casual-mcp 0.5.0__py3-none-any.whl → 0.7.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,630 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: casual-mcp
3
- Version: 0.5.0
4
- Summary: Multi-server MCP client for LLM tool orchestration
5
- Author: Alex Stansfield
6
- License: MIT
7
- Project-URL: Homepage, https://github.com/casualgenius/casual-mcp
8
- Project-URL: Repository, https://github.com/casualgenius/casual-mcp
9
- Project-URL: Issue Tracker, https://github.com/casualgenius/casual-mcp/issues
10
- Requires-Python: >=3.10
11
- Description-Content-Type: text/markdown
12
- License-File: LICENSE
13
- Requires-Dist: casual-llm[openai]>=0.4.2
14
- Requires-Dist: dateparser>=1.2.1
15
- Requires-Dist: fastapi>=0.115.12
16
- Requires-Dist: fastmcp>=2.12.4
17
- Requires-Dist: jinja2>=3.1.6
18
- Requires-Dist: python-dotenv>=1.1.0
19
- Requires-Dist: requests>=2.32.3
20
- Requires-Dist: rich>=14.0.0
21
- Requires-Dist: typer>=0.19.2
22
- Requires-Dist: uvicorn>=0.34.2
23
- Dynamic: license-file
24
-
25
- # 🧠 Casual MCP
26
-
27
- ![PyPI](https://img.shields.io/pypi/v/casual-mcp)
28
- ![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)
29
-
30
- **Casual MCP** is a Python framework for building, evaluating, and serving LLMs with tool-calling capabilities using [Model Context Protocol (MCP)](https://modelcontextprotocol.io).
31
- It includes:
32
-
33
- - ✅ A multi-server MCP client using [FastMCP](https://github.com/jlowin/fastmcp)
34
- - ✅ Provider support for OpenAI and Ollama (powered by [casual-llm](https://github.com/AlexStansfield/casual-llm))
35
- - ✅ A recursive tool-calling chat loop
36
- - ✅ System prompt templating with Jinja2
37
- - ✅ A basic API exposing a chat endpoint
38
-
39
- ## ✨ Features
40
-
41
- - Plug-and-play multi-server tool orchestration
42
- - OpenAI and Ollama LLM providers (via casual-llm)
43
- - Prompt templating with Jinja2
44
- - Configurable via JSON
45
- - CLI and API access
46
- - Extensible architecture
47
-
48
- ## 🔧 Installation
49
-
50
- ### Uv
51
-
52
- ```bash
53
- uv add casual-mcp
54
- ```
55
-
56
- ### Pip
57
-
58
- ```bash
59
- pip install casual-mcp
60
- ```
61
-
62
- Or for development:
63
-
64
- ```bash
65
- git clone https://github.com/casualgenius/casual-mcp.git
66
- cd casual-mcp
67
- uv sync --group dev
68
- ```
69
-
70
- ## 🧩 System Prompt Templates
71
-
72
- System prompts are defined as [Jinja2](https://jinja.palletsprojects.com) templates in the `prompt-templates/` directory.
73
-
74
- They are used in the config file to specify a system prompt to use per model.
75
-
76
- This allows you to define custom prompts for each model — useful when using models that do not natively support tools. Templates are passed the tool list in the `tools` variable.
77
-
78
- ```jinja2
79
- # prompt-templates/example_prompt.j2
80
- Here is a list of functions in JSON format that you can invoke:
81
- [
82
- {% for tool in tools %}
83
- {
84
- "name": "{{ tool.name }}",
85
- "description": "{{ tool.description }}",
86
- "parameters": {
87
- {% for param_name, param in tool.inputSchema.items() %}
88
- "{{ param_name }}": {
89
- "description": "{{ param.description }}",
90
- "type": "{{ param.type }}"{% if param.default is defined %},
91
- "default": "{{ param.default }}"{% endif %}
92
- }{% if not loop.last %},{% endif %}
93
- {% endfor %}
94
- }
95
- }{% if not loop.last %},{% endif %}
96
- {% endfor %}
97
- ]
98
- ```
99
-
100
- ## ⚙️ Configuration File (`casual_mcp_config.json`)
101
-
102
- 📄 See the [Programmatic Usage](#-programmatic-usage) section to build configs and messages with typed models.
103
-
104
- The CLI and API can be configured using a `casual_mcp_config.json` file that defines:
105
-
106
- - 🔧 Available **models** and their providers
107
- - 🧰 Available **MCP tool servers**
108
- - 🧩 Optional tool namespacing behavior
109
-
110
- ### 🔸 Example
111
-
112
- ```json
113
- {
114
- "models": {
115
- "gpt-4.1": {
116
- "provider": "openai",
117
- "model": "gpt-4.1"
118
- },
119
- "lm-qwen-3": {
120
- "provider": "openai",
121
- "endpoint": "http://localhost:1234/v1",
122
- "model": "qwen3-8b",
123
- "template": "lm-studio-native-tools"
124
- },
125
- "ollama-qwen": {
126
- "provider": "ollama",
127
- "endpoint": "http://localhost:11434",
128
- "model": "qwen2.5:7b-instruct"
129
- }
130
- },
131
- "servers": {
132
- "time": {
133
- "command": "python",
134
- "args": ["mcp-servers/time/server.py"]
135
- },
136
- "weather": {
137
- "url": "http://localhost:5050/mcp"
138
- }
139
- }
140
- }
141
- ```
142
-
143
- ### 🔹 `models`
144
-
145
- Each model has:
146
-
147
- - `provider`: `"openai"` or `"ollama"`
148
- - `model`: the model name (e.g., `gpt-4.1`, `qwen2.5:7b-instruct`)
149
- - `endpoint`: optional custom endpoint
150
- - For OpenAI: custom OpenAI-compatible backends (e.g., LM Studio at `http://localhost:1234/v1`)
151
- - For Ollama: defaults to `http://localhost:11434` if not specified
152
- - `template`: optional Jinja2 template name for custom system prompt formatting (useful for models without native tool support)
153
-
154
- ### 🔹 `servers`
155
-
156
- Servers can either be local (over stdio) or remote.
157
-
158
- #### Local Config:
159
- - `command`: the command to run the server, e.g `python`, `npm`
160
- - `args`: the arguments to pass to the server as a list, e.g `["time/server.py"]`
161
- - Optional: `env`: for subprocess environments, `system_prompt` to override server prompt
162
-
163
- #### Remote Config:
164
- - `url`: the url of the mcp server
165
- - Optional: `transport`: the type of transport, `http`, `sse`, `streamable-http`. Defaults to `http`
166
-
167
- ## Environmental Variables
168
-
169
- - `OPENAI_API_KEY`: required when using the `openai` provider (can be any string when using local OpenAI-compatible APIs)
170
- - `TOOL_RESULT_FORMAT`: adjusts the format of tool results returned to the LLM
171
- - Options: `result`, `function_result`, `function_args_result`
172
- - Default: `result`
173
- - `MCP_TOOL_CACHE_TTL`: tool cache TTL in seconds (default: 30, set to 0 for indefinite caching)
174
- - `LOG_LEVEL`: logging level (default: `INFO`)
175
-
176
- You can set them using `export` or by creating a `.env` file.
177
-
178
- ## 🛠 CLI Reference
179
-
180
- ### `casual-mcp serve`
181
- Start the API server.
182
-
183
- **Options:**
184
- - `--host`: Host to bind (default `0.0.0.0`)
185
- - `--port`: Port to serve on (default `8000`)
186
-
187
- ### `casual-mcp servers`
188
- Loads the config and outputs the list of MCP servers you have configured.
189
-
190
- #### Example Output
191
- ```
192
- $ casual-mcp servers
193
- ┏━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━┓
194
- ┃ Name ┃ Type ┃ Command / Url ┃ Env ┃
195
- ┡━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━┩
196
- │ math │ local │ mcp-servers/math/server.py │ │
197
- │ time │ local │ mcp-servers/time-v2/server.py │ │
198
- │ weather │ local │ mcp-servers/weather/server.py │ │
199
- │ words │ remote │ https://localhost:3000/mcp │ │
200
- └─────────┴────────┴───────────────────────────────┴─────┘
201
- ```
202
-
203
- ### `casual-mcp models`
204
- Loads the config and outputs the list of models you have configured.
205
-
206
- #### Example Output
207
- ```
208
- $ casual-mcp models
209
- ┏━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┓
210
- ┃ Name ┃ Provider ┃ Model ┃ Endpoint ┃
211
- ┡━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━┩
212
- │ lm-phi-4-mini │ openai │ phi-4-mini-instruct │ http://kovacs:1234/v1 │
213
- │ lm-hermes-3 │ openai │ hermes-3-llama-3.2-3b │ http://kovacs:1234/v1 │
214
- │ lm-groq │ openai │ llama-3-groq-8b-tool-use │ http://kovacs:1234/v1 │
215
- │ gpt-4o-mini │ openai │ gpt-4o-mini │ │
216
- │ gpt-4.1-nano │ openai │ gpt-4.1-nano │ │
217
- │ gpt-4.1-mini │ openai │ gpt-4.1-mini │ │
218
- │ gpt-4.1 │ openai │ gpt-4.1 │ │
219
- └───────────────────┴──────────┴───────────────────────────┴────────────────────────┘
220
- ```
221
-
222
- ## 🧠 Programmatic Usage
223
-
224
- You can import and use the core framework in your own Python code.
225
-
226
- ### ✅ Exposed Interfaces
227
-
228
- #### `McpToolChat`
229
- Orchestrates LLM interaction with tools using a recursive loop.
230
-
231
- Accepts any provider that implements the `LLMProvider` protocol from casual-llm. This means you can use casual-llm's built-in providers (OpenAI, Ollama) or create your own custom provider.
232
-
233
- ```python
234
- from casual_llm import LLMProvider, SystemMessage, UserMessage
235
- from casual_mcp import McpToolChat
236
- from casual_mcp.tool_cache import ToolCache
237
-
238
- # provider can be any object implementing the LLMProvider protocol
239
- tool_cache = ToolCache(mcp_client)
240
- chat = McpToolChat(mcp_client, provider, system_prompt, tool_cache=tool_cache)
241
-
242
- # Generate method to take user prompt
243
- response = await chat.generate("What time is it in London?")
244
-
245
- # Generate method with session
246
- response = await chat.generate("What time is it in London?", "my-session-id")
247
-
248
- # Chat method that takes list of chat messages
249
- # note: system prompt ignored if sent in messages so no need to set
250
- chat = McpToolChat(mcp_client, provider, tool_cache=tool_cache)
251
- messages = [
252
- SystemMessage(content="You are a cool dude who likes to help the user"),
253
- UserMessage(content="What time is it in London?")
254
- ]
255
- response = await chat.chat(messages)
256
- ```
257
-
258
- #### `ProviderFactory`
259
- Instantiates LLM providers (from casual-llm) based on the selected model config.
260
-
261
- ```python
262
- from casual_mcp import ProviderFactory
263
-
264
- provider_factory = ProviderFactory()
265
- provider = provider_factory.get_provider("lm-qwen-3", model_config)
266
- ```
267
-
268
- The factory returns an `LLMProvider` from casual-llm that can be used with `McpToolChat`.
269
-
270
- > ℹ️ Tool catalogues are cached to avoid repeated `ListTools` calls. The cache refreshes every 30 seconds by default. Override this with the `MCP_TOOL_CACHE_TTL` environment variable (set to `0` or a negative value to cache indefinitely).
271
-
272
- #### `load_config`
273
- Loads your `casual_mcp_config.json` into a validated config object.
274
-
275
- ```python
276
- from casual_mcp import load_config
277
-
278
- config = load_config("casual_mcp_config.json")
279
- ```
280
-
281
- #### `load_mcp_client`
282
- Creats a multi server FastMCP client from the config object
283
-
284
- ```python
285
- from casual_mcp import load_mcp_client
286
-
287
- config = load_mcp_client(config)
288
- ```
289
-
290
- #### Model and Server Configs
291
-
292
- Exported from `casual_mcp.models`:
293
- - `StdioServerConfig`
294
- - `RemoteServerConfig`
295
- - `OpenAIModelConfig`
296
- - `OllamaModelConfig`
297
-
298
- Use these types to build valid configs:
299
-
300
- ```python
301
- from casual_mcp.models import OpenAIModelConfig, OllamaModelConfig, StdioServerConfig
302
-
303
- openai_model = OpenAIModelConfig(provider="openai", model="gpt-4.1")
304
- ollama_model = OllamaModelConfig(provider="ollama", model="qwen2.5:7b-instruct", endpoint="http://localhost:11434")
305
- server = StdioServerConfig(command="python", args=["time/server.py"])
306
- ```
307
-
308
- #### Chat Messages
309
-
310
- Exported from `casual_llm` (re-exported from `casual_mcp.models` for backwards compatibility):
311
- - `AssistantMessage`
312
- - `SystemMessage`
313
- - `ToolResultMessage`
314
- - `UserMessage`
315
- - `ChatMessage`
316
-
317
- Use these types to build message chains:
318
-
319
- ```python
320
- from casual_llm import SystemMessage, UserMessage
321
-
322
- messages = [
323
- SystemMessage(content="You are a friendly tool calling assistant."),
324
- UserMessage(content="What is the time?")
325
- ]
326
- ```
327
-
328
- ### Example
329
-
330
- ```python
331
- from casual_llm import SystemMessage, UserMessage
332
- from casual_mcp import McpToolChat, ProviderFactory, load_config, load_mcp_client
333
-
334
- model = "gpt-4.1-nano"
335
- messages = [
336
- SystemMessage(content="""You are a tool calling assistant.
337
- You have access to up-to-date information through the tools.
338
- Respond naturally and confidently, as if you already know all the facts."""),
339
- UserMessage(content="Will I need to take my umbrella to London today?")
340
- ]
341
-
342
- # Load the Config from the File
343
- config = load_config("casual_mcp_config.json")
344
-
345
- # Setup the MCP Client
346
- mcp_client = load_mcp_client(config)
347
-
348
- # Get the Provider for the Model
349
- provider_factory = ProviderFactory()
350
- provider = provider_factory.get_provider(model, config.models[model])
351
-
352
- # Perform the Chat and Tool calling
353
- chat = McpToolChat(mcp_client, provider)
354
- response_messages = await chat.chat(messages)
355
- ```
356
-
357
- ## 🏗️ Architecture Overview
358
-
359
- Casual MCP orchestrates a flow between LLMs and MCP tool servers:
360
-
361
- 1. **MCP Client** connects to multiple tool servers (local via stdio or remote via HTTP/SSE)
362
- 2. **Tool Cache** fetches and caches available tools from all connected servers
363
- 3. **Tool Conversion** converts MCP tools to casual-llm's `Tool` format automatically
364
- 4. **ProviderFactory** creates LLM providers from casual-llm based on model config
365
- 5. **McpToolChat** orchestrates the recursive loop:
366
- - Sends messages + tools to LLM provider
367
- - LLM returns response (potentially with tool calls)
368
- - Executes tool calls via MCP client
369
- - Feeds results back to LLM
370
- - Repeats until LLM provides final answer
371
-
372
- ```
373
- ┌─────────────┐ ┌──────────────┐ ┌─────────────┐
374
- │ MCP Servers │─────▶│ Tool Cache │─────▶│ Tool Converter│
375
- └─────────────┘ └──────────────┘ └─────────────┘
376
- │ │
377
- ▼ ▼
378
- ┌──────────────────────────────┐
379
- │ McpToolChat Loop │
380
- │ │
381
- │ LLM ──▶ Tool Calls ──▶ MCP │
382
- │ ▲ │ │
383
- │ └──────── Results ─────┘ │
384
- └──────────────────────────────┘
385
- ```
386
-
387
- ### Tool Conversion
388
-
389
- MCP tools are automatically converted from MCP's format to casual-llm's `Tool` format using the `convert_tools` module. This happens transparently in `McpToolChat.chat()` via `tools_from_mcp()`.
390
-
391
- ## 📊 Response Structure
392
-
393
- The `chat()` and `generate()` methods return a list of `ChatMessage` objects (from casual-llm):
394
-
395
- ```python
396
- response_messages = await chat.chat(messages)
397
- # Returns: list[ChatMessage]
398
- # Each message can be:
399
- # - AssistantMessage: LLM's response (content + optional tool_calls)
400
- # - ToolResultMessage: Result from tool execution
401
-
402
- # Access the final response:
403
- final_answer = response_messages[-1].content
404
-
405
- # Check for tool calls in any message:
406
- for msg in response_messages:
407
- if hasattr(msg, 'tool_calls') and msg.tool_calls:
408
- # Message contains tool calls
409
- for tool_call in msg.tool_calls:
410
- print(f"Called: {tool_call.function.name}")
411
- ```
412
-
413
- ## 💡 Common Patterns
414
-
415
- ### Using Templates for Models Without Native Tool Support
416
-
417
- Some models don't natively support tool calling. Use Jinja2 templates to format tools in the system prompt:
418
-
419
- ```json
420
- {
421
- "models": {
422
- "custom-model": {
423
- "provider": "ollama",
424
- "model": "some-model:7b",
425
- "template": "custom-tool-format"
426
- }
427
- }
428
- }
429
- ```
430
-
431
- Create `prompt-templates/custom-tool-format.j2`:
432
- ```jinja2
433
- You are a helpful assistant with access to these tools:
434
-
435
- {% for tool in tools %}
436
- - {{ tool.name }}: {{ tool.description }}
437
- Parameters: {{ tool.inputSchema.properties | tojson }}
438
- {% endfor %}
439
-
440
- To use a tool, respond with JSON: {"tool": "tool_name", "args": {...}}
441
- ```
442
-
443
- ### Formatting Tool Results
444
-
445
- Control how tool results are presented to the LLM using `TOOL_RESULT_FORMAT`:
446
-
447
- ```bash
448
- # Just the raw result
449
- export TOOL_RESULT_FORMAT=result
450
-
451
- # Function name → result
452
- export TOOL_RESULT_FORMAT=function_result
453
- # Example: "get_weather → Temperature: 72°F"
454
-
455
- # Function with args → result
456
- export TOOL_RESULT_FORMAT=function_args_result
457
- # Example: "get_weather(location='London') → Temperature: 15°C"
458
- ```
459
-
460
- ### Session Management
461
-
462
- **Important**: Sessions are for testing/development only. In production, manage sessions in your own application.
463
-
464
- Sessions are stored in-memory and cleared on server restart:
465
-
466
- ```python
467
- # Using sessions for development/testing
468
- response = await chat.generate("What's the weather?", session_id="test-123")
469
- response = await chat.generate("How about tomorrow?", session_id="test-123")
470
-
471
- # For production: manage your own message history
472
- messages = []
473
- messages.append(UserMessage(content="What's the weather?"))
474
- response_msgs = await chat.chat(messages)
475
- messages.extend(response_msgs)
476
-
477
- # Next turn
478
- messages.append(UserMessage(content="How about tomorrow?"))
479
- response_msgs = await chat.chat(messages)
480
- ```
481
-
482
- ## 🔧 Troubleshooting
483
-
484
- ### Tool Not Found
485
-
486
- If you see errors about tools not being found:
487
-
488
- 1. **Check MCP servers are running**: `casual-mcp servers`
489
- 2. **List available tools**: `casual-mcp tools`
490
- 3. **Check tool cache TTL**: Tools are cached for 30 seconds by default. Wait or restart if you just added a server.
491
- 4. **Verify server config**: Ensure `command`, `args`, or `url` are correct in your config
492
-
493
- ### Provider Initialization Issues
494
-
495
- **OpenAI Provider:**
496
- ```bash
497
- # Ensure API key is set (even for local APIs)
498
- export OPENAI_API_KEY=your-key-here
499
-
500
- # For local OpenAI-compatible APIs (LM Studio, etc):
501
- export OPENAI_API_KEY=dummy-key # Can be any string
502
- ```
503
-
504
- **Ollama Provider:**
505
- ```bash
506
- # Check Ollama is running
507
- curl http://localhost:11434/api/version
508
-
509
- # Ensure model is pulled
510
- ollama pull qwen2.5:7b-instruct
511
- ```
512
-
513
- ### Cache Refresh Behavior
514
-
515
- Tools are cached with a 30-second TTL by default. If you add/remove MCP servers:
516
-
517
- - **Option 1**: Wait 30 seconds for automatic refresh
518
- - **Option 2**: Restart the application
519
- - **Option 3**: Set `MCP_TOOL_CACHE_TTL=0` for indefinite caching (refresh only on restart)
520
- - **Option 4**: Set a shorter TTL like `MCP_TOOL_CACHE_TTL=5` for 5-second refresh
521
-
522
- ### Common Configuration Errors
523
-
524
- ```json
525
- // ❌ Missing required fields
526
- {
527
- "models": {
528
- "my-model": {
529
- "provider": "openai"
530
- // Missing "model" field!
531
- }
532
- }
533
- }
534
-
535
- // ✅ Correct
536
- {
537
- "models": {
538
- "my-model": {
539
- "provider": "openai",
540
- "model": "gpt-4.1"
541
- }
542
- }
543
- }
544
-
545
- // ❌ Invalid provider
546
- {
547
- "models": {
548
- "my-model": {
549
- "provider": "anthropic", // Not supported!
550
- "model": "claude-3"
551
- }
552
- }
553
- }
554
-
555
- // ✅ Supported providers
556
- {
557
- "models": {
558
- "openai-model": {
559
- "provider": "openai",
560
- "model": "gpt-4.1"
561
- },
562
- "ollama-model": {
563
- "provider": "ollama",
564
- "model": "qwen2.5:7b"
565
- }
566
- }
567
- }
568
- ```
569
-
570
- ## 🚀 API Usage
571
-
572
- ### Start the API Server
573
-
574
- ```bash
575
- casual-mcp serve --host 0.0.0.0 --port 8000
576
- ```
577
-
578
- ### Chat
579
-
580
- #### Endpoint: `POST /chat`
581
-
582
- #### Request Body:
583
- - `model`: the LLM model to use
584
- - `messages`: list of chat messages (system, assistant, user, etc) that you can pass to the api, allowing you to keep your own chat session in the client calling the api
585
-
586
- #### Example:
587
- ```
588
- {
589
- "model": "gpt-4.1-nano",
590
- "messages": [
591
- {
592
- "role": "user",
593
- "content": "can you explain what the word consistent means?"
594
- }
595
- ]
596
- }
597
- ```
598
-
599
- ### Generate
600
-
601
- The generate endpoint allows you to send a user prompt as a string.
602
-
603
- It also support sessions that keep a record of all messages in the session and feeds them back into the LLM for context. Sessions are stored in memory so are cleared when the server is restarted
604
-
605
- #### Endpoint: `POST /generate`
606
-
607
- #### Request Body:
608
- - `model`: the LLM model to use
609
- - `prompt`: the user prompt
610
- - `session_id`: an optional ID that stores all the messages from the session and provides them back to the LLM for context
611
-
612
- #### Example:
613
- ```
614
- {
615
- "session_id": "my-session",
616
- "model": "gpt-4o-mini",
617
- "prompt": "can you explain what the word consistent means?"
618
- }
619
- ```
620
-
621
- ### Get Session
622
-
623
- Get all the messages from a session
624
-
625
- #### Endpoint: `GET /generate/session/{session_id}`
626
-
627
-
628
- ## License
629
-
630
- This software is released under the [MIT License](LICENSE)
@@ -1,20 +0,0 @@
1
- casual_mcp/__init__.py,sha256=X7xE1PVtbzkPo_2ad6gEPuDLWGLPkQ1WQjSRVgVuIZc,464
2
- casual_mcp/cli.py,sha256=2-0sTxfNfQSukBtg0Xs9P6VrAMZ89SqJ9VJzOM68d-o,2129
3
- casual_mcp/convert_tools.py,sha256=mlH18DTGGeWb0Vxfj1cUSMhTGRE9z8q_xWrVXvpg3mE,1742
4
- casual_mcp/logging.py,sha256=S2XpLIKHHDtmru_YBFLdMamdmYRm16Yw3tshE3g3Wqg,932
5
- casual_mcp/main.py,sha256=UQJN5D0WGdimTrwNzVqc_FaTANWar8enBobIULp6EqE,3199
6
- casual_mcp/mcp_tool_chat.py,sha256=FIEgK8629AIgT9X6zTsLgKC3u3R00v_St-QF76WC0JY,5703
7
- casual_mcp/provider_factory.py,sha256=Jp2HQOJdlDDed-hfZf1drEVbw0kpZSE0TN9G0Dcp4w8,1260
8
- casual_mcp/tool_cache.py,sha256=VE599sF7vHH6megcueqVxCZavvTcoFDoZu2QuZM3cYA,3161
9
- casual_mcp/utils.py,sha256=XxzPxQ3j97edeCRXtoO8lJS9R0JYOa25p2MJNwGapJA,3201
10
- casual_mcp/models/__init__.py,sha256=yAYtRqA_cJqdOELYFqAXLxmyt3ld6LIWgezceu0PE1U,642
11
- casual_mcp/models/config.py,sha256=LcqtfW3w7iqrT3FnW50L1mgqAvD_OsYk4ySBZZVV-GI,300
12
- casual_mcp/models/generation_error.py,sha256=abDAahS2fhYkS-ARng1Tk7oudoAO4imkoKYcC9PHT2U,272
13
- casual_mcp/models/mcp_server_config.py,sha256=0OHsHUEKxRoCl21lsye4E5GoCNmdZWIZCOOthcTpdsE,539
14
- casual_mcp/models/model_config.py,sha256=59Y7MvcboPKdAilSwUyeC7lfRm4aYkFhZ5c8EVRP5ys,425
15
- casual_mcp-0.5.0.dist-info/licenses/LICENSE,sha256=U3Zu2tkrh5vXdy7gIdE8WJGM9D4gGp3hohAAWdre-yo,1058
16
- casual_mcp-0.5.0.dist-info/METADATA,sha256=9e4sknE7ksYxSeoNs_R8-ftYzjBuqqVCZjmY_C6fY3s,20290
17
- casual_mcp-0.5.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
18
- casual_mcp-0.5.0.dist-info/entry_points.txt,sha256=X48Np2cwl-SlRQdV26y2vPZ-2tJaODgZeVtfpHho-zg,50
19
- casual_mcp-0.5.0.dist-info/top_level.txt,sha256=K4CiI0Jf8PHICjuQVm32HuNMB44kp8Lb02bbbdiH5bo,11
20
- casual_mcp-0.5.0.dist-info/RECORD,,