|
894
|
-
# If image_files is already a list
|
|
895
|
-
image_files = image_input
|
|
896
|
-
print(f"Provided a list of {len(image_input)} images.")
|
|
897
|
-
|
|
898
|
-
categories_str = "\n".join(f"{i + 1}. {cat}" for i, cat in enumerate(features_to_extract))
|
|
899
|
-
cat_num = len(features_to_extract)
|
|
900
|
-
category_dict = {str(i+1): "0" for i in range(cat_num)}
|
|
901
|
-
example_JSON = json.dumps(category_dict, indent=4)
|
|
902
|
-
|
|
903
|
-
# ensure number of categories is what user wants
|
|
904
|
-
print("\nThe image features to be extracted are:")
|
|
905
|
-
for i, cat in enumerate(features_to_extract, 1):
|
|
906
|
-
print(f"{i}. {cat}")
|
|
907
|
-
|
|
908
|
-
link1 = []
|
|
909
|
-
extracted_jsons = []
|
|
910
|
-
|
|
911
|
-
for i, img_path in enumerate(
|
|
912
|
-
tqdm(image_files, desc="Categorising images"), start=0):
|
|
913
|
-
# encode this specific image once
|
|
914
|
-
with open(img_path, "rb") as f:
|
|
915
|
-
encoded = base64.b64encode(f.read()).decode("utf-8")
|
|
916
|
-
ext = Path(img_path).suffix.lstrip(".").lower()
|
|
917
|
-
encoded_image = f"data:image/{ext};base64,{encoded}"
|
|
918
|
-
|
|
919
|
-
prompt = [
|
|
920
|
-
{
|
|
921
|
-
"type": "text",
|
|
922
|
-
"text": (
|
|
923
|
-
f"You are a visual question answering assistant.\n"
|
|
924
|
-
f"Task ► Analyze the attached image and answer these specific questions:\n\n"
|
|
925
|
-
f"Image context: {image_description}\n\n"
|
|
926
|
-
f"Questions to answer:\n{categories_str}\n\n"
|
|
927
|
-
f"Output format ► Return **only** a JSON object where:\n"
|
|
928
|
-
f"- Keys are question numbers ('1', '2', ...)\n"
|
|
929
|
-
f"- Values are concise answers (numbers, short phrases)\n\n"
|
|
930
|
-
f"Example for 3 questions:\n"
|
|
931
|
-
"{\n"
|
|
932
|
-
' "1": "4",\n'
|
|
933
|
-
' "2": "blue",\n'
|
|
934
|
-
' "3": "yes"\n'
|
|
935
|
-
"}\n\n"
|
|
936
|
-
f"Important rules:\n"
|
|
937
|
-
f"1. Answer directly - no explanations\n"
|
|
938
|
-
f"2. Use exact numerical values when possible\n"
|
|
939
|
-
f"3. For yes/no questions, use 'yes' or 'no'\n"
|
|
940
|
-
f"4. Never add extra keys or formatting"
|
|
941
|
-
),
|
|
942
|
-
},
|
|
943
|
-
{
|
|
944
|
-
"type": "image_url",
|
|
945
|
-
"image_url": {"url": encoded_image, "detail": "high"},
|
|
946
|
-
},
|
|
947
|
-
]
|
|
948
|
-
if model_source == "OpenAI":
|
|
949
|
-
from openai import OpenAI
|
|
950
|
-
client = OpenAI(api_key=api_key)
|
|
951
|
-
try:
|
|
952
|
-
response_obj = client.chat.completions.create(
|
|
953
|
-
model=user_model,
|
|
954
|
-
messages=[{'role': 'user', 'content': prompt}],
|
|
955
|
-
temperature=creativity
|
|
956
|
-
)
|
|
957
|
-
reply = response_obj.choices[0].message.content
|
|
958
|
-
link1.append(reply)
|
|
959
|
-
except Exception as e:
|
|
960
|
-
print(f"An error occurred: {e}")
|
|
961
|
-
link1.append(f"Error processing input: {e}")
|
|
962
|
-
|
|
963
|
-
elif model_source == "Perplexity":
|
|
964
|
-
from openai import OpenAI
|
|
965
|
-
client = OpenAI(api_key=api_key, base_url="https://api.perplexity.ai")
|
|
966
|
-
try:
|
|
967
|
-
response_obj = client.chat.completions.create(
|
|
968
|
-
model=user_model,
|
|
969
|
-
messages=[{'role': 'user', 'content': prompt}],
|
|
970
|
-
temperature=creativity
|
|
971
|
-
)
|
|
972
|
-
reply = response_obj.choices[0].message.content
|
|
973
|
-
link1.append(reply)
|
|
974
|
-
except Exception as e:
|
|
975
|
-
print(f"An error occurred: {e}")
|
|
976
|
-
link1.append(f"Error processing input: {e}")
|
|
977
|
-
elif model_source == "Anthropic":
|
|
978
|
-
import anthropic
|
|
979
|
-
client = anthropic.Anthropic(api_key=api_key)
|
|
980
|
-
try:
|
|
981
|
-
message = client.messages.create(
|
|
982
|
-
model=user_model,
|
|
983
|
-
max_tokens=1024,
|
|
984
|
-
temperature=creativity,
|
|
985
|
-
messages=[{"role": "user", "content": prompt}]
|
|
986
|
-
)
|
|
987
|
-
reply = message.content[0].text # Anthropic returns content as list
|
|
988
|
-
link1.append(reply)
|
|
989
|
-
except Exception as e:
|
|
990
|
-
print(f"An error occurred: {e}")
|
|
991
|
-
link1.append(f"Error processing input: {e}")
|
|
992
|
-
elif model_source == "Mistral":
|
|
993
|
-
from mistralai import Mistral
|
|
994
|
-
client = Mistral(api_key=api_key)
|
|
995
|
-
try:
|
|
996
|
-
response = client.chat.complete(
|
|
997
|
-
model=user_model,
|
|
998
|
-
messages=[
|
|
999
|
-
{'role': 'user', 'content': prompt}
|
|
1000
|
-
],
|
|
1001
|
-
temperature=creativity
|
|
1002
|
-
)
|
|
1003
|
-
reply = response.choices[0].message.content
|
|
1004
|
-
link1.append(reply)
|
|
1005
|
-
except Exception as e:
|
|
1006
|
-
print(f"An error occurred: {e}")
|
|
1007
|
-
link1.append(f"Error processing input: {e}")
|
|
1008
|
-
else:
|
|
1009
|
-
raise ValueError("Unknown source! Choose from OpenAI, Anthropic, Perplexity, or Mistral")
|
|
1010
|
-
# in situation that no JSON is found
|
|
1011
|
-
if reply is not None:
|
|
1012
|
-
extracted_json = regex.findall(r'\{(?:[^{}]|(?R))*\}', reply, regex.DOTALL)
|
|
1013
|
-
if extracted_json:
|
|
1014
|
-
cleaned_json = extracted_json[0].replace('[', '').replace(']', '').replace('\n', '').replace(" ", '').replace(" ", '')
|
|
1015
|
-
extracted_jsons.append(cleaned_json)
|
|
1016
|
-
#print(cleaned_json)
|
|
1017
|
-
else:
|
|
1018
|
-
error_message = """{"1":"e"}"""
|
|
1019
|
-
extracted_jsons.append(error_message)
|
|
1020
|
-
print(error_message)
|
|
1021
|
-
else:
|
|
1022
|
-
error_message = """{"1":"e"}"""
|
|
1023
|
-
extracted_jsons.append(error_message)
|
|
1024
|
-
#print(error_message)
|
|
1025
|
-
|
|
1026
|
-
# --- Safety Save ---
|
|
1027
|
-
if safety:
|
|
1028
|
-
#print(f"Saving CSV to: {save_directory}")
|
|
1029
|
-
# Save progress so far
|
|
1030
|
-
temp_df = pd.DataFrame({
|
|
1031
|
-
'image_input': image_files[:i+1],
|
|
1032
|
-
'link1': link1,
|
|
1033
|
-
'json': extracted_jsons
|
|
1034
|
-
})
|
|
1035
|
-
# Normalize processed jsons so far
|
|
1036
|
-
normalized_data_list = []
|
|
1037
|
-
for json_str in extracted_jsons:
|
|
1038
|
-
try:
|
|
1039
|
-
parsed_obj = json.loads(json_str)
|
|
1040
|
-
normalized_data_list.append(pd.json_normalize(parsed_obj))
|
|
1041
|
-
except json.JSONDecodeError:
|
|
1042
|
-
normalized_data_list.append(pd.DataFrame({"1": ["e"]}))
|
|
1043
|
-
normalized_data = pd.concat(normalized_data_list, ignore_index=True)
|
|
1044
|
-
temp_df = pd.concat([temp_df, normalized_data], axis=1)
|
|
1045
|
-
# Save to CSV
|
|
1046
|
-
if save_directory is None:
|
|
1047
|
-
save_directory = os.getcwd()
|
|
1048
|
-
temp_df.to_csv(os.path.join(save_directory, filename), index=False)
|
|
1049
|
-
|
|
1050
|
-
# --- Final DataFrame ---
|
|
1051
|
-
normalized_data_list = []
|
|
1052
|
-
for json_str in extracted_jsons:
|
|
1053
|
-
try:
|
|
1054
|
-
parsed_obj = json.loads(json_str)
|
|
1055
|
-
normalized_data_list.append(pd.json_normalize(parsed_obj))
|
|
1056
|
-
except json.JSONDecodeError:
|
|
1057
|
-
normalized_data_list.append(pd.DataFrame({"1": ["e"]}))
|
|
1058
|
-
normalized_data = pd.concat(normalized_data_list, ignore_index=True)
|
|
1059
|
-
|
|
1060
|
-
categorized_data = pd.DataFrame({
|
|
1061
|
-
'image_input': image_files,
|
|
1062
|
-
'link1': pd.Series(link1).reset_index(drop=True),
|
|
1063
|
-
'json': pd.Series(extracted_jsons).reset_index(drop=True)
|
|
1064
|
-
})
|
|
1065
|
-
categorized_data = pd.concat([categorized_data, normalized_data], axis=1)
|
|
1066
|
-
|
|
1067
|
-
if to_csv:
|
|
1068
|
-
if save_directory is None:
|
|
1069
|
-
save_directory = os.getcwd()
|
|
1070
|
-
categorized_data.to_csv(os.path.join(save_directory, filename), index=False)
|
|
1071
|
-
|
|
1072
|
-
return categorized_data
|
|
1073
|
-
|
|
1074
|
-
# image multi-class (binary) function
|
|
1075
|
-
def cerad_score(
|
|
1076
|
-
shape,
|
|
1077
|
-
image_input,
|
|
1078
|
-
api_key,
|
|
1079
|
-
user_model="gpt-4o-2024-11-20",
|
|
1080
|
-
creativity=0,
|
|
1081
|
-
safety=False,
|
|
1082
|
-
filename="categorized_data.csv",
|
|
1083
|
-
model_source="OpenAI"
|
|
1084
|
-
):
|
|
1085
|
-
import os
|
|
1086
|
-
import json
|
|
1087
|
-
import pandas as pd
|
|
1088
|
-
import regex
|
|
1089
|
-
from tqdm import tqdm
|
|
1090
|
-
import glob
|
|
1091
|
-
import base64
|
|
1092
|
-
from pathlib import Path
|
|
1093
|
-
|
|
1094
|
-
shape = shape.lower()
|
|
1095
|
-
|
|
1096
|
-
if shape == "circle":
|
|
1097
|
-
categories = ["The image contains a drawing that clearly represents a circle",
|
|
1098
|
-
"The drawing does not resemble a circle",
|
|
1099
|
-
"The drawing resembles a circle",
|
|
1100
|
-
"The circle is closed",
|
|
1101
|
-
"The circle is almost closed",
|
|
1102
|
-
"The circle is circular",
|
|
1103
|
-
"The circle is almost circular",
|
|
1104
|
-
"None of the above descriptions apply"]
|
|
1105
|
-
elif shape == "diamond":
|
|
1106
|
-
categories = ["The image contains a drawing that clearly represents a diamond shape",
|
|
1107
|
-
"It has a drawing of a square",
|
|
1108
|
-
"A drawn shape DOES NOT resemble a diamond",
|
|
1109
|
-
"A drawn shape resembles a diamond",
|
|
1110
|
-
"The drawn shape has 4 sides",
|
|
1111
|
-
"The drawn shape sides are about equal",
|
|
1112
|
-
"If a diamond is drawn it's more elaborate than a simple diamond (such as overlapping diamonds or a diamond with an extras lines inside)",
|
|
1113
|
-
"None of the above descriptions apply"]
|
|
1114
|
-
elif shape == "rectangles" or shape == "overlapping rectangles":
|
|
1115
|
-
categories = ["The image contains a drawing that clearly represents overlapping rectangles",
|
|
1116
|
-
"A drawn shape DOES NOT resemble a overlapping rectangles",
|
|
1117
|
-
"A drawn shape resembles a overlapping rectangles",
|
|
1118
|
-
"Rectangle 1 has 4 sides",
|
|
1119
|
-
"Rectangle 2 has 4 sides",
|
|
1120
|
-
"The rectangles are overlapping",
|
|
1121
|
-
"The rectangles overlap contains a longer vertical rectangle with top and bottom portruding",
|
|
1122
|
-
"None of the above descriptions apply"]
|
|
1123
|
-
elif shape == "cube":
|
|
1124
|
-
categories = ["The image contains a drawing that clearly represents a cube (3D box shape)",
|
|
1125
|
-
"The image does NOT contain any drawing that resembles a cube or 3D box",
|
|
1126
|
-
"The image contains a WELL-DRAWN recognizable cube with proper 3D perspective",
|
|
1127
|
-
"If a cube is present: the front face appears as a square or diamond shape",
|
|
1128
|
-
"If a cube is present: internal/hidden edges are visible (showing 3D depth, not just an outline)",
|
|
1129
|
-
"If a cube is present: the front and back faces appear parallel to each other",
|
|
1130
|
-
"The image contains only a 2D square (flat shape, no 3D appearance)",
|
|
1131
|
-
"None of the above descriptions apply"]
|
|
1132
|
-
else:
|
|
1133
|
-
raise ValueError("Invalid shape! Choose from 'circle', 'diamond', 'rectangles', or 'cube'.")
|
|
1134
|
-
|
|
1135
|
-
image_extensions = [
|
|
1136
|
-
'*.png', '*.jpg', '*.jpeg',
|
|
1137
|
-
'*.gif', '*.webp', '*.svg', '*.svgz', '*.avif', '*.apng',
|
|
1138
|
-
'*.tif', '*.tiff', '*.bmp',
|
|
1139
|
-
'*.heif', '*.heic', '*.ico',
|
|
1140
|
-
'*.psd'
|
|
1141
|
-
]
|
|
1142
|
-
|
|
1143
|
-
if not isinstance(image_input, list):
|
|
1144
|
-
# If image_input is a filepath (string)
|
|
1145
|
-
image_files = []
|
|
1146
|
-
for ext in image_extensions:
|
|
1147
|
-
image_files.extend(glob.glob(os.path.join(image_input, ext)))
|
|
1148
|
-
|
|
1149
|
-
print(f"Found {len(image_files)} images.")
|
|
1150
|
-
else:
|
|
1151
|
-
# If image_files is already a list
|
|
1152
|
-
image_files = image_input
|
|
1153
|
-
print(f"Provided a list of {len(image_input)} images.")
|
|
1154
|
-
|
|
1155
|
-
categories_str = "\n".join(f"{i + 1}. {cat}" for i, cat in enumerate(categories))
|
|
1156
|
-
cat_num = len(categories)
|
|
1157
|
-
category_dict = {str(i+1): "0" for i in range(cat_num)}
|
|
1158
|
-
example_JSON = json.dumps(category_dict, indent=4)
|
|
1159
|
-
|
|
1160
|
-
link1 = []
|
|
1161
|
-
extracted_jsons = []
|
|
1162
|
-
|
|
1163
|
-
for i, img_path in enumerate(tqdm(image_files, desc="Categorising images"), start=0):
|
|
1164
|
-
# Check validity first
|
|
1165
|
-
if img_path is None or not os.path.exists(img_path):
|
|
1166
|
-
link1.append("Skipped NaN input or invalid path")
|
|
1167
|
-
extracted_jsons.append("""{"no_valid_image": 1}""")
|
|
1168
|
-
continue # Skip the rest of the loop iteration
|
|
1169
|
-
|
|
1170
|
-
# Only open the file if path is valid
|
|
1171
|
-
with open(img_path, "rb") as f:
|
|
1172
|
-
encoded = base64.b64encode(f.read()).decode("utf-8")
|
|
1173
|
-
|
|
1174
|
-
# Handle extension safely
|
|
1175
|
-
ext = Path(img_path).suffix.lstrip(".").lower()
|
|
1176
|
-
encoded_image = f"data:image/{ext};base64,{encoded}"
|
|
1177
|
-
|
|
1178
|
-
prompt = [
|
|
1179
|
-
{
|
|
1180
|
-
"type": "text",
|
|
1181
|
-
"text": (
|
|
1182
|
-
f"You are an image-tagging assistant trained in the CERAD Constructional Praxis test.\n"
|
|
1183
|
-
f"Task ► Examine the attached image and decide, **for each category below**, "
|
|
1184
|
-
f"whether it is PRESENT (1) or NOT PRESENT (0).\n\n"
|
|
1185
|
-
f"Image is expected to show within it a drawing of a {shape}.\n\n"
|
|
1186
|
-
f"Categories:\n{categories_str}\n\n"
|
|
1187
|
-
f"Output format ► Respond with **only** a JSON object whose keys are the "
|
|
1188
|
-
f"quoted category numbers ('1', '2', …) and whose values are 1 or 0. "
|
|
1189
|
-
f"No additional keys, comments, or text.\n\n"
|
|
1190
|
-
f"Example:\n"
|
|
1191
|
-
f"{example_JSON}"
|
|
1192
|
-
),
|
|
1193
|
-
},
|
|
1194
|
-
{
|
|
1195
|
-
"type": "image_url",
|
|
1196
|
-
"image_url": {"url": encoded_image, "detail": "high"},
|
|
1197
|
-
},
|
|
1198
|
-
]
|
|
1199
|
-
if model_source == "OpenAI":
|
|
1200
|
-
from openai import OpenAI
|
|
1201
|
-
client = OpenAI(api_key=api_key)
|
|
1202
|
-
try:
|
|
1203
|
-
response_obj = client.chat.completions.create(
|
|
1204
|
-
model=user_model,
|
|
1205
|
-
messages=[{'role': 'user', 'content': prompt}],
|
|
1206
|
-
temperature=creativity
|
|
1207
|
-
)
|
|
1208
|
-
reply = response_obj.choices[0].message.content
|
|
1209
|
-
link1.append(reply)
|
|
1210
|
-
except Exception as e:
|
|
1211
|
-
print(f"An error occurred: {e}")
|
|
1212
|
-
link1.append(f"Error processing input: {e}")
|
|
1213
|
-
|
|
1214
|
-
elif model_source == "Perplexity":
|
|
1215
|
-
from openai import OpenAI
|
|
1216
|
-
client = OpenAI(api_key=api_key, base_url="https://api.perplexity.ai")
|
|
1217
|
-
try:
|
|
1218
|
-
response_obj = client.chat.completions.create(
|
|
1219
|
-
model=user_model,
|
|
1220
|
-
messages=[{'role': 'user', 'content': prompt}],
|
|
1221
|
-
temperature=creativity
|
|
1222
|
-
)
|
|
1223
|
-
reply = response_obj.choices[0].message.content
|
|
1224
|
-
link1.append(reply)
|
|
1225
|
-
except Exception as e:
|
|
1226
|
-
print(f"An error occurred: {e}")
|
|
1227
|
-
link1.append(f"Error processing input: {e}")
|
|
1228
|
-
elif model_source == "Anthropic":
|
|
1229
|
-
import anthropic
|
|
1230
|
-
client = anthropic.Anthropic(api_key=api_key)
|
|
1231
|
-
try:
|
|
1232
|
-
message = client.messages.create(
|
|
1233
|
-
model=user_model,
|
|
1234
|
-
max_tokens=1024,
|
|
1235
|
-
temperature=creativity,
|
|
1236
|
-
messages=[{"role": "user", "content": prompt}]
|
|
1237
|
-
)
|
|
1238
|
-
reply = message.content[0].text # Anthropic returns content as list
|
|
1239
|
-
link1.append(reply)
|
|
1240
|
-
except Exception as e:
|
|
1241
|
-
print(f"An error occurred: {e}")
|
|
1242
|
-
link1.append(f"Error processing input: {e}")
|
|
1243
|
-
elif model_source == "Mistral":
|
|
1244
|
-
from mistralai import Mistral
|
|
1245
|
-
client = Mistral(api_key=api_key)
|
|
1246
|
-
try:
|
|
1247
|
-
response = client.chat.complete(
|
|
1248
|
-
model=user_model,
|
|
1249
|
-
messages=[
|
|
1250
|
-
{'role': 'user', 'content': prompt}
|
|
1251
|
-
],
|
|
1252
|
-
temperature=creativity
|
|
1253
|
-
)
|
|
1254
|
-
reply = response.choices[0].message.content
|
|
1255
|
-
link1.append(reply)
|
|
1256
|
-
except Exception as e:
|
|
1257
|
-
print(f"An error occurred: {e}")
|
|
1258
|
-
link1.append(f"Error processing input: {e}")
|
|
1259
|
-
else:
|
|
1260
|
-
raise ValueError("Unknown source! Choose from OpenAI, Anthropic, Perplexity, or Mistral")
|
|
1261
|
-
# in situation that no JSON is found
|
|
1262
|
-
if reply is not None:
|
|
1263
|
-
extracted_json = regex.findall(r'\{(?:[^{}]|(?R))*\}', reply, regex.DOTALL)
|
|
1264
|
-
if extracted_json:
|
|
1265
|
-
cleaned_json = extracted_json[0].replace('[', '').replace(']', '').replace('\n', '').replace(" ", '').replace(" ", '')
|
|
1266
|
-
extracted_jsons.append(cleaned_json)
|
|
1267
|
-
#print(cleaned_json)
|
|
1268
|
-
else:
|
|
1269
|
-
error_message = """{"1":"e"}"""
|
|
1270
|
-
extracted_jsons.append(error_message)
|
|
1271
|
-
print(error_message)
|
|
1272
|
-
else:
|
|
1273
|
-
error_message = """{"1":"e"}"""
|
|
1274
|
-
extracted_jsons.append(error_message)
|
|
1275
|
-
#print(error_message)
|
|
1276
|
-
|
|
1277
|
-
# --- Safety Save ---
|
|
1278
|
-
if safety:
|
|
1279
|
-
#print(f"Saving CSV to: {save_directory}")
|
|
1280
|
-
# Save progress so far
|
|
1281
|
-
temp_df = pd.DataFrame({
|
|
1282
|
-
'image_input': image_files[:i+1],
|
|
1283
|
-
'link1': link1,
|
|
1284
|
-
'json': extracted_jsons
|
|
1285
|
-
})
|
|
1286
|
-
# Normalize processed jsons so far
|
|
1287
|
-
normalized_data_list = []
|
|
1288
|
-
for json_str in extracted_jsons:
|
|
1289
|
-
try:
|
|
1290
|
-
parsed_obj = json.loads(json_str)
|
|
1291
|
-
normalized_data_list.append(pd.json_normalize(parsed_obj))
|
|
1292
|
-
except json.JSONDecodeError:
|
|
1293
|
-
normalized_data_list.append(pd.DataFrame({"1": ["e"]}))
|
|
1294
|
-
normalized_data = pd.concat(normalized_data_list, ignore_index=True)
|
|
1295
|
-
temp_df = pd.concat([temp_df, normalized_data], axis=1)
|
|
1296
|
-
# Save to CSV
|
|
1297
|
-
if filename is None:
|
|
1298
|
-
filepath = os.path.join(os.getcwd(), 'catllm_data.csv')
|
|
1299
|
-
else:
|
|
1300
|
-
filepath = filename
|
|
1301
|
-
temp_df.to_csv(filepath, index=False)
|
|
1302
|
-
|
|
1303
|
-
# --- Final DataFrame ---
|
|
1304
|
-
normalized_data_list = []
|
|
1305
|
-
for json_str in extracted_jsons:
|
|
1306
|
-
try:
|
|
1307
|
-
parsed_obj = json.loads(json_str)
|
|
1308
|
-
normalized_data_list.append(pd.json_normalize(parsed_obj))
|
|
1309
|
-
except json.JSONDecodeError:
|
|
1310
|
-
normalized_data_list.append(pd.DataFrame({"1": ["e"]}))
|
|
1311
|
-
normalized_data = pd.concat(normalized_data_list, ignore_index=True)
|
|
1312
|
-
|
|
1313
|
-
categorized_data = pd.DataFrame({
|
|
1314
|
-
'image_input': image_files,
|
|
1315
|
-
'link1': pd.Series(link1).reset_index(drop=True),
|
|
1316
|
-
'json': pd.Series(extracted_jsons).reset_index(drop=True)
|
|
1317
|
-
})
|
|
1318
|
-
categorized_data = pd.concat([categorized_data, normalized_data], axis=1)
|
|
1319
|
-
columns_to_convert = ["1", "2", "3", "4", "5", "6", "7"]
|
|
1320
|
-
categorized_data[columns_to_convert] = categorized_data[columns_to_convert].apply(pd.to_numeric, errors='coerce').fillna(0).astype(int)
|
|
1321
|
-
|
|
1322
|
-
if shape == "circle":
|
|
1323
|
-
|
|
1324
|
-
categorized_data = categorized_data.rename(columns={
|
|
1325
|
-
"1": "drawing_present",
|
|
1326
|
-
"2": "not_similar",
|
|
1327
|
-
"3": "similar",
|
|
1328
|
-
"4": "cir_closed",
|
|
1329
|
-
"5": "cir_almost_closed",
|
|
1330
|
-
"6": "cir_round",
|
|
1331
|
-
"7": "cir_almost_round",
|
|
1332
|
-
"8": "none"
|
|
1333
|
-
})
|
|
1334
|
-
|
|
1335
|
-
categorized_data['score'] = categorized_data['cir_almost_closed'] + categorized_data['cir_closed'] + categorized_data['cir_round'] + categorized_data['cir_almost_round']
|
|
1336
|
-
categorized_data.loc[categorized_data['none'] == 1, 'score'] = 0
|
|
1337
|
-
categorized_data.loc[(categorized_data['drawing_present'] == 0) & (categorized_data['score'] == 0), 'score'] = 0
|
|
1338
|
-
|
|
1339
|
-
elif shape == "diamond":
|
|
1340
|
-
|
|
1341
|
-
categorized_data = categorized_data.rename(columns={
|
|
1342
|
-
"1": "drawing_present",
|
|
1343
|
-
"2": "diamond_square",
|
|
1344
|
-
"3": "not_similar",
|
|
1345
|
-
"4": "similar",
|
|
1346
|
-
"5": "diamond_4_sides",
|
|
1347
|
-
"6": "diamond_equal_sides",
|
|
1348
|
-
"7": "complex_diamond",
|
|
1349
|
-
"8": "none"
|
|
1350
|
-
})
|
|
1351
|
-
|
|
1352
|
-
categorized_data['score'] = categorized_data['diamond_4_sides'] + categorized_data['diamond_equal_sides'] + categorized_data['similar']
|
|
1353
|
-
|
|
1354
|
-
categorized_data.loc[categorized_data['none'] == 1, 'score'] = 0
|
|
1355
|
-
categorized_data.loc[(categorized_data['diamond_square'] == 1) & (categorized_data['score'] == 0), 'score'] = 2
|
|
1356
|
-
|
|
1357
|
-
elif shape == "rectangles" or shape == "overlapping rectangles":
|
|
1358
|
-
|
|
1359
|
-
categorized_data = categorized_data.rename(columns={
|
|
1360
|
-
"1":"drawing_present",
|
|
1361
|
-
"2": "not_similar",
|
|
1362
|
-
"3": "similar",
|
|
1363
|
-
"4": "r1_4_sides",
|
|
1364
|
-
"5": "r2_4_sides",
|
|
1365
|
-
"6": "rectangles_overlap",
|
|
1366
|
-
"7": "rectangles_cross",
|
|
1367
|
-
"8": "none"
|
|
1368
|
-
})
|
|
1369
|
-
|
|
1370
|
-
categorized_data['score'] = 0
|
|
1371
|
-
categorized_data.loc[(categorized_data['r1_4_sides'] == 1) & (categorized_data['r2_4_sides'] == 1), 'score'] = 1
|
|
1372
|
-
categorized_data.loc[(categorized_data['rectangles_overlap'] == 1) & (categorized_data['rectangles_cross'] == 1), 'score'] += 1
|
|
1373
|
-
categorized_data.loc[categorized_data['none'] == 1, 'score'] = 0
|
|
1374
|
-
|
|
1375
|
-
elif shape == "cube":
|
|
1376
|
-
|
|
1377
|
-
categorized_data = categorized_data.rename(columns={
|
|
1378
|
-
"1": "drawing_present",
|
|
1379
|
-
"2": "not_similar",
|
|
1380
|
-
"3": "similar",
|
|
1381
|
-
"4": "cube_front_face",
|
|
1382
|
-
"5": "cube_internal_lines",
|
|
1383
|
-
"6": "cube_opposite_sides",
|
|
1384
|
-
"7": "square_only",
|
|
1385
|
-
"8": "none"
|
|
1386
|
-
})
|
|
1387
|
-
|
|
1388
|
-
categorized_data['score'] = categorized_data['cube_front_face'] + categorized_data['cube_internal_lines'] + categorized_data['cube_opposite_sides'] + categorized_data['similar']
|
|
1389
|
-
categorized_data.loc[categorized_data['similar'] == 1, 'score'] = categorized_data['score'] + 1
|
|
1390
|
-
categorized_data.loc[categorized_data['none'] == 1, 'score'] = 0
|
|
1391
|
-
categorized_data.loc[(categorized_data['drawing_present'] == 0) & (categorized_data['score'] == 0), 'score'] = 0
|
|
1392
|
-
categorized_data.loc[(categorized_data['not_similar'] == 1) & (categorized_data['score'] == 0), 'score'] = 0
|
|
1393
|
-
categorized_data.loc[categorized_data['score'] > 4, 'score'] = 4
|
|
1394
|
-
|
|
1395
|
-
else:
|
|
1396
|
-
raise ValueError("Invalid shape! Choose from 'circle', 'diamond', 'rectangles', or 'cube'.")
|
|
1397
|
-
|
|
1398
|
-
categorized_data.loc[categorized_data['no_valid_image'] == 1, 'score'] = None
|
|
1399
|
-
|
|
1400
|
-
if filename is not None:
|
|
1401
|
-
categorized_data.to_csv(filename, index=False)
|
|
1402
|
-
|
|
1403
|
-
return categorized_data
|