cat-llm 0.0.20__py3-none-any.whl → 0.0.22__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: cat-llm
3
- Version: 0.0.20
3
+ Version: 0.0.22
4
4
  Summary: A tool for categorizing text data and images using LLMs and vision models
5
5
  Project-URL: Documentation, https://github.com/chrissoria/cat-llm#readme
6
6
  Project-URL: Issues, https://github.com/chrissoria/cat-llm/issues
@@ -0,0 +1,8 @@
1
+ catllm/CERAD_functions.py,sha256=Qb6-X4147pLkiGYnhCiTZbUllnI_Phc78NeEGm9IYic,14560
2
+ catllm/__about__.py,sha256=99aNi54Pad2znZPHwQtb9H2nkF1CTegDDOFO6fNlmcE,404
3
+ catllm/__init__.py,sha256=bgH_2K70m3WP9B8GZNciAr7ld7bSNwgpzhYgkoAC8Bo,299
4
+ catllm/cat_llm.py,sha256=QNa8ZD3z5cWZtdu0gQfkLYq2I96aGwGCUUN61E50RKA,58206
5
+ cat_llm-0.0.22.dist-info/METADATA,sha256=W2tUxYh5WcE8LFHDRJJR6xZO5vRdzPDBIsv7i4JOJ04,1679
6
+ cat_llm-0.0.22.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
7
+ cat_llm-0.0.22.dist-info/licenses/LICENSE,sha256=wJLsvOr6lrFUDcoPXExa01HOKFWrS3JC9f0RudRw8uw,1075
8
+ cat_llm-0.0.22.dist-info/RECORD,,
catllm/__about__.py CHANGED
@@ -1,7 +1,7 @@
1
1
  # SPDX-FileCopyrightText: 2025-present Christopher Soria <chrissoria@berkeley.edu>
2
2
  #
3
3
  # SPDX-License-Identifier: MIT
4
- __version__ = "0.0.20"
4
+ __version__ = "0.0.22"
5
5
  __author__ = "Chris Soria"
6
6
  __email__ = "chrissoria@berkeley.edu"
7
7
  __title__ = "cat-llm"
catllm/__init__.py CHANGED
@@ -12,4 +12,4 @@ from .__about__ import (
12
12
  )
13
13
 
14
14
  from .cat_llm import *
15
- from .CERAD_functions import *
15
+ #from .CERAD_functions import *
catllm/cat_llm.py CHANGED
@@ -56,7 +56,7 @@ Number your categories from 1 through {cat_num} and be concise with the category
56
56
  The specific task is to identify {specificity} categories of responses to a survey question. \
57
57
  The research question is: {research_question}""" if research_question else "You are a helpful assistant."},
58
58
  {'role': 'user', 'content': prompt}
59
- ]
59
+ ],
60
60
  temperature=creativity
61
61
  )
62
62
  reply = response_obj.choices[0].message.content
@@ -1063,13 +1063,341 @@ def extract_image_features(
1063
1063
  'json': pd.Series(extracted_jsons).reset_index(drop=True)
1064
1064
  })
1065
1065
  categorized_data = pd.concat([categorized_data, normalized_data], axis=1)
1066
-
1067
- if columns != "numbered": #if user wants text columns
1068
- categorized_data.columns = list(categorized_data.columns[:3]) + categories[:len(categorized_data.columns) - 3]
1069
1066
 
1070
1067
  if to_csv:
1071
1068
  if save_directory is None:
1072
1069
  save_directory = os.getcwd()
1073
1070
  categorized_data.to_csv(os.path.join(save_directory, filename), index=False)
1074
1071
 
1072
+ return categorized_data
1073
+
1074
+ # image multi-class (binary) function
1075
+ def cerad_score(
1076
+ shape,
1077
+ image_input,
1078
+ api_key,
1079
+ user_model="gpt-4o-2024-11-20",
1080
+ creativity=0,
1081
+ safety=False,
1082
+ filename="categorized_data.csv",
1083
+ model_source="OpenAI"
1084
+ ):
1085
+ import os
1086
+ import json
1087
+ import pandas as pd
1088
+ import regex
1089
+ from tqdm import tqdm
1090
+ import glob
1091
+ import base64
1092
+ from pathlib import Path
1093
+
1094
+ shape = shape.lower()
1095
+
1096
+ if shape == "circle":
1097
+ categories = ["It has a drawing of a circle",
1098
+ "The drawing does not resemble a circle",
1099
+ "The drawing resembles a circle",
1100
+ "The circle is closed",
1101
+ "The circle is almost closed",
1102
+ "The circle is circular",
1103
+ "The circle is almost circular",
1104
+ "None of the above descriptions apply"]
1105
+ elif shape == "diamond":
1106
+ categories = ["It has a drawing of a diamond",
1107
+ "It has a drawing of a square",
1108
+ "A drawn shape DOES NOT resemble a diamond",
1109
+ "A drawn shape resembles a diamond",
1110
+ "The drawn shape has 4 sides",
1111
+ "The drawn shape sides are about equal",
1112
+ "If a diamond is drawn it's more elaborate than a simple diamond (such as overlapping diamonds or a diamond with an extras lines inside)",
1113
+ "None of the above descriptions apply"]
1114
+ elif shape == "rectangles" or shape == "overlapping rectangles":
1115
+ categories = ["It has a drawing of overlapping rectangles",
1116
+ "A drawn shape DOES NOT resemble a overlapping rectangles",
1117
+ "A drawn shape resembles a overlapping rectangles",
1118
+ "Rectangle 1 has 4 sides",
1119
+ "Rectangle 2 has 4 sides",
1120
+ "The rectangles are overlapping",
1121
+ "The rectangles overlap contains a longer vertical rectangle with top and bottom portruding",
1122
+ "None of the above descriptions apply"]
1123
+ elif shape == "cube":
1124
+ categories = ["The image contains a drawing that clearly represents a cube (3D box shape)",
1125
+ "The image does NOT contain any drawing that resembles a cube or 3D box",
1126
+ "The image contains a WELL-DRAWN recognizable cube with proper 3D perspective",
1127
+ "If a cube is present: the front face appears as a square or diamond shape",
1128
+ "If a cube is present: internal/hidden edges are visible (showing 3D depth, not just an outline)",
1129
+ "If a cube is present: the front and back faces appear parallel to each other",
1130
+ "The image contains only a 2D square (flat shape, no 3D appearance)",
1131
+ "None of the above descriptions apply"]
1132
+ else:
1133
+ raise ValueError("Invalid shape! Choose from 'circle', 'diamond', 'rectangles', or 'cube'.")
1134
+
1135
+ image_extensions = [
1136
+ '*.png', '*.jpg', '*.jpeg',
1137
+ '*.gif', '*.webp', '*.svg', '*.svgz', '*.avif', '*.apng',
1138
+ '*.tif', '*.tiff', '*.bmp',
1139
+ '*.heif', '*.heic', '*.ico',
1140
+ '*.psd'
1141
+ ]
1142
+
1143
+ if not isinstance(image_input, list):
1144
+ # If image_input is a filepath (string)
1145
+ image_files = []
1146
+ for ext in image_extensions:
1147
+ image_files.extend(glob.glob(os.path.join(image_input, ext)))
1148
+
1149
+ print(f"Found {len(image_files)} images.")
1150
+ else:
1151
+ # If image_files is already a list
1152
+ image_files = image_input
1153
+ print(f"Provided a list of {len(image_input)} images.")
1154
+
1155
+ categories_str = "\n".join(f"{i + 1}. {cat}" for i, cat in enumerate(categories))
1156
+ cat_num = len(categories)
1157
+ category_dict = {str(i+1): "0" for i in range(cat_num)}
1158
+ example_JSON = json.dumps(category_dict, indent=4)
1159
+
1160
+ link1 = []
1161
+ extracted_jsons = []
1162
+
1163
+ for i, img_path in enumerate(tqdm(image_files, desc="Categorising images"), start=0):
1164
+ # Check validity first
1165
+ if img_path is None or not os.path.exists(img_path):
1166
+ link1.append("Skipped NaN input or invalid path")
1167
+ extracted_jsons.append("""{"no_valid_image": 1}""")
1168
+ continue # Skip the rest of the loop iteration
1169
+
1170
+ # Only open the file if path is valid
1171
+ with open(img_path, "rb") as f:
1172
+ encoded = base64.b64encode(f.read()).decode("utf-8")
1173
+
1174
+ # Handle extension safely
1175
+ ext = Path(img_path).suffix.lstrip(".").lower()
1176
+ encoded_image = f"data:image/{ext};base64,{encoded}"
1177
+
1178
+ prompt = [
1179
+ {
1180
+ "type": "text",
1181
+ "text": (
1182
+ f"You are an image-tagging assistant trained in the CERAD Constructional Praxis test.\n"
1183
+ f"Task ► Examine the attached image and decide, **for each category below**, "
1184
+ f"whether it is PRESENT (1) or NOT PRESENT (0).\n\n"
1185
+ f"Image is expected to show within it a drawing of a {shape}.\n\n"
1186
+ f"Categories:\n{categories_str}\n\n"
1187
+ f"Output format ► Respond with **only** a JSON object whose keys are the "
1188
+ f"quoted category numbers ('1', '2', …) and whose values are 1 or 0. "
1189
+ f"No additional keys, comments, or text.\n\n"
1190
+ f"Example:\n"
1191
+ f"{example_JSON}"
1192
+ ),
1193
+ },
1194
+ {
1195
+ "type": "image_url",
1196
+ "image_url": {"url": encoded_image, "detail": "high"},
1197
+ },
1198
+ ]
1199
+ if model_source == "OpenAI":
1200
+ from openai import OpenAI
1201
+ client = OpenAI(api_key=api_key)
1202
+ try:
1203
+ response_obj = client.chat.completions.create(
1204
+ model=user_model,
1205
+ messages=[{'role': 'user', 'content': prompt}],
1206
+ temperature=creativity
1207
+ )
1208
+ reply = response_obj.choices[0].message.content
1209
+ link1.append(reply)
1210
+ except Exception as e:
1211
+ print(f"An error occurred: {e}")
1212
+ link1.append(f"Error processing input: {e}")
1213
+
1214
+ elif model_source == "Perplexity":
1215
+ from openai import OpenAI
1216
+ client = OpenAI(api_key=api_key, base_url="https://api.perplexity.ai")
1217
+ try:
1218
+ response_obj = client.chat.completions.create(
1219
+ model=user_model,
1220
+ messages=[{'role': 'user', 'content': prompt}],
1221
+ temperature=creativity
1222
+ )
1223
+ reply = response_obj.choices[0].message.content
1224
+ link1.append(reply)
1225
+ except Exception as e:
1226
+ print(f"An error occurred: {e}")
1227
+ link1.append(f"Error processing input: {e}")
1228
+ elif model_source == "Anthropic":
1229
+ import anthropic
1230
+ client = anthropic.Anthropic(api_key=api_key)
1231
+ try:
1232
+ message = client.messages.create(
1233
+ model=user_model,
1234
+ max_tokens=1024,
1235
+ temperature=creativity,
1236
+ messages=[{"role": "user", "content": prompt}]
1237
+ )
1238
+ reply = message.content[0].text # Anthropic returns content as list
1239
+ link1.append(reply)
1240
+ except Exception as e:
1241
+ print(f"An error occurred: {e}")
1242
+ link1.append(f"Error processing input: {e}")
1243
+ elif model_source == "Mistral":
1244
+ from mistralai import Mistral
1245
+ client = Mistral(api_key=api_key)
1246
+ try:
1247
+ response = client.chat.complete(
1248
+ model=user_model,
1249
+ messages=[
1250
+ {'role': 'user', 'content': prompt}
1251
+ ],
1252
+ temperature=creativity
1253
+ )
1254
+ reply = response.choices[0].message.content
1255
+ link1.append(reply)
1256
+ except Exception as e:
1257
+ print(f"An error occurred: {e}")
1258
+ link1.append(f"Error processing input: {e}")
1259
+ else:
1260
+ raise ValueError("Unknown source! Choose from OpenAI, Anthropic, Perplexity, or Mistral")
1261
+ # in situation that no JSON is found
1262
+ if reply is not None:
1263
+ extracted_json = regex.findall(r'\{(?:[^{}]|(?R))*\}', reply, regex.DOTALL)
1264
+ if extracted_json:
1265
+ cleaned_json = extracted_json[0].replace('[', '').replace(']', '').replace('\n', '').replace(" ", '').replace(" ", '')
1266
+ extracted_jsons.append(cleaned_json)
1267
+ #print(cleaned_json)
1268
+ else:
1269
+ error_message = """{"1":"e"}"""
1270
+ extracted_jsons.append(error_message)
1271
+ print(error_message)
1272
+ else:
1273
+ error_message = """{"1":"e"}"""
1274
+ extracted_jsons.append(error_message)
1275
+ #print(error_message)
1276
+
1277
+ # --- Safety Save ---
1278
+ if safety:
1279
+ #print(f"Saving CSV to: {save_directory}")
1280
+ # Save progress so far
1281
+ temp_df = pd.DataFrame({
1282
+ 'image_input': image_files[:i+1],
1283
+ 'link1': link1,
1284
+ 'json': extracted_jsons
1285
+ })
1286
+ # Normalize processed jsons so far
1287
+ normalized_data_list = []
1288
+ for json_str in extracted_jsons:
1289
+ try:
1290
+ parsed_obj = json.loads(json_str)
1291
+ normalized_data_list.append(pd.json_normalize(parsed_obj))
1292
+ except json.JSONDecodeError:
1293
+ normalized_data_list.append(pd.DataFrame({"1": ["e"]}))
1294
+ normalized_data = pd.concat(normalized_data_list, ignore_index=True)
1295
+ temp_df = pd.concat([temp_df, normalized_data], axis=1)
1296
+ # Save to CSV
1297
+ if filename is None:
1298
+ filepath = os.path.join(os.getcwd(), 'catllm_data.csv')
1299
+ else:
1300
+ filepath = filename
1301
+ temp_df.to_csv(filepath, index=False)
1302
+
1303
+ # --- Final DataFrame ---
1304
+ normalized_data_list = []
1305
+ for json_str in extracted_jsons:
1306
+ try:
1307
+ parsed_obj = json.loads(json_str)
1308
+ normalized_data_list.append(pd.json_normalize(parsed_obj))
1309
+ except json.JSONDecodeError:
1310
+ normalized_data_list.append(pd.DataFrame({"1": ["e"]}))
1311
+ normalized_data = pd.concat(normalized_data_list, ignore_index=True)
1312
+
1313
+ categorized_data = pd.DataFrame({
1314
+ 'image_input': image_files,
1315
+ 'link1': pd.Series(link1).reset_index(drop=True),
1316
+ 'json': pd.Series(extracted_jsons).reset_index(drop=True)
1317
+ })
1318
+ categorized_data = pd.concat([categorized_data, normalized_data], axis=1)
1319
+ columns_to_convert = ["1", "2", "3", "4", "5", "6", "7"]
1320
+ categorized_data[columns_to_convert] = categorized_data[columns_to_convert].apply(pd.to_numeric, errors='coerce').fillna(0).astype(int)
1321
+
1322
+ if shape == "circle":
1323
+
1324
+ categorized_data = categorized_data.rename(columns={
1325
+ "1": "drawing_present",
1326
+ "2": "not_similar",
1327
+ "3": "similar",
1328
+ "4": "cir_closed",
1329
+ "5": "cir_almost_closed",
1330
+ "6": "cir_round",
1331
+ "7": "cir_almost_round",
1332
+ "8": "none"
1333
+ })
1334
+
1335
+ categorized_data['score'] = categorized_data['cir_almost_closed'] + categorized_data['cir_closed'] + categorized_data['cir_round'] + categorized_data['cir_almost_round']
1336
+ categorized_data.loc[categorized_data['none'] == 1, 'score'] = 0
1337
+ categorized_data.loc[(categorized_data['drawing_present'] == 0) & (categorized_data['score'] == 0), 'score'] = 0
1338
+
1339
+ elif shape == "diamond":
1340
+
1341
+ categorized_data = categorized_data.rename(columns={
1342
+ "1": "drawing_present",
1343
+ "2": "diamond_square",
1344
+ "3": "not_similar",
1345
+ "4": "similar",
1346
+ "5": "diamond_4_sides",
1347
+ "6": "diamond_equal_sides",
1348
+ "7": "complex_diamond",
1349
+ "8": "none"
1350
+ })
1351
+
1352
+ categorized_data['score'] = categorized_data['diamond_4_sides'] + categorized_data['diamond_equal_sides'] + categorized_data['similar']
1353
+
1354
+ categorized_data.loc[categorized_data['none'] == 1, 'score'] = 0
1355
+ categorized_data.loc[(categorized_data['diamond_square'] == 1) & (categorized_data['score'] == 0), 'score'] = 2
1356
+
1357
+ elif shape == "rectangles" or shape == "overlapping rectangles":
1358
+
1359
+ categorized_data = categorized_data.rename(columns={
1360
+ "1":"drawing_present",
1361
+ "2": "not_similar",
1362
+ "3": "similar",
1363
+ "4": "r1_4_sides",
1364
+ "5": "r2_4_sides",
1365
+ "6": "rectangles_overlap",
1366
+ "7": "rectangles_cross",
1367
+ "8": "none"
1368
+ })
1369
+
1370
+ categorized_data['score'] = 0
1371
+ categorized_data.loc[(categorized_data['r1_4_sides'] == 1) & (categorized_data['r2_4_sides'] == 1), 'score'] = 1
1372
+ categorized_data.loc[(categorized_data['rectangles_overlap'] == 1) & (categorized_data['rectangles_cross'] == 1), 'score'] += 1
1373
+ categorized_data.loc[categorized_data['none'] == 1, 'score'] = 0
1374
+
1375
+ elif shape == "cube":
1376
+
1377
+ categorized_data = categorized_data.rename(columns={
1378
+ "1": "drawing_present",
1379
+ "2": "not_similar",
1380
+ "3": "similar",
1381
+ "4": "cube_front_face",
1382
+ "5": "cube_internal_lines",
1383
+ "6": "cube_opposite_sides",
1384
+ "7": "square_only",
1385
+ "8": "none"
1386
+ })
1387
+
1388
+ categorized_data['score'] = categorized_data['cube_front_face'] + categorized_data['cube_internal_lines'] + categorized_data['cube_opposite_sides'] + categorized_data['similar']
1389
+ categorized_data.loc[categorized_data['similar'] == 1, 'score'] = categorized_data['score'] + 1
1390
+ categorized_data.loc[categorized_data['none'] == 1, 'score'] = 0
1391
+ categorized_data.loc[(categorized_data['drawing_present'] == 0) & (categorized_data['score'] == 0), 'score'] = 0
1392
+ categorized_data.loc[(categorized_data['not_similar'] == 1) & (categorized_data['score'] == 0), 'score'] = 0
1393
+ categorized_data.loc[categorized_data['score'] > 4, 'score'] = 4
1394
+
1395
+ else:
1396
+ raise ValueError("Invalid shape! Choose from 'circle', 'diamond', 'rectangles', or 'cube'.")
1397
+
1398
+ categorized_data.loc[categorized_data['no_valid_image'] == 1, 'score'] = None
1399
+
1400
+ if filename is not None:
1401
+ categorized_data.to_csv(filename, index=False)
1402
+
1075
1403
  return categorized_data
@@ -1,8 +0,0 @@
1
- catllm/CERAD_functions.py,sha256=Qb6-X4147pLkiGYnhCiTZbUllnI_Phc78NeEGm9IYic,14560
2
- catllm/__about__.py,sha256=cTbem-wgvMh9Oyg4x-GPBa8Q9XCh1mg1HDvobswjjAM,404
3
- catllm/__init__.py,sha256=mNp5MQx2aNTtpNBHJ-U9INd1hX3u6jRkOoAewEI25MI,298
4
- catllm/cat_llm.py,sha256=f3aLj4bpATjZIJPl9yXylneDi9cjMMp-CxfnctRDMgI,43825
5
- cat_llm-0.0.20.dist-info/METADATA,sha256=EszRBaH7p4t0B0rvuIrqk8JYqiWNqb1190pa6BddiSs,1679
6
- cat_llm-0.0.20.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
7
- cat_llm-0.0.20.dist-info/licenses/LICENSE,sha256=wJLsvOr6lrFUDcoPXExa01HOKFWrS3JC9f0RudRw8uw,1075
8
- cat_llm-0.0.20.dist-info/RECORD,,