careamics 0.1.0rc6__py3-none-any.whl → 0.1.0rc8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of careamics might be problematic. Click here for more details.

Files changed (91) hide show
  1. careamics/__init__.py +1 -14
  2. careamics/careamist.py +212 -294
  3. careamics/config/__init__.py +0 -3
  4. careamics/config/algorithm_model.py +8 -15
  5. careamics/config/architectures/architecture_model.py +1 -0
  6. careamics/config/architectures/custom_model.py +5 -3
  7. careamics/config/architectures/unet_model.py +19 -0
  8. careamics/config/architectures/vae_model.py +1 -0
  9. careamics/config/callback_model.py +76 -34
  10. careamics/config/configuration_factory.py +18 -98
  11. careamics/config/configuration_model.py +23 -18
  12. careamics/config/data_model.py +103 -54
  13. careamics/config/inference_model.py +41 -19
  14. careamics/config/optimizer_models.py +13 -7
  15. careamics/config/support/supported_data.py +29 -4
  16. careamics/config/support/supported_transforms.py +0 -1
  17. careamics/config/tile_information.py +36 -58
  18. careamics/config/training_model.py +5 -1
  19. careamics/config/transformations/normalize_model.py +32 -4
  20. careamics/config/validators/validator_utils.py +1 -1
  21. careamics/dataset/__init__.py +12 -1
  22. careamics/dataset/dataset_utils/__init__.py +8 -7
  23. careamics/dataset/dataset_utils/file_utils.py +2 -2
  24. careamics/dataset/dataset_utils/iterate_over_files.py +83 -0
  25. careamics/dataset/dataset_utils/running_stats.py +186 -0
  26. careamics/dataset/in_memory_dataset.py +84 -173
  27. careamics/dataset/in_memory_pred_dataset.py +88 -0
  28. careamics/dataset/in_memory_tiled_pred_dataset.py +129 -0
  29. careamics/dataset/iterable_dataset.py +97 -250
  30. careamics/dataset/iterable_pred_dataset.py +122 -0
  31. careamics/dataset/iterable_tiled_pred_dataset.py +140 -0
  32. careamics/dataset/patching/patching.py +97 -52
  33. careamics/dataset/patching/random_patching.py +9 -4
  34. careamics/dataset/patching/validate_patch_dimension.py +5 -3
  35. careamics/dataset/tiling/__init__.py +10 -0
  36. careamics/dataset/tiling/collate_tiles.py +33 -0
  37. careamics/dataset/{patching → tiling}/tiled_patching.py +4 -4
  38. careamics/file_io/__init__.py +7 -0
  39. careamics/file_io/read/__init__.py +11 -0
  40. careamics/file_io/read/get_func.py +56 -0
  41. careamics/{dataset/dataset_utils/read_tiff.py → file_io/read/tiff.py} +3 -10
  42. careamics/file_io/write/__init__.py +9 -0
  43. careamics/file_io/write/get_func.py +59 -0
  44. careamics/file_io/write/tiff.py +39 -0
  45. careamics/lightning/__init__.py +17 -0
  46. careamics/{lightning_module.py → lightning/lightning_module.py} +69 -92
  47. careamics/{lightning_prediction_datamodule.py → lightning/predict_data_module.py} +120 -178
  48. careamics/{lightning_datamodule.py → lightning/train_data_module.py} +135 -220
  49. careamics/lvae_training/__init__.py +0 -0
  50. careamics/lvae_training/data_modules.py +1220 -0
  51. careamics/lvae_training/data_utils.py +618 -0
  52. careamics/lvae_training/eval_utils.py +905 -0
  53. careamics/lvae_training/get_config.py +84 -0
  54. careamics/lvae_training/lightning_module.py +701 -0
  55. careamics/lvae_training/metrics.py +214 -0
  56. careamics/lvae_training/train_lvae.py +339 -0
  57. careamics/lvae_training/train_utils.py +121 -0
  58. careamics/model_io/bioimage/model_description.py +40 -32
  59. careamics/model_io/bmz_io.py +2 -2
  60. careamics/model_io/model_io_utils.py +6 -3
  61. careamics/models/lvae/__init__.py +0 -0
  62. careamics/models/lvae/layers.py +1998 -0
  63. careamics/models/lvae/likelihoods.py +312 -0
  64. careamics/models/lvae/lvae.py +985 -0
  65. careamics/models/lvae/noise_models.py +409 -0
  66. careamics/models/lvae/utils.py +395 -0
  67. careamics/prediction_utils/__init__.py +10 -0
  68. careamics/prediction_utils/prediction_outputs.py +137 -0
  69. careamics/prediction_utils/stitch_prediction.py +103 -0
  70. careamics/transforms/n2v_manipulate.py +3 -1
  71. careamics/transforms/normalize.py +139 -68
  72. careamics/transforms/pixel_manipulation.py +33 -9
  73. careamics/transforms/tta.py +43 -29
  74. careamics/utils/__init__.py +2 -0
  75. careamics/utils/autocorrelation.py +40 -0
  76. careamics/utils/ram.py +2 -2
  77. {careamics-0.1.0rc6.dist-info → careamics-0.1.0rc8.dist-info}/METADATA +7 -6
  78. careamics-0.1.0rc8.dist-info/RECORD +135 -0
  79. {careamics-0.1.0rc6.dist-info → careamics-0.1.0rc8.dist-info}/WHEEL +1 -1
  80. careamics/config/configuration_example.py +0 -89
  81. careamics/dataset/dataset_utils/read_utils.py +0 -27
  82. careamics/lightning_prediction_loop.py +0 -118
  83. careamics/prediction/__init__.py +0 -7
  84. careamics/prediction/stitch_prediction.py +0 -70
  85. careamics/utils/running_stats.py +0 -43
  86. careamics-0.1.0rc6.dist-info/RECORD +0 -107
  87. /careamics/{dataset/dataset_utils/read_zarr.py → file_io/read/zarr.py} +0 -0
  88. /careamics/{callbacks → lightning/callbacks}/__init__.py +0 -0
  89. /careamics/{callbacks → lightning/callbacks}/hyperparameters_callback.py +0 -0
  90. /careamics/{callbacks → lightning/callbacks}/progress_bar_callback.py +0 -0
  91. {careamics-0.1.0rc6.dist-info → careamics-0.1.0rc8.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,135 @@
1
+ careamics/__init__.py,sha256=xBCerWN66hv3T7dRGiUYLflmbJtJt1HqbSg9JCWp8pY,391
2
+ careamics/careamist.py,sha256=Sk6tY8J4dErVHS3HgwCnR0in78Hh0shPB2CH3Woh-_I,26593
3
+ careamics/conftest.py,sha256=Od4WcaaP0UP-XUMrFr_oo4e6c2hi_RvNbuaRTopwlmI,911
4
+ careamics/py.typed,sha256=esB4cHc6c07uVkGtqf8at7ttEnprwRxwk8obY8Qumq4,187
5
+ careamics/config/__init__.py,sha256=qaR98bVRFnEHYGG5EgGBIa9P9AtMRmKzpXuc1exdteo,913
6
+ careamics/config/algorithm_model.py,sha256=-Nx4E6M2EyBDozSTkXeYaj9b0KcIli0Gy6DE3P1WVfE,5443
7
+ careamics/config/callback_model.py,sha256=EeYHqpMIPQwyNxLRzzX32Uncl5mZuB1bJO76RHpNymg,4555
8
+ careamics/config/configuration_factory.py,sha256=Ckkv4ber2WSaa-BaoDNuyvpVMd02Q-9T27yziXJ-1Ak,18538
9
+ careamics/config/configuration_model.py,sha256=4LbAt3zUtx05mfTRrXBqD57iQn2s0Y93f81M8Gce4zo,18698
10
+ careamics/config/data_model.py,sha256=dpRthXU8lINT3laJygqka-fmUDT7U34QUHZYBX95oY8,15070
11
+ careamics/config/inference_model.py,sha256=UE_-ZmCX6LFCbDBOwyGnvuAboF_JNX2m2LcF0WiwgCI,6961
12
+ careamics/config/optimizer_models.py,sha256=p6gDYtO-jFtL7zVX0-Id-rGJWkkyhbU3EBrWD_4TxZE,5726
13
+ careamics/config/tile_information.py,sha256=t82zG54BBwXCwy-IEdALNx7pghEDyvXcf_nBiOhGSTw,2598
14
+ careamics/config/training_model.py,sha256=9I9xn1V7yIMC-1GSAxxeevDc4qQENAtCFnJVMd8haqA,1769
15
+ careamics/config/architectures/__init__.py,sha256=CdnViydyTdQixus3uWHBIgbgxmu9t1_ADehqpjN_57U,444
16
+ careamics/config/architectures/architecture_model.py,sha256=4WvQQJGz5DLFjOUryZx0fqPuEMlF2RhtlV5XudJTIbc,922
17
+ careamics/config/architectures/custom_model.py,sha256=IRaequRi5BXMPL14gLr1B_27_XWPeWxQwgHF9_EJMaU,4664
18
+ careamics/config/architectures/register_model.py,sha256=lHH0aUPmXtI3Bq_76zkhg07_Yb_nOJZkZJLCC_G-rZM,2434
19
+ careamics/config/architectures/unet_model.py,sha256=8F2KosNkrXUP2bxlm-D1mowS9x3GOjyXjsEo1Kf-05k,3497
20
+ careamics/config/architectures/vae_model.py,sha256=iLPwjI4B_Ivv_qQNUJc4-Gwm4z8UA3P5BsKQucRFEMI,962
21
+ careamics/config/references/__init__.py,sha256=rZAQzmrciX5cNICcXaBH6sbE6N6L7_qYQUkasNy9y-c,763
22
+ careamics/config/references/algorithm_descriptions.py,sha256=wR3hIoeg5eiUEPbwTxMpQYLTKQyRl_5naSDbBZOZESU,3541
23
+ careamics/config/references/references.py,sha256=AXx08FJQxHb7SYOluCr_eQn_mbOris5dXqhKrCnhBTE,1573
24
+ careamics/config/support/__init__.py,sha256=pKqk76kyBraiSC1SQos-cyiQwsfOLLkLuWj6Hw60LZ4,1041
25
+ careamics/config/support/supported_activations.py,sha256=O27_dGDgw2P-DslKJsXGVAyS2NUQM6Ta4jeo2uTQlW0,519
26
+ careamics/config/support/supported_algorithms.py,sha256=GCkauFDlmb2hJwFSdoIpGmpLjPeYFHOGy2NweKdw8T4,358
27
+ careamics/config/support/supported_architectures.py,sha256=LLD6hyje9Q0BcvA7p2E8WW_cY5yEgMI_NAP4HBi27UU,540
28
+ careamics/config/support/supported_data.py,sha256=T_mDiWLFMVji_EpjBABUObAJcnv-XBnqp9XUZP37Tdk,2902
29
+ careamics/config/support/supported_loggers.py,sha256=ubSOkGoYabGbm_jmyc1R3eFcvcP-sHmuyiBi_d3_wLg,197
30
+ careamics/config/support/supported_losses.py,sha256=TPsMCuDdgb64TRyDwonnwHb1R-rkn3OzhtHimyVtrOY,540
31
+ careamics/config/support/supported_optimizers.py,sha256=xxbJsyohJTlHeUz2I4eRwcE3BeACs-6PH8cpX6w2wX8,1394
32
+ careamics/config/support/supported_pixel_manipulations.py,sha256=rFiktUlvoFU7s1NAKEMqsXOzLw5eaw9GtCKUznvq6xc,432
33
+ careamics/config/support/supported_struct_axis.py,sha256=alZMA5Y-BpDymLPUEd1zqVY0xMkgl9Rv1d4ujED6sco,424
34
+ careamics/config/support/supported_transforms.py,sha256=4uob-bnZ5aqpN5aEI67-aa7bsmVCrKxEknzf2BAZ3W4,283
35
+ careamics/config/transformations/__init__.py,sha256=oqwBAL2XXbPRZZ5iOzNqalX6SyJ1M-S0lkfbDGZOzyE,378
36
+ careamics/config/transformations/n2v_manipulate_model.py,sha256=UTyfpm1mmMvYg_HoMzXilZhJGx_muiV-lLQ4UThCFJ0,1854
37
+ careamics/config/transformations/normalize_model.py,sha256=1Rkk6IkF-7ytGU6HSzP-TpOi4RRWiQJ6fOd8zammXcg,1936
38
+ careamics/config/transformations/transform_model.py,sha256=i7KAtSv4nah2H7uyJFKqg7RdKF68OHIPMNNvDo0HxGY,1000
39
+ careamics/config/transformations/xy_flip_model.py,sha256=zU-uZ1b1zNZWckbho3onN-B7BHKhN7jbgbNZyRQhv2s,1025
40
+ careamics/config/transformations/xy_random_rotate90_model.py,sha256=6sYKmtCLvz0SV1qZgBSHUTH-CUjwvHnohq1HyPntbyE,894
41
+ careamics/config/validators/__init__.py,sha256=iv0nVI0W7j9DxFPwh0DjRCzM9P8oLQn4Gwi5rfuFrrI,180
42
+ careamics/config/validators/validator_utils.py,sha256=aNFzpBVbef3BZIt6MiNMVc2kW6MJDWqQgdYkFM8Gjig,2621
43
+ careamics/dataset/__init__.py,sha256=NQSWdpQu6BhqGGHUYuOt1hXJrGUN1LPNCP1A8duMY84,547
44
+ careamics/dataset/in_memory_dataset.py,sha256=7YRpbKg6nqrECDhaA88HNlstyTObQxTN9jPcNlE_aWE,9906
45
+ careamics/dataset/in_memory_pred_dataset.py,sha256=VvwW5D8TjgO_kR8eZinP-9qepSiI6ZsUN7FZ0Rvc8Bs,2161
46
+ careamics/dataset/in_memory_tiled_pred_dataset.py,sha256=DANmlnlV1ysXKdwGvmJoOYKcjlgoMhnSGSDRpeK79ZA,3552
47
+ careamics/dataset/iterable_dataset.py,sha256=vHwkzoQs-CvbGHcGtvYMF52dO6zLau89A13xDOWSGUU,9770
48
+ careamics/dataset/iterable_pred_dataset.py,sha256=2KC9C2hpZmhWSmo6w9Fhz0wjmbcsBlRy8QsYfO4dN2w,3740
49
+ careamics/dataset/iterable_tiled_pred_dataset.py,sha256=uNpc_13vo9REvGYOLu7lBNDh813b_UqZ9x5c4Q_udDE,4533
50
+ careamics/dataset/zarr_dataset.py,sha256=lojnK5bhiF1vyjuPtWXBrZ9sy5fT_rBvZJbbbnE-H_I,5665
51
+ careamics/dataset/dataset_utils/__init__.py,sha256=b9r_2BcrXoHNq9chXfZvgINGwZRpWfUZ_p6vikB_Kxw,507
52
+ careamics/dataset/dataset_utils/dataset_utils.py,sha256=zYNglet5lYKxIhTeOGG2K24oujC-m5zyYlwJcQcleVA,2662
53
+ careamics/dataset/dataset_utils/file_utils.py,sha256=4Aq92wz9M7esrujDbOxw1WNoYLlEjBRa4sOzf2Aw61c,4070
54
+ careamics/dataset/dataset_utils/iterate_over_files.py,sha256=TcX24NRt2cdM9gmmQV2f5ziwXxRne2-zePzz3DDFSMA,2871
55
+ careamics/dataset/dataset_utils/running_stats.py,sha256=0uOLaXpNwmY4lIElsHg4Ezf1YRbHy9An8GHXGYOaYmg,5565
56
+ careamics/dataset/patching/__init__.py,sha256=7-s12oUAZNlMOwSkxSwbD7vojQINWYFzn_4qIJ87WBg,37
57
+ careamics/dataset/patching/patching.py,sha256=deAxY34Iz-mguBlHQ-5EO4vRhPpR9I3LQ9onV1K_KqA,8858
58
+ careamics/dataset/patching/random_patching.py,sha256=61sLxA4eJN5TIWBVIDZdJahS_CkclpM7Kc_VdPj91dU,6486
59
+ careamics/dataset/patching/sequential_patching.py,sha256=_l3Q2uYIhjMJMaxDdSbHC9_2kRF9eLz-Xs3r9i7j3Nc,5903
60
+ careamics/dataset/patching/validate_patch_dimension.py,sha256=sQQ0-4b4uu60MNKkoWv95KxQ80J7Ku0CEk0-kAXlKeI,2134
61
+ careamics/dataset/tiling/__init__.py,sha256=XynyAz85hVfkLtrG0lrMr_aBQm_YEwfu5uFcXMGHlOA,190
62
+ careamics/dataset/tiling/collate_tiles.py,sha256=OrPZ-n-V3uGOc_7CcPnyEJqdbEVDlTfJfWmZnyBZ-HA,978
63
+ careamics/dataset/tiling/tiled_patching.py,sha256=Zhhc0TwXVy4P_tZxS3B5tQZK6SRhGiQwnzVr-1BC4ww,5952
64
+ careamics/file_io/__init__.py,sha256=HRLEqH04njrhP2jdqiyqSkjD4LcbvBtORqyuXzlMkKE,215
65
+ careamics/file_io/read/__init__.py,sha256=IlS9RKWFur-qd-uNQWd_Y8F1QuuE07vqkoc0L0YEGjE,233
66
+ careamics/file_io/read/get_func.py,sha256=yGXD0rTFD7u70FR0axrQtWies0aYW3iQ6f0Wfcd8z-8,1394
67
+ careamics/file_io/read/tiff.py,sha256=_WVqUycI4NMk2GzDBEOWcGuSr1293673A1vs7WvZbS4,1358
68
+ careamics/file_io/read/zarr.py,sha256=2jzREAnJDQSv0qmsL-v00BxmiZ_sp0ijq667LZSQ_hY,1685
69
+ careamics/file_io/write/__init__.py,sha256=QkjBFofsA40_D6lQai5t3X3Lr9rZHK-W_DhMeDFHj8w,192
70
+ careamics/file_io/write/get_func.py,sha256=KATtExa2l4TvQSjOgPTM0e1Yy55bKaQv9gmW7aKn1_Y,1526
71
+ careamics/file_io/write/tiff.py,sha256=YU0TarBCG3w1f_HMZ_Hy7ifVdadgp9CuUD1l5_IY6zg,997
72
+ careamics/lightning/__init__.py,sha256=IAhfuveylgTdwIqynRqmGNOGrBlNmsXNgK3TuPDqU-o,572
73
+ careamics/lightning/lightning_module.py,sha256=ml0aGFP6MlSRtGkcoWcmX9DAlMSqJ8rW16HObBWK9MI,8881
74
+ careamics/lightning/predict_data_module.py,sha256=rgHhS5fKoa5wscWyvmPP_FHHdVnDnLbF4sG7y_C7ZOM,12747
75
+ careamics/lightning/train_data_module.py,sha256=72G19J26fg_kkNtCO2M9pcjq9sVkchL7MvZ8wrjS1So,27891
76
+ careamics/lightning/callbacks/__init__.py,sha256=spxJlDByD-6QtMl9vcIty8Wb0tyHaSTKTItozHenI44,204
77
+ careamics/lightning/callbacks/hyperparameters_callback.py,sha256=ODJpwwdgc1-Py8yEUpXLar8_IOAcfR7lF3--6LfSiGc,1496
78
+ careamics/lightning/callbacks/progress_bar_callback.py,sha256=8HvNSWZldixd6pjz0dLDo0apIbzTovv5smKmZ6tZQ8U,2444
79
+ careamics/losses/__init__.py,sha256=kVEwfZ2xXfd8x0n-VHGKm6qvzbto5pIIJYP_jN-bCtw,89
80
+ careamics/losses/loss_factory.py,sha256=vaMlxH5oescWTKlK1adWwbeD9tW4Ti-p7qKmc1iHCi0,1005
81
+ careamics/losses/losses.py,sha256=DKwHZ9ifVe6wMd3tBOiswLC-saU1bj1RCcXGOkREmKU,2328
82
+ careamics/lvae_training/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
83
+ careamics/lvae_training/data_modules.py,sha256=A5Uoo4qtPdX99QSi-Zl22LzO0I1DszJbQuXMGUXGQEE,46665
84
+ careamics/lvae_training/data_utils.py,sha256=tRk0k0TkBLPocqlUlkwQN_dm5jzw5z74YNs2DsCuy9Y,21670
85
+ careamics/lvae_training/eval_utils.py,sha256=_AlXNXk4uGS2AGsF4PHJZpJoWBgq32kvQLEh7awOIvc,32405
86
+ careamics/lvae_training/get_config.py,sha256=-CWVxlPo71_huUSmXnmYvOmgvcvrZiv0wIpXnR32l6E,3054
87
+ careamics/lvae_training/lightning_module.py,sha256=ryr7iHqCMzCl5esi6_gEcnKFDQkMrw0EXK9Zfgv1Nek,27186
88
+ careamics/lvae_training/metrics.py,sha256=KTDAKhe3vh-YxzGibjtkIG2nnUyujbnwqX4xGwaRXwE,6718
89
+ careamics/lvae_training/train_lvae.py,sha256=Eu--3-RHSfhQVsJ-CTDXhUeoM1fzf_H9IGtBaNPOsHI,11044
90
+ careamics/lvae_training/train_utils.py,sha256=e-d4QsF-li8MmAPkAmB1daHpkuU16nBTnQFZYqpTjn4,3567
91
+ careamics/model_io/__init__.py,sha256=HITzjiuZQwo-rQ2_Ma3bz9l7PDANv1_S489E-tffV9s,155
92
+ careamics/model_io/bmz_io.py,sha256=53PvOMTZ3ZkSgFg-OtGopuf_vJ51xs6nfv1v0tufd7g,7041
93
+ careamics/model_io/model_io_utils.py,sha256=EebZL3t6oIHY0kuTKacmAEriTQ4B77KuAQ84UHG7XW4,2357
94
+ careamics/model_io/bioimage/__init__.py,sha256=r94nu8WDAvj0Fbu4C-iJXdOhfSQXeZBvN3UKsLG0RNI,298
95
+ careamics/model_io/bioimage/_readme_factory.py,sha256=LZAuEiWNBTPaD8KrLPMq16yJuOPKDZiGQuTMHKLvoT4,3514
96
+ careamics/model_io/bioimage/bioimage_utils.py,sha256=nlW0J1daYyLbL6yVN3QSn3HhA2joMjIG-thK64lpVTY,1085
97
+ careamics/model_io/bioimage/model_description.py,sha256=3jw4wkJDefLEW-2BbEfAml3AwyteZszL-v8JYpJRcOo,9635
98
+ careamics/models/__init__.py,sha256=Wty5hwQb_As33pQOZqY5j-DpDOdh5ArBH4BhQDSuXTQ,133
99
+ careamics/models/activation.py,sha256=xdqz4-yKV7oElG_dDrYuibS8HOiYvKdV_r9FwWPvaDE,977
100
+ careamics/models/layers.py,sha256=oWzpq8OdHFEJqPWC9X8IRPNe0XqAnesSqwoT6V3t1Mw,13712
101
+ careamics/models/model_factory.py,sha256=5YRwRRUemxb-pTRL3VWn8N61tCGyhrurqPgcFaNETb0,1360
102
+ careamics/models/unet.py,sha256=3pXpiCIw7WUaDV0Jmczkxi99C5-Zu3NpQpWxgRkeGL8,14321
103
+ careamics/models/lvae/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
104
+ careamics/models/lvae/layers.py,sha256=wFuQgmtJtB7YNuNi2dVoOEWq1ndR6ku4iGvC2u0TJlM,84991
105
+ careamics/models/lvae/likelihoods.py,sha256=FRFTh34FaBLGxn9OXFzqFyHhhJMSKYhgqxwG65VbGh8,10489
106
+ careamics/models/lvae/lvae.py,sha256=5RlK4-h55dGz9UMCh8JCbLsaaIQ5S2IKGeI9d4nD5dA,40167
107
+ careamics/models/lvae/noise_models.py,sha256=yotY5gkPAowbI7esOmHlzBWcSsZlH2G3U7uYIWghGwY,15703
108
+ careamics/models/lvae/utils.py,sha256=muy4nLHmnB3BPAI0tQbJK_vVtBZOLBvhrJigHIOx5V4,11542
109
+ careamics/prediction_utils/__init__.py,sha256=uYKzirlF-unFL9GbDPxFnYgOwSjGAtik9fonU7DfuEY,270
110
+ careamics/prediction_utils/prediction_outputs.py,sha256=cHbt45txofkMBWMUpJmdwOgHgG2By1gwnR6ZQv4n5qU,4104
111
+ careamics/prediction_utils/stitch_prediction.py,sha256=XSu2aSEbX1oXaXxhkXMnmhy2gKE8W28CmzH_bNc1Cm8,3369
112
+ careamics/transforms/__init__.py,sha256=VIHIsC8sMAh1TCm67ifB816Zp-LRo6rAONPuT2Qs3bs,483
113
+ careamics/transforms/compose.py,sha256=mTkhoxvgvsBqNoz9RWpJ_tqsDl1CDp0-UARTjUuBRf4,3477
114
+ careamics/transforms/n2v_manipulate.py,sha256=Gty7Jtu-RiFb1EnlrOi652qAOGKU5ZHvidRvykWqJxg,5438
115
+ careamics/transforms/normalize.py,sha256=dfGWCGPyNwyEqg5wUCAA8cGdT1MvNkpKUEpw8Cw8DfA,7274
116
+ careamics/transforms/pixel_manipulation.py,sha256=lNA19Vlo_3GHzRnT_4AFuv6eWQaxbie2PTYGalCY4YQ,13346
117
+ careamics/transforms/struct_mask_parameters.py,sha256=jE29Li9sx3olaRnqYfJsSlKi2t0WQzJmCm9aCbIQEsA,421
118
+ careamics/transforms/transform.py,sha256=cEqc4ci8na70i-HIGYC7udRfVa8D_8OjdRVrr3txLvQ,464
119
+ careamics/transforms/tta.py,sha256=78S7Df9rLHmEVSQSI1qDcRrRJGauyG3oaIrXkckCkmw,2335
120
+ careamics/transforms/xy_flip.py,sha256=Q1kKTa2kE3W1P3dlpT4GAVSSHM3TebnrvIyWh75Fnko,3443
121
+ careamics/transforms/xy_random_rotate90.py,sha256=zWdBROLLjgxTMSQEQesJr17j84BmZhKWCMVVONHU8mw,2781
122
+ careamics/utils/__init__.py,sha256=rG_dnqX7rdyNTFWlDkIdNtDwwMQBpg_ym14ZFeYrWfs,402
123
+ careamics/utils/autocorrelation.py,sha256=M_WYzrEOQngc5iSXWar4S3-EOnK6DfYHPC2vVMeu_Bs,945
124
+ careamics/utils/base_enum.py,sha256=bz1D8mDx5V5hdnJ3WAzJXWHJTbgwAky5FprUt9F5cMA,1387
125
+ careamics/utils/context.py,sha256=Ljf70OR1FcYpsVpxb5Sr2fzmPVIZgDS1uZob_3BcELg,1409
126
+ careamics/utils/logging.py,sha256=coIscjkDYpqcsGnsONuYOdIYd6_gHxdnYIZ-e9Y2Ybg,10322
127
+ careamics/utils/metrics.py,sha256=9YQe5Aj2Pv2h9jnRFeRbDQ_3qXAW0QHpucSqiUtwDcA,2382
128
+ careamics/utils/path_utils.py,sha256=8AugiG5DOmzgSnTCJI8vypXaPE0XhnR-9pzeiFUZ-0I,554
129
+ careamics/utils/ram.py,sha256=tksyn8dVX_iJXmrDZDGub32hFZWIaNxnMheO5G1p43I,244
130
+ careamics/utils/receptive_field.py,sha256=Y2h4c8S6glX3qcx5KHDmO17Kkuyey9voxfoXyqcAfiM,3296
131
+ careamics/utils/torch_utils.py,sha256=g1zxdlM7_BA7mMLcCzmrxZX4LmH__KXlJibC95muVaA,3014
132
+ careamics-0.1.0rc8.dist-info/METADATA,sha256=7hTsctBI62YC9wmgYwUaByOXUJzKrlHLV8iMpnTNY00,3525
133
+ careamics-0.1.0rc8.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
134
+ careamics-0.1.0rc8.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
135
+ careamics-0.1.0rc8.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: hatchling 1.24.2
2
+ Generator: hatchling 1.25.0
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -1,89 +0,0 @@
1
- """Example of configurations."""
2
-
3
- from .algorithm_model import AlgorithmConfig
4
- from .architectures import UNetModel
5
- from .configuration_model import Configuration
6
- from .data_model import DataConfig
7
- from .optimizer_models import LrSchedulerModel, OptimizerModel
8
- from .support import (
9
- SupportedActivation,
10
- SupportedAlgorithm,
11
- SupportedArchitecture,
12
- SupportedData,
13
- SupportedLogger,
14
- SupportedLoss,
15
- SupportedOptimizer,
16
- SupportedPixelManipulation,
17
- SupportedScheduler,
18
- SupportedTransform,
19
- )
20
- from .training_model import TrainingConfig
21
-
22
-
23
- def full_configuration_example() -> Configuration:
24
- """Return a dictionnary representing a full configuration example.
25
-
26
- Returns
27
- -------
28
- Configuration
29
- Full configuration example.
30
- """
31
- experiment_name = "Full example"
32
- algorithm_model = AlgorithmConfig(
33
- algorithm=SupportedAlgorithm.N2V.value,
34
- loss=SupportedLoss.N2V.value,
35
- model=UNetModel(
36
- architecture=SupportedArchitecture.UNET.value,
37
- in_channels=1,
38
- num_classes=1,
39
- depth=2,
40
- num_channels_init=32,
41
- final_activation=SupportedActivation.NONE.value,
42
- n2v2=True,
43
- ),
44
- optimizer=OptimizerModel(
45
- name=SupportedOptimizer.ADAM.value, parameters={"lr": 0.0001}
46
- ),
47
- lr_scheduler=LrSchedulerModel(
48
- name=SupportedScheduler.REDUCE_LR_ON_PLATEAU.value,
49
- ),
50
- )
51
- data_model = DataConfig(
52
- data_type=SupportedData.ARRAY.value,
53
- patch_size=(256, 256),
54
- batch_size=8,
55
- axes="YX",
56
- transforms=[
57
- {
58
- "name": SupportedTransform.NORMALIZE.value,
59
- },
60
- {
61
- "name": SupportedTransform.XY_FLIP.value,
62
- },
63
- {
64
- "name": SupportedTransform.XY_RANDOM_ROTATE90.value,
65
- },
66
- {
67
- "name": SupportedTransform.N2V_MANIPULATE.value,
68
- "roi_size": 11,
69
- "masked_pixel_percentage": 0.2,
70
- "strategy": SupportedPixelManipulation.MEDIAN.value,
71
- },
72
- ],
73
- mean=0.485,
74
- std=0.229,
75
- dataloader_params={
76
- "num_workers": 4,
77
- },
78
- )
79
- training_model = TrainingConfig(
80
- num_epochs=30,
81
- logger=SupportedLogger.WANDB.value,
82
- )
83
-
84
- return Configuration(
85
- experiment_name=experiment_name,
86
- algorithm_config=algorithm_model,
87
- data_config=data_model,
88
- training_config=training_model,
89
- )
@@ -1,27 +0,0 @@
1
- """Read function utilities."""
2
-
3
- from typing import Callable, Union
4
-
5
- from careamics.config.support import SupportedData
6
-
7
- from .read_tiff import read_tiff
8
-
9
-
10
- def get_read_func(data_type: Union[SupportedData, str]) -> Callable:
11
- """
12
- Get the read function for the data type.
13
-
14
- Parameters
15
- ----------
16
- data_type : SupportedData
17
- Data type.
18
-
19
- Returns
20
- -------
21
- Callable
22
- Read function.
23
- """
24
- if data_type == SupportedData.TIFF:
25
- return read_tiff
26
- else:
27
- raise NotImplementedError(f"Data type {data_type} is not supported.")
@@ -1,118 +0,0 @@
1
- """Lithning prediction loop allowing tiling."""
2
-
3
- from typing import Optional
4
-
5
- import pytorch_lightning as L
6
- from pytorch_lightning.loops.fetchers import _DataLoaderIterDataFetcher
7
- from pytorch_lightning.loops.utilities import _no_grad_context
8
- from pytorch_lightning.trainer import call
9
- from pytorch_lightning.utilities.types import _PREDICT_OUTPUT
10
-
11
- from careamics.prediction import stitch_prediction
12
-
13
-
14
- class CAREamicsPredictionLoop(L.loops._PredictionLoop):
15
- """
16
- CAREamics prediction loop.
17
-
18
- This class extends the PyTorch Lightning `_PredictionLoop` class to include
19
- the stitching of the tiles into a single prediction result.
20
- """
21
-
22
- def _on_predict_epoch_end(self) -> Optional[_PREDICT_OUTPUT]:
23
- """Call `on_predict_epoch_end` hook.
24
-
25
- Adapted from the parent method.
26
-
27
- Returns
28
- -------
29
- Optional[_PREDICT_OUTPUT]
30
- Prediction output.
31
- """
32
- trainer = self.trainer
33
- call._call_callback_hooks(trainer, "on_predict_epoch_end")
34
- call._call_lightning_module_hook(trainer, "on_predict_epoch_end")
35
-
36
- if self.return_predictions:
37
- ########################################################
38
- ################ CAREamics specific code ###############
39
- if len(self.predicted_array) == 1:
40
- # TODO does this make sense to here? (force numpy array)
41
- return self.predicted_array[0].numpy()
42
- else:
43
- # TODO revisit logic
44
- return [element.numpy() for element in self.predicted_array]
45
- ########################################################
46
- return None
47
-
48
- @_no_grad_context
49
- def run(self) -> Optional[_PREDICT_OUTPUT]:
50
- """Run the prediction loop.
51
-
52
- Adapted from the parent method in order to stitch the predictions.
53
-
54
- Returns
55
- -------
56
- Optional[_PREDICT_OUTPUT]
57
- Prediction output.
58
- """
59
- self.setup_data()
60
- if self.skip:
61
- return None
62
- self.reset()
63
- self.on_run_start()
64
- data_fetcher = self._data_fetcher
65
- assert data_fetcher is not None
66
-
67
- self.predicted_array = []
68
- self.tiles = []
69
- self.stitching_data = []
70
-
71
- while True:
72
- try:
73
- if isinstance(data_fetcher, _DataLoaderIterDataFetcher):
74
- dataloader_iter = next(data_fetcher)
75
- # hook's batch_idx and dataloader_idx arguments correctness cannot
76
- # be guaranteed in this setting
77
- batch = data_fetcher._batch
78
- batch_idx = data_fetcher._batch_idx
79
- dataloader_idx = data_fetcher._dataloader_idx
80
- else:
81
- dataloader_iter = None
82
- batch, batch_idx, dataloader_idx = next(data_fetcher)
83
- self.batch_progress.is_last_batch = data_fetcher.done
84
-
85
- # run step hooks
86
- self._predict_step(batch, batch_idx, dataloader_idx, dataloader_iter)
87
-
88
- ########################################################
89
- ################ CAREamics specific code ###############
90
- # TODO: next line is not compatible with muSplit
91
- is_tiled = len(self.predictions[batch_idx]) == 2
92
- if is_tiled:
93
- # extract the last tile flag and the coordinates (crop and stitch)
94
- last_tile, *stitch_data = self.predictions[batch_idx][1]
95
-
96
- # append the tile and the coordinates to the lists
97
- self.tiles.append(self.predictions[batch_idx][0])
98
- self.stitching_data.append(stitch_data)
99
-
100
- # if last tile, stitch the tiles and add array to the prediction
101
- if any(last_tile):
102
- predicted_batches = stitch_prediction(
103
- self.tiles, self.stitching_data
104
- )
105
- self.predicted_array.append(predicted_batches)
106
- self.tiles.clear()
107
- self.stitching_data.clear()
108
- else:
109
- # simply add the prediction to the list
110
- self.predicted_array.append(self.predictions[batch_idx])
111
- ########################################################
112
- except StopIteration:
113
- break
114
- finally:
115
- self._restarting = False
116
- return self.on_run_end()
117
-
118
- # TODO predictions aren't stacked, list returned
@@ -1,7 +0,0 @@
1
- """Prediction functions."""
2
-
3
- __all__ = [
4
- "stitch_prediction",
5
- ]
6
-
7
- from .stitch_prediction import stitch_prediction
@@ -1,70 +0,0 @@
1
- """Prediction utility functions."""
2
-
3
- from typing import List
4
-
5
- import numpy as np
6
- import torch
7
-
8
-
9
- def stitch_prediction(
10
- tiles: List[torch.Tensor],
11
- stitching_data: List[List[torch.Tensor]],
12
- ) -> torch.Tensor:
13
- """
14
- Stitch tiles back together to form a full image.
15
-
16
- Parameters
17
- ----------
18
- tiles : List[torch.Tensor]
19
- Cropped tiles and their respective stitching coordinates.
20
- stitching_data : List
21
- List of information and coordinates obtained from
22
- `dataset.tiled_patching.extract_tiles`.
23
-
24
- Returns
25
- -------
26
- np.ndarray
27
- Full image.
28
- """
29
- # retrieve whole array size, there is two cases to consider:
30
- # 1. the tiles are stored in a list
31
- # 2. the tiles are stored in a list with batches along the first dim
32
- if tiles[0].shape[0] > 1:
33
- input_shape = np.array(
34
- [el.numpy() for el in stitching_data[0][0][0]], dtype=int
35
- ).squeeze()
36
- else:
37
- input_shape = np.array(
38
- [el.numpy() for el in stitching_data[0][0]], dtype=int
39
- ).squeeze()
40
-
41
- # TODO should use torch.zeros instead of np.zeros
42
- predicted_image = torch.Tensor(np.zeros(input_shape, dtype=np.float32))
43
-
44
- for tile_batch, (_, overlap_crop_coords_batch, stitch_coords_batch) in zip(
45
- tiles, stitching_data
46
- ):
47
- for batch_idx in range(tile_batch.shape[0]):
48
- # Compute coordinates for cropping predicted tile
49
- slices = tuple(
50
- [
51
- slice(c[0][batch_idx], c[1][batch_idx])
52
- for c in overlap_crop_coords_batch
53
- ]
54
- )
55
-
56
- # Crop predited tile according to overlap coordinates
57
- cropped_tile = tile_batch[batch_idx].squeeze()[slices]
58
-
59
- # Insert cropped tile into predicted image using stitch coordinates
60
- predicted_image[
61
- (
62
- ...,
63
- *[
64
- slice(c[0][batch_idx], c[1][batch_idx])
65
- for c in stitch_coords_batch
66
- ],
67
- )
68
- ] = cropped_tile.to(torch.float32)
69
-
70
- return predicted_image
@@ -1,43 +0,0 @@
1
- """Running stats submodule, used in the Zarr dataset."""
2
-
3
- # from multiprocessing import Value
4
- # from typing import Tuple
5
-
6
- # import numpy as np
7
-
8
-
9
- # class RunningStats:
10
- # """Calculates running mean and std."""
11
-
12
- # def __init__(self) -> None:
13
- # self.reset()
14
-
15
- # def reset(self) -> None:
16
- # """Reset the running stats."""
17
- # self.avg_mean = Value("d", 0)
18
- # self.avg_std = Value("d", 0)
19
- # self.m2 = Value("d", 0)
20
- # self.count = Value("i", 0)
21
-
22
- # def init(self, mean: float, std: float) -> None:
23
- # """Initialize running stats."""
24
- # with self.avg_mean.get_lock():
25
- # self.avg_mean.value += mean
26
- # with self.avg_std.get_lock():
27
- # self.avg_std.value = std
28
-
29
- # def compute_std(self) -> Tuple[float, float]:
30
- # """Compute std."""
31
- # if self.count.value >= 2:
32
- # self.avg_std.value = np.sqrt(self.m2.value / self.count.value)
33
-
34
- # def update(self, value: float) -> None:
35
- # """Update running stats."""
36
- # with self.count.get_lock():
37
- # self.count.value += 1
38
- # delta = value - self.avg_mean.value
39
- # with self.avg_mean.get_lock():
40
- # self.avg_mean.value += delta / self.count.value
41
- # delta2 = value - self.avg_mean.value
42
- # with self.m2.get_lock():
43
- # self.m2.value += delta * delta2
@@ -1,107 +0,0 @@
1
- careamics/__init__.py,sha256=DkMGt4t9ua0gCgvZFEtb6eydvoxG976T0KUro8KnDNA,760
2
- careamics/careamist.py,sha256=vn-XiawERTTIKZqcfTg8leoVoLdBmHWIe9tkGrgkEGY,29719
3
- careamics/conftest.py,sha256=Od4WcaaP0UP-XUMrFr_oo4e6c2hi_RvNbuaRTopwlmI,911
4
- careamics/lightning_datamodule.py,sha256=TBKTpVfOvgsQg_8gwU68Au-aw_OXfUSsah7snXef43Y,32685
5
- careamics/lightning_module.py,sha256=MSUxZfkhM1-D5AEZrkuNazOBbZCgbxCuuGtgYjhLEHU,10313
6
- careamics/lightning_prediction_datamodule.py,sha256=4aTyMSbHiy1ebp6WSfDMDoYCJJU4qf4T5ShAjRNn_yM,15057
7
- careamics/lightning_prediction_loop.py,sha256=qDfRVXPiCVyRz-P3l9tmlCfMT8mx9waKNfNrIMrjt3w,4599
8
- careamics/py.typed,sha256=esB4cHc6c07uVkGtqf8at7ttEnprwRxwk8obY8Qumq4,187
9
- careamics/callbacks/__init__.py,sha256=spxJlDByD-6QtMl9vcIty8Wb0tyHaSTKTItozHenI44,204
10
- careamics/callbacks/hyperparameters_callback.py,sha256=ODJpwwdgc1-Py8yEUpXLar8_IOAcfR7lF3--6LfSiGc,1496
11
- careamics/callbacks/progress_bar_callback.py,sha256=8HvNSWZldixd6pjz0dLDo0apIbzTovv5smKmZ6tZQ8U,2444
12
- careamics/config/__init__.py,sha256=SP1oJKhK3VDN9ABwnpfR3H02qRprzymjRfNYeC7kHEo,1019
13
- careamics/config/algorithm_model.py,sha256=2y4SWagzIyZH_WWYeZWLF-4SGcBk-g04QwKdSzmYTiM,5771
14
- careamics/config/callback_model.py,sha256=CcamVhgRsVdskCe_9EtyWi1YbrNX5vKEplc97AYz1h8,3118
15
- careamics/config/configuration_example.py,sha256=vxXYGB05cOqQwGGBuPN4kQ3uQJxRwzyFq5Tflk5HNvc,2575
16
- careamics/config/configuration_factory.py,sha256=cnv6Qod5Wx1J0h951wgbayMO1KVUWxK0OmAIvscPzm8,21286
17
- careamics/config/configuration_model.py,sha256=j7QryeMNQAsD_0byb81u99Oek2uyj3Syr0nUepFYTe8,18494
18
- careamics/config/data_model.py,sha256=58cS8a1Tk4ZXMf8z4QA7NtJKi_EwlfGTsB0e59q9hhE,12741
19
- careamics/config/inference_model.py,sha256=gbLV4B_7VRAc0QCa8r2EYk-YOdGuGswJIQGDFkj7XUM,5936
20
- careamics/config/optimizer_models.py,sha256=eWCyH9rMTUl82ubqrHFHssQwVyTYNh9lRpVQGv96ppM,5336
21
- careamics/config/tile_information.py,sha256=-k9hcJrL-QBp9n0Nf5qufEMcudnNNe8pWY37NtlWLxs,3009
22
- careamics/config/training_model.py,sha256=oghv91J7xIdI69wpNJGmLUAwgM9l3VhMsbsOo4USqkU,1559
23
- careamics/config/architectures/__init__.py,sha256=CdnViydyTdQixus3uWHBIgbgxmu9t1_ADehqpjN_57U,444
24
- careamics/config/architectures/architecture_model.py,sha256=545hlbOZU9EJNGTcSpy7eXpfzCtvIm28dDJGMo36AfQ,886
25
- careamics/config/architectures/custom_model.py,sha256=MxsFK4cvwjt59_-ZWeIFrlExQ9PpR5X0s9SqxN_B4YQ,4598
26
- careamics/config/architectures/register_model.py,sha256=lHH0aUPmXtI3Bq_76zkhg07_Yb_nOJZkZJLCC_G-rZM,2434
27
- careamics/config/architectures/unet_model.py,sha256=sQjfqTjh1kTNi369U3_94jroU6LyLlflaIe8FwdHQvo,2892
28
- careamics/config/architectures/vae_model.py,sha256=Z0satmte4udManh_bxtl93ZmQlmo6JFE1NQIuZkTsQk,926
29
- careamics/config/references/__init__.py,sha256=rZAQzmrciX5cNICcXaBH6sbE6N6L7_qYQUkasNy9y-c,763
30
- careamics/config/references/algorithm_descriptions.py,sha256=wR3hIoeg5eiUEPbwTxMpQYLTKQyRl_5naSDbBZOZESU,3541
31
- careamics/config/references/references.py,sha256=AXx08FJQxHb7SYOluCr_eQn_mbOris5dXqhKrCnhBTE,1573
32
- careamics/config/support/__init__.py,sha256=pKqk76kyBraiSC1SQos-cyiQwsfOLLkLuWj6Hw60LZ4,1041
33
- careamics/config/support/supported_activations.py,sha256=O27_dGDgw2P-DslKJsXGVAyS2NUQM6Ta4jeo2uTQlW0,519
34
- careamics/config/support/supported_algorithms.py,sha256=GCkauFDlmb2hJwFSdoIpGmpLjPeYFHOGy2NweKdw8T4,358
35
- careamics/config/support/supported_architectures.py,sha256=LLD6hyje9Q0BcvA7p2E8WW_cY5yEgMI_NAP4HBi27UU,540
36
- careamics/config/support/supported_data.py,sha256=C0VcP1DkZqJ4MPn6UZcCZX8ZfVNdz0ZJk6y89fiim2I,2084
37
- careamics/config/support/supported_loggers.py,sha256=ubSOkGoYabGbm_jmyc1R3eFcvcP-sHmuyiBi_d3_wLg,197
38
- careamics/config/support/supported_losses.py,sha256=TPsMCuDdgb64TRyDwonnwHb1R-rkn3OzhtHimyVtrOY,540
39
- careamics/config/support/supported_optimizers.py,sha256=xxbJsyohJTlHeUz2I4eRwcE3BeACs-6PH8cpX6w2wX8,1394
40
- careamics/config/support/supported_pixel_manipulations.py,sha256=rFiktUlvoFU7s1NAKEMqsXOzLw5eaw9GtCKUznvq6xc,432
41
- careamics/config/support/supported_struct_axis.py,sha256=alZMA5Y-BpDymLPUEd1zqVY0xMkgl9Rv1d4ujED6sco,424
42
- careamics/config/support/supported_transforms.py,sha256=ylTiS8fUFKFwfn85gh7kKF4Trb9Q4ENPKm-XDWCe-SY,311
43
- careamics/config/transformations/__init__.py,sha256=oqwBAL2XXbPRZZ5iOzNqalX6SyJ1M-S0lkfbDGZOzyE,378
44
- careamics/config/transformations/n2v_manipulate_model.py,sha256=UTyfpm1mmMvYg_HoMzXilZhJGx_muiV-lLQ4UThCFJ0,1854
45
- careamics/config/transformations/normalize_model.py,sha256=fua-JAcfNdTuikERreaR_0mz9ExsYSDJ7mUgIDl-U0M,804
46
- careamics/config/transformations/transform_model.py,sha256=i7KAtSv4nah2H7uyJFKqg7RdKF68OHIPMNNvDo0HxGY,1000
47
- careamics/config/transformations/xy_flip_model.py,sha256=zU-uZ1b1zNZWckbho3onN-B7BHKhN7jbgbNZyRQhv2s,1025
48
- careamics/config/transformations/xy_random_rotate90_model.py,sha256=6sYKmtCLvz0SV1qZgBSHUTH-CUjwvHnohq1HyPntbyE,894
49
- careamics/config/validators/__init__.py,sha256=iv0nVI0W7j9DxFPwh0DjRCzM9P8oLQn4Gwi5rfuFrrI,180
50
- careamics/config/validators/validator_utils.py,sha256=H11pttfXFdnlUw9FFIgPWy3sxO1ks38dtmYAS6Kl9-c,2624
51
- careamics/dataset/__init__.py,sha256=cUcqy1Nxa5WhDQim6948r3i1kGQ-HijUqAACyyM7cuU,174
52
- careamics/dataset/in_memory_dataset.py,sha256=WcVfE7sdqac07dzmb4Wz2yML6t-0PmQaIfmvyv6uQQE,12567
53
- careamics/dataset/iterable_dataset.py,sha256=aJKL3F6SesOy-WTRXarYDJjGh7RlxqmYDrYAv09J4I0,15070
54
- careamics/dataset/zarr_dataset.py,sha256=lojnK5bhiF1vyjuPtWXBrZ9sy5fT_rBvZJbbbnE-H_I,5665
55
- careamics/dataset/dataset_utils/__init__.py,sha256=5U_kavgh_QEvTiDuM-O4hsqmDOKh6_y6iDvZPE8Jtsc,446
56
- careamics/dataset/dataset_utils/dataset_utils.py,sha256=zYNglet5lYKxIhTeOGG2K24oujC-m5zyYlwJcQcleVA,2662
57
- careamics/dataset/dataset_utils/file_utils.py,sha256=hOCDYlVcoBCFR3B9Eh5nTYSiTW0wskAecUfykB1Mj_I,4047
58
- careamics/dataset/dataset_utils/read_tiff.py,sha256=nbSAU11Tv-jViFHRAtrG8pGH09CG3IIdF2WF6duAxxQ,1729
59
- careamics/dataset/dataset_utils/read_utils.py,sha256=0nsfzHq3zr9kjm2qZZrMRKI5LC5MiRSH35xPBCYyBrQ,579
60
- careamics/dataset/dataset_utils/read_zarr.py,sha256=2jzREAnJDQSv0qmsL-v00BxmiZ_sp0ijq667LZSQ_hY,1685
61
- careamics/dataset/patching/__init__.py,sha256=7-s12oUAZNlMOwSkxSwbD7vojQINWYFzn_4qIJ87WBg,37
62
- careamics/dataset/patching/patching.py,sha256=vS7wQ1JdSNsFlqJi41Y_NupFIez2BXOO86r0UY1gDJA,7535
63
- careamics/dataset/patching/random_patching.py,sha256=B1POeDApLyvcRRBpg0loLsOoUGWVkMojEzt4xD_WiaQ,6281
64
- careamics/dataset/patching/sequential_patching.py,sha256=_l3Q2uYIhjMJMaxDdSbHC9_2kRF9eLz-Xs3r9i7j3Nc,5903
65
- careamics/dataset/patching/tiled_patching.py,sha256=_IUl5zcBM-BMcRfQajDOQ7RIXmqympM3O75jRHqRi0M,5888
66
- careamics/dataset/patching/validate_patch_dimension.py,sha256=Y7SWajYWtU7pdZpAI3t_H3Mxw5GMjd9hPpdRygORwK8,2036
67
- careamics/losses/__init__.py,sha256=kVEwfZ2xXfd8x0n-VHGKm6qvzbto5pIIJYP_jN-bCtw,89
68
- careamics/losses/loss_factory.py,sha256=vaMlxH5oescWTKlK1adWwbeD9tW4Ti-p7qKmc1iHCi0,1005
69
- careamics/losses/losses.py,sha256=DKwHZ9ifVe6wMd3tBOiswLC-saU1bj1RCcXGOkREmKU,2328
70
- careamics/model_io/__init__.py,sha256=HITzjiuZQwo-rQ2_Ma3bz9l7PDANv1_S489E-tffV9s,155
71
- careamics/model_io/bmz_io.py,sha256=MGZklRek3WI8VqV0gt63hL-APDsMkYbDGdqkih_iWAY,7031
72
- careamics/model_io/model_io_utils.py,sha256=x5u1HszZgRfvuku4eKQhmInyxRaEzkgNqAhGSyLS6e4,2116
73
- careamics/model_io/bioimage/__init__.py,sha256=r94nu8WDAvj0Fbu4C-iJXdOhfSQXeZBvN3UKsLG0RNI,298
74
- careamics/model_io/bioimage/_readme_factory.py,sha256=LZAuEiWNBTPaD8KrLPMq16yJuOPKDZiGQuTMHKLvoT4,3514
75
- careamics/model_io/bioimage/bioimage_utils.py,sha256=nlW0J1daYyLbL6yVN3QSn3HhA2joMjIG-thK64lpVTY,1085
76
- careamics/model_io/bioimage/model_description.py,sha256=wXGJBzGGSwEds-V0G4mgPvoi4dDXNn_7Tp6iPCsAeTY,9208
77
- careamics/models/__init__.py,sha256=Wty5hwQb_As33pQOZqY5j-DpDOdh5ArBH4BhQDSuXTQ,133
78
- careamics/models/activation.py,sha256=xdqz4-yKV7oElG_dDrYuibS8HOiYvKdV_r9FwWPvaDE,977
79
- careamics/models/layers.py,sha256=oWzpq8OdHFEJqPWC9X8IRPNe0XqAnesSqwoT6V3t1Mw,13712
80
- careamics/models/model_factory.py,sha256=5YRwRRUemxb-pTRL3VWn8N61tCGyhrurqPgcFaNETb0,1360
81
- careamics/models/unet.py,sha256=3pXpiCIw7WUaDV0Jmczkxi99C5-Zu3NpQpWxgRkeGL8,14321
82
- careamics/prediction/__init__.py,sha256=-Bfc7UqPSqpGx0NGvHMkE-bHOkZYMn7EaxQ9tO6A3uU,118
83
- careamics/prediction/stitch_prediction.py,sha256=lC9qdcR4BTNezCxoTeombg6k8mmTmN45TZSbEHg13Mk,2163
84
- careamics/transforms/__init__.py,sha256=VIHIsC8sMAh1TCm67ifB816Zp-LRo6rAONPuT2Qs3bs,483
85
- careamics/transforms/compose.py,sha256=mTkhoxvgvsBqNoz9RWpJ_tqsDl1CDp0-UARTjUuBRf4,3477
86
- careamics/transforms/n2v_manipulate.py,sha256=6O0RmL6zgBvZgbga6yyu1FwrxPlWXuviDoHzyxQQXfY,5404
87
- careamics/transforms/normalize.py,sha256=Ts1gOuzWYPmjAlMf4OgN3y6bHVgvBaq91GdkKGWpTy4,4237
88
- careamics/transforms/pixel_manipulation.py,sha256=qjTfgk86VkwVVu69E0sXQEfASi170IlzxorpAPmYOe0,12657
89
- careamics/transforms/struct_mask_parameters.py,sha256=jE29Li9sx3olaRnqYfJsSlKi2t0WQzJmCm9aCbIQEsA,421
90
- careamics/transforms/transform.py,sha256=cEqc4ci8na70i-HIGYC7udRfVa8D_8OjdRVrr3txLvQ,464
91
- careamics/transforms/tta.py,sha256=6H0E0yxmZT_TEslenOIXqlEM-l_0oCtIk59gAGP0byM,1960
92
- careamics/transforms/xy_flip.py,sha256=Q1kKTa2kE3W1P3dlpT4GAVSSHM3TebnrvIyWh75Fnko,3443
93
- careamics/transforms/xy_random_rotate90.py,sha256=zWdBROLLjgxTMSQEQesJr17j84BmZhKWCMVVONHU8mw,2781
94
- careamics/utils/__init__.py,sha256=tO1X5QTfnthepuW0uYagz5fWehtLtwK2gPmkUeqhdOw,334
95
- careamics/utils/base_enum.py,sha256=bz1D8mDx5V5hdnJ3WAzJXWHJTbgwAky5FprUt9F5cMA,1387
96
- careamics/utils/context.py,sha256=Ljf70OR1FcYpsVpxb5Sr2fzmPVIZgDS1uZob_3BcELg,1409
97
- careamics/utils/logging.py,sha256=coIscjkDYpqcsGnsONuYOdIYd6_gHxdnYIZ-e9Y2Ybg,10322
98
- careamics/utils/metrics.py,sha256=9YQe5Aj2Pv2h9jnRFeRbDQ_3qXAW0QHpucSqiUtwDcA,2382
99
- careamics/utils/path_utils.py,sha256=8AugiG5DOmzgSnTCJI8vypXaPE0XhnR-9pzeiFUZ-0I,554
100
- careamics/utils/ram.py,sha256=mhZVA_DsIlXMvABSxot4eBBxbvWx7JzfijC_cVBtF1s,239
101
- careamics/utils/receptive_field.py,sha256=Y2h4c8S6glX3qcx5KHDmO17Kkuyey9voxfoXyqcAfiM,3296
102
- careamics/utils/running_stats.py,sha256=GIPMPuH9EOUKD_cYBkJFPggXRKnQEiOXx68Pq9UCCVI,1384
103
- careamics/utils/torch_utils.py,sha256=g1zxdlM7_BA7mMLcCzmrxZX4LmH__KXlJibC95muVaA,3014
104
- careamics-0.1.0rc6.dist-info/METADATA,sha256=o_1ZDxRYCTLnSruXdXEHT8Y3qNiBW-fShITOyT_wO3E,3464
105
- careamics-0.1.0rc6.dist-info/WHEEL,sha256=zEMcRr9Kr03x1ozGwg5v9NQBKn3kndp6LSoSlVg-jhU,87
106
- careamics-0.1.0rc6.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
107
- careamics-0.1.0rc6.dist-info/RECORD,,