careamics 0.1.0rc6__py3-none-any.whl → 0.1.0rc8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of careamics might be problematic. Click here for more details.
- careamics/__init__.py +1 -14
- careamics/careamist.py +212 -294
- careamics/config/__init__.py +0 -3
- careamics/config/algorithm_model.py +8 -15
- careamics/config/architectures/architecture_model.py +1 -0
- careamics/config/architectures/custom_model.py +5 -3
- careamics/config/architectures/unet_model.py +19 -0
- careamics/config/architectures/vae_model.py +1 -0
- careamics/config/callback_model.py +76 -34
- careamics/config/configuration_factory.py +18 -98
- careamics/config/configuration_model.py +23 -18
- careamics/config/data_model.py +103 -54
- careamics/config/inference_model.py +41 -19
- careamics/config/optimizer_models.py +13 -7
- careamics/config/support/supported_data.py +29 -4
- careamics/config/support/supported_transforms.py +0 -1
- careamics/config/tile_information.py +36 -58
- careamics/config/training_model.py +5 -1
- careamics/config/transformations/normalize_model.py +32 -4
- careamics/config/validators/validator_utils.py +1 -1
- careamics/dataset/__init__.py +12 -1
- careamics/dataset/dataset_utils/__init__.py +8 -7
- careamics/dataset/dataset_utils/file_utils.py +2 -2
- careamics/dataset/dataset_utils/iterate_over_files.py +83 -0
- careamics/dataset/dataset_utils/running_stats.py +186 -0
- careamics/dataset/in_memory_dataset.py +84 -173
- careamics/dataset/in_memory_pred_dataset.py +88 -0
- careamics/dataset/in_memory_tiled_pred_dataset.py +129 -0
- careamics/dataset/iterable_dataset.py +97 -250
- careamics/dataset/iterable_pred_dataset.py +122 -0
- careamics/dataset/iterable_tiled_pred_dataset.py +140 -0
- careamics/dataset/patching/patching.py +97 -52
- careamics/dataset/patching/random_patching.py +9 -4
- careamics/dataset/patching/validate_patch_dimension.py +5 -3
- careamics/dataset/tiling/__init__.py +10 -0
- careamics/dataset/tiling/collate_tiles.py +33 -0
- careamics/dataset/{patching → tiling}/tiled_patching.py +4 -4
- careamics/file_io/__init__.py +7 -0
- careamics/file_io/read/__init__.py +11 -0
- careamics/file_io/read/get_func.py +56 -0
- careamics/{dataset/dataset_utils/read_tiff.py → file_io/read/tiff.py} +3 -10
- careamics/file_io/write/__init__.py +9 -0
- careamics/file_io/write/get_func.py +59 -0
- careamics/file_io/write/tiff.py +39 -0
- careamics/lightning/__init__.py +17 -0
- careamics/{lightning_module.py → lightning/lightning_module.py} +69 -92
- careamics/{lightning_prediction_datamodule.py → lightning/predict_data_module.py} +120 -178
- careamics/{lightning_datamodule.py → lightning/train_data_module.py} +135 -220
- careamics/lvae_training/__init__.py +0 -0
- careamics/lvae_training/data_modules.py +1220 -0
- careamics/lvae_training/data_utils.py +618 -0
- careamics/lvae_training/eval_utils.py +905 -0
- careamics/lvae_training/get_config.py +84 -0
- careamics/lvae_training/lightning_module.py +701 -0
- careamics/lvae_training/metrics.py +214 -0
- careamics/lvae_training/train_lvae.py +339 -0
- careamics/lvae_training/train_utils.py +121 -0
- careamics/model_io/bioimage/model_description.py +40 -32
- careamics/model_io/bmz_io.py +2 -2
- careamics/model_io/model_io_utils.py +6 -3
- careamics/models/lvae/__init__.py +0 -0
- careamics/models/lvae/layers.py +1998 -0
- careamics/models/lvae/likelihoods.py +312 -0
- careamics/models/lvae/lvae.py +985 -0
- careamics/models/lvae/noise_models.py +409 -0
- careamics/models/lvae/utils.py +395 -0
- careamics/prediction_utils/__init__.py +10 -0
- careamics/prediction_utils/prediction_outputs.py +137 -0
- careamics/prediction_utils/stitch_prediction.py +103 -0
- careamics/transforms/n2v_manipulate.py +3 -1
- careamics/transforms/normalize.py +139 -68
- careamics/transforms/pixel_manipulation.py +33 -9
- careamics/transforms/tta.py +43 -29
- careamics/utils/__init__.py +2 -0
- careamics/utils/autocorrelation.py +40 -0
- careamics/utils/ram.py +2 -2
- {careamics-0.1.0rc6.dist-info → careamics-0.1.0rc8.dist-info}/METADATA +7 -6
- careamics-0.1.0rc8.dist-info/RECORD +135 -0
- {careamics-0.1.0rc6.dist-info → careamics-0.1.0rc8.dist-info}/WHEEL +1 -1
- careamics/config/configuration_example.py +0 -89
- careamics/dataset/dataset_utils/read_utils.py +0 -27
- careamics/lightning_prediction_loop.py +0 -118
- careamics/prediction/__init__.py +0 -7
- careamics/prediction/stitch_prediction.py +0 -70
- careamics/utils/running_stats.py +0 -43
- careamics-0.1.0rc6.dist-info/RECORD +0 -107
- /careamics/{dataset/dataset_utils/read_zarr.py → file_io/read/zarr.py} +0 -0
- /careamics/{callbacks → lightning/callbacks}/__init__.py +0 -0
- /careamics/{callbacks → lightning/callbacks}/hyperparameters_callback.py +0 -0
- /careamics/{callbacks → lightning/callbacks}/progress_bar_callback.py +0 -0
- {careamics-0.1.0rc6.dist-info → careamics-0.1.0rc8.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,135 @@
|
|
|
1
|
+
careamics/__init__.py,sha256=xBCerWN66hv3T7dRGiUYLflmbJtJt1HqbSg9JCWp8pY,391
|
|
2
|
+
careamics/careamist.py,sha256=Sk6tY8J4dErVHS3HgwCnR0in78Hh0shPB2CH3Woh-_I,26593
|
|
3
|
+
careamics/conftest.py,sha256=Od4WcaaP0UP-XUMrFr_oo4e6c2hi_RvNbuaRTopwlmI,911
|
|
4
|
+
careamics/py.typed,sha256=esB4cHc6c07uVkGtqf8at7ttEnprwRxwk8obY8Qumq4,187
|
|
5
|
+
careamics/config/__init__.py,sha256=qaR98bVRFnEHYGG5EgGBIa9P9AtMRmKzpXuc1exdteo,913
|
|
6
|
+
careamics/config/algorithm_model.py,sha256=-Nx4E6M2EyBDozSTkXeYaj9b0KcIli0Gy6DE3P1WVfE,5443
|
|
7
|
+
careamics/config/callback_model.py,sha256=EeYHqpMIPQwyNxLRzzX32Uncl5mZuB1bJO76RHpNymg,4555
|
|
8
|
+
careamics/config/configuration_factory.py,sha256=Ckkv4ber2WSaa-BaoDNuyvpVMd02Q-9T27yziXJ-1Ak,18538
|
|
9
|
+
careamics/config/configuration_model.py,sha256=4LbAt3zUtx05mfTRrXBqD57iQn2s0Y93f81M8Gce4zo,18698
|
|
10
|
+
careamics/config/data_model.py,sha256=dpRthXU8lINT3laJygqka-fmUDT7U34QUHZYBX95oY8,15070
|
|
11
|
+
careamics/config/inference_model.py,sha256=UE_-ZmCX6LFCbDBOwyGnvuAboF_JNX2m2LcF0WiwgCI,6961
|
|
12
|
+
careamics/config/optimizer_models.py,sha256=p6gDYtO-jFtL7zVX0-Id-rGJWkkyhbU3EBrWD_4TxZE,5726
|
|
13
|
+
careamics/config/tile_information.py,sha256=t82zG54BBwXCwy-IEdALNx7pghEDyvXcf_nBiOhGSTw,2598
|
|
14
|
+
careamics/config/training_model.py,sha256=9I9xn1V7yIMC-1GSAxxeevDc4qQENAtCFnJVMd8haqA,1769
|
|
15
|
+
careamics/config/architectures/__init__.py,sha256=CdnViydyTdQixus3uWHBIgbgxmu9t1_ADehqpjN_57U,444
|
|
16
|
+
careamics/config/architectures/architecture_model.py,sha256=4WvQQJGz5DLFjOUryZx0fqPuEMlF2RhtlV5XudJTIbc,922
|
|
17
|
+
careamics/config/architectures/custom_model.py,sha256=IRaequRi5BXMPL14gLr1B_27_XWPeWxQwgHF9_EJMaU,4664
|
|
18
|
+
careamics/config/architectures/register_model.py,sha256=lHH0aUPmXtI3Bq_76zkhg07_Yb_nOJZkZJLCC_G-rZM,2434
|
|
19
|
+
careamics/config/architectures/unet_model.py,sha256=8F2KosNkrXUP2bxlm-D1mowS9x3GOjyXjsEo1Kf-05k,3497
|
|
20
|
+
careamics/config/architectures/vae_model.py,sha256=iLPwjI4B_Ivv_qQNUJc4-Gwm4z8UA3P5BsKQucRFEMI,962
|
|
21
|
+
careamics/config/references/__init__.py,sha256=rZAQzmrciX5cNICcXaBH6sbE6N6L7_qYQUkasNy9y-c,763
|
|
22
|
+
careamics/config/references/algorithm_descriptions.py,sha256=wR3hIoeg5eiUEPbwTxMpQYLTKQyRl_5naSDbBZOZESU,3541
|
|
23
|
+
careamics/config/references/references.py,sha256=AXx08FJQxHb7SYOluCr_eQn_mbOris5dXqhKrCnhBTE,1573
|
|
24
|
+
careamics/config/support/__init__.py,sha256=pKqk76kyBraiSC1SQos-cyiQwsfOLLkLuWj6Hw60LZ4,1041
|
|
25
|
+
careamics/config/support/supported_activations.py,sha256=O27_dGDgw2P-DslKJsXGVAyS2NUQM6Ta4jeo2uTQlW0,519
|
|
26
|
+
careamics/config/support/supported_algorithms.py,sha256=GCkauFDlmb2hJwFSdoIpGmpLjPeYFHOGy2NweKdw8T4,358
|
|
27
|
+
careamics/config/support/supported_architectures.py,sha256=LLD6hyje9Q0BcvA7p2E8WW_cY5yEgMI_NAP4HBi27UU,540
|
|
28
|
+
careamics/config/support/supported_data.py,sha256=T_mDiWLFMVji_EpjBABUObAJcnv-XBnqp9XUZP37Tdk,2902
|
|
29
|
+
careamics/config/support/supported_loggers.py,sha256=ubSOkGoYabGbm_jmyc1R3eFcvcP-sHmuyiBi_d3_wLg,197
|
|
30
|
+
careamics/config/support/supported_losses.py,sha256=TPsMCuDdgb64TRyDwonnwHb1R-rkn3OzhtHimyVtrOY,540
|
|
31
|
+
careamics/config/support/supported_optimizers.py,sha256=xxbJsyohJTlHeUz2I4eRwcE3BeACs-6PH8cpX6w2wX8,1394
|
|
32
|
+
careamics/config/support/supported_pixel_manipulations.py,sha256=rFiktUlvoFU7s1NAKEMqsXOzLw5eaw9GtCKUznvq6xc,432
|
|
33
|
+
careamics/config/support/supported_struct_axis.py,sha256=alZMA5Y-BpDymLPUEd1zqVY0xMkgl9Rv1d4ujED6sco,424
|
|
34
|
+
careamics/config/support/supported_transforms.py,sha256=4uob-bnZ5aqpN5aEI67-aa7bsmVCrKxEknzf2BAZ3W4,283
|
|
35
|
+
careamics/config/transformations/__init__.py,sha256=oqwBAL2XXbPRZZ5iOzNqalX6SyJ1M-S0lkfbDGZOzyE,378
|
|
36
|
+
careamics/config/transformations/n2v_manipulate_model.py,sha256=UTyfpm1mmMvYg_HoMzXilZhJGx_muiV-lLQ4UThCFJ0,1854
|
|
37
|
+
careamics/config/transformations/normalize_model.py,sha256=1Rkk6IkF-7ytGU6HSzP-TpOi4RRWiQJ6fOd8zammXcg,1936
|
|
38
|
+
careamics/config/transformations/transform_model.py,sha256=i7KAtSv4nah2H7uyJFKqg7RdKF68OHIPMNNvDo0HxGY,1000
|
|
39
|
+
careamics/config/transformations/xy_flip_model.py,sha256=zU-uZ1b1zNZWckbho3onN-B7BHKhN7jbgbNZyRQhv2s,1025
|
|
40
|
+
careamics/config/transformations/xy_random_rotate90_model.py,sha256=6sYKmtCLvz0SV1qZgBSHUTH-CUjwvHnohq1HyPntbyE,894
|
|
41
|
+
careamics/config/validators/__init__.py,sha256=iv0nVI0W7j9DxFPwh0DjRCzM9P8oLQn4Gwi5rfuFrrI,180
|
|
42
|
+
careamics/config/validators/validator_utils.py,sha256=aNFzpBVbef3BZIt6MiNMVc2kW6MJDWqQgdYkFM8Gjig,2621
|
|
43
|
+
careamics/dataset/__init__.py,sha256=NQSWdpQu6BhqGGHUYuOt1hXJrGUN1LPNCP1A8duMY84,547
|
|
44
|
+
careamics/dataset/in_memory_dataset.py,sha256=7YRpbKg6nqrECDhaA88HNlstyTObQxTN9jPcNlE_aWE,9906
|
|
45
|
+
careamics/dataset/in_memory_pred_dataset.py,sha256=VvwW5D8TjgO_kR8eZinP-9qepSiI6ZsUN7FZ0Rvc8Bs,2161
|
|
46
|
+
careamics/dataset/in_memory_tiled_pred_dataset.py,sha256=DANmlnlV1ysXKdwGvmJoOYKcjlgoMhnSGSDRpeK79ZA,3552
|
|
47
|
+
careamics/dataset/iterable_dataset.py,sha256=vHwkzoQs-CvbGHcGtvYMF52dO6zLau89A13xDOWSGUU,9770
|
|
48
|
+
careamics/dataset/iterable_pred_dataset.py,sha256=2KC9C2hpZmhWSmo6w9Fhz0wjmbcsBlRy8QsYfO4dN2w,3740
|
|
49
|
+
careamics/dataset/iterable_tiled_pred_dataset.py,sha256=uNpc_13vo9REvGYOLu7lBNDh813b_UqZ9x5c4Q_udDE,4533
|
|
50
|
+
careamics/dataset/zarr_dataset.py,sha256=lojnK5bhiF1vyjuPtWXBrZ9sy5fT_rBvZJbbbnE-H_I,5665
|
|
51
|
+
careamics/dataset/dataset_utils/__init__.py,sha256=b9r_2BcrXoHNq9chXfZvgINGwZRpWfUZ_p6vikB_Kxw,507
|
|
52
|
+
careamics/dataset/dataset_utils/dataset_utils.py,sha256=zYNglet5lYKxIhTeOGG2K24oujC-m5zyYlwJcQcleVA,2662
|
|
53
|
+
careamics/dataset/dataset_utils/file_utils.py,sha256=4Aq92wz9M7esrujDbOxw1WNoYLlEjBRa4sOzf2Aw61c,4070
|
|
54
|
+
careamics/dataset/dataset_utils/iterate_over_files.py,sha256=TcX24NRt2cdM9gmmQV2f5ziwXxRne2-zePzz3DDFSMA,2871
|
|
55
|
+
careamics/dataset/dataset_utils/running_stats.py,sha256=0uOLaXpNwmY4lIElsHg4Ezf1YRbHy9An8GHXGYOaYmg,5565
|
|
56
|
+
careamics/dataset/patching/__init__.py,sha256=7-s12oUAZNlMOwSkxSwbD7vojQINWYFzn_4qIJ87WBg,37
|
|
57
|
+
careamics/dataset/patching/patching.py,sha256=deAxY34Iz-mguBlHQ-5EO4vRhPpR9I3LQ9onV1K_KqA,8858
|
|
58
|
+
careamics/dataset/patching/random_patching.py,sha256=61sLxA4eJN5TIWBVIDZdJahS_CkclpM7Kc_VdPj91dU,6486
|
|
59
|
+
careamics/dataset/patching/sequential_patching.py,sha256=_l3Q2uYIhjMJMaxDdSbHC9_2kRF9eLz-Xs3r9i7j3Nc,5903
|
|
60
|
+
careamics/dataset/patching/validate_patch_dimension.py,sha256=sQQ0-4b4uu60MNKkoWv95KxQ80J7Ku0CEk0-kAXlKeI,2134
|
|
61
|
+
careamics/dataset/tiling/__init__.py,sha256=XynyAz85hVfkLtrG0lrMr_aBQm_YEwfu5uFcXMGHlOA,190
|
|
62
|
+
careamics/dataset/tiling/collate_tiles.py,sha256=OrPZ-n-V3uGOc_7CcPnyEJqdbEVDlTfJfWmZnyBZ-HA,978
|
|
63
|
+
careamics/dataset/tiling/tiled_patching.py,sha256=Zhhc0TwXVy4P_tZxS3B5tQZK6SRhGiQwnzVr-1BC4ww,5952
|
|
64
|
+
careamics/file_io/__init__.py,sha256=HRLEqH04njrhP2jdqiyqSkjD4LcbvBtORqyuXzlMkKE,215
|
|
65
|
+
careamics/file_io/read/__init__.py,sha256=IlS9RKWFur-qd-uNQWd_Y8F1QuuE07vqkoc0L0YEGjE,233
|
|
66
|
+
careamics/file_io/read/get_func.py,sha256=yGXD0rTFD7u70FR0axrQtWies0aYW3iQ6f0Wfcd8z-8,1394
|
|
67
|
+
careamics/file_io/read/tiff.py,sha256=_WVqUycI4NMk2GzDBEOWcGuSr1293673A1vs7WvZbS4,1358
|
|
68
|
+
careamics/file_io/read/zarr.py,sha256=2jzREAnJDQSv0qmsL-v00BxmiZ_sp0ijq667LZSQ_hY,1685
|
|
69
|
+
careamics/file_io/write/__init__.py,sha256=QkjBFofsA40_D6lQai5t3X3Lr9rZHK-W_DhMeDFHj8w,192
|
|
70
|
+
careamics/file_io/write/get_func.py,sha256=KATtExa2l4TvQSjOgPTM0e1Yy55bKaQv9gmW7aKn1_Y,1526
|
|
71
|
+
careamics/file_io/write/tiff.py,sha256=YU0TarBCG3w1f_HMZ_Hy7ifVdadgp9CuUD1l5_IY6zg,997
|
|
72
|
+
careamics/lightning/__init__.py,sha256=IAhfuveylgTdwIqynRqmGNOGrBlNmsXNgK3TuPDqU-o,572
|
|
73
|
+
careamics/lightning/lightning_module.py,sha256=ml0aGFP6MlSRtGkcoWcmX9DAlMSqJ8rW16HObBWK9MI,8881
|
|
74
|
+
careamics/lightning/predict_data_module.py,sha256=rgHhS5fKoa5wscWyvmPP_FHHdVnDnLbF4sG7y_C7ZOM,12747
|
|
75
|
+
careamics/lightning/train_data_module.py,sha256=72G19J26fg_kkNtCO2M9pcjq9sVkchL7MvZ8wrjS1So,27891
|
|
76
|
+
careamics/lightning/callbacks/__init__.py,sha256=spxJlDByD-6QtMl9vcIty8Wb0tyHaSTKTItozHenI44,204
|
|
77
|
+
careamics/lightning/callbacks/hyperparameters_callback.py,sha256=ODJpwwdgc1-Py8yEUpXLar8_IOAcfR7lF3--6LfSiGc,1496
|
|
78
|
+
careamics/lightning/callbacks/progress_bar_callback.py,sha256=8HvNSWZldixd6pjz0dLDo0apIbzTovv5smKmZ6tZQ8U,2444
|
|
79
|
+
careamics/losses/__init__.py,sha256=kVEwfZ2xXfd8x0n-VHGKm6qvzbto5pIIJYP_jN-bCtw,89
|
|
80
|
+
careamics/losses/loss_factory.py,sha256=vaMlxH5oescWTKlK1adWwbeD9tW4Ti-p7qKmc1iHCi0,1005
|
|
81
|
+
careamics/losses/losses.py,sha256=DKwHZ9ifVe6wMd3tBOiswLC-saU1bj1RCcXGOkREmKU,2328
|
|
82
|
+
careamics/lvae_training/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
83
|
+
careamics/lvae_training/data_modules.py,sha256=A5Uoo4qtPdX99QSi-Zl22LzO0I1DszJbQuXMGUXGQEE,46665
|
|
84
|
+
careamics/lvae_training/data_utils.py,sha256=tRk0k0TkBLPocqlUlkwQN_dm5jzw5z74YNs2DsCuy9Y,21670
|
|
85
|
+
careamics/lvae_training/eval_utils.py,sha256=_AlXNXk4uGS2AGsF4PHJZpJoWBgq32kvQLEh7awOIvc,32405
|
|
86
|
+
careamics/lvae_training/get_config.py,sha256=-CWVxlPo71_huUSmXnmYvOmgvcvrZiv0wIpXnR32l6E,3054
|
|
87
|
+
careamics/lvae_training/lightning_module.py,sha256=ryr7iHqCMzCl5esi6_gEcnKFDQkMrw0EXK9Zfgv1Nek,27186
|
|
88
|
+
careamics/lvae_training/metrics.py,sha256=KTDAKhe3vh-YxzGibjtkIG2nnUyujbnwqX4xGwaRXwE,6718
|
|
89
|
+
careamics/lvae_training/train_lvae.py,sha256=Eu--3-RHSfhQVsJ-CTDXhUeoM1fzf_H9IGtBaNPOsHI,11044
|
|
90
|
+
careamics/lvae_training/train_utils.py,sha256=e-d4QsF-li8MmAPkAmB1daHpkuU16nBTnQFZYqpTjn4,3567
|
|
91
|
+
careamics/model_io/__init__.py,sha256=HITzjiuZQwo-rQ2_Ma3bz9l7PDANv1_S489E-tffV9s,155
|
|
92
|
+
careamics/model_io/bmz_io.py,sha256=53PvOMTZ3ZkSgFg-OtGopuf_vJ51xs6nfv1v0tufd7g,7041
|
|
93
|
+
careamics/model_io/model_io_utils.py,sha256=EebZL3t6oIHY0kuTKacmAEriTQ4B77KuAQ84UHG7XW4,2357
|
|
94
|
+
careamics/model_io/bioimage/__init__.py,sha256=r94nu8WDAvj0Fbu4C-iJXdOhfSQXeZBvN3UKsLG0RNI,298
|
|
95
|
+
careamics/model_io/bioimage/_readme_factory.py,sha256=LZAuEiWNBTPaD8KrLPMq16yJuOPKDZiGQuTMHKLvoT4,3514
|
|
96
|
+
careamics/model_io/bioimage/bioimage_utils.py,sha256=nlW0J1daYyLbL6yVN3QSn3HhA2joMjIG-thK64lpVTY,1085
|
|
97
|
+
careamics/model_io/bioimage/model_description.py,sha256=3jw4wkJDefLEW-2BbEfAml3AwyteZszL-v8JYpJRcOo,9635
|
|
98
|
+
careamics/models/__init__.py,sha256=Wty5hwQb_As33pQOZqY5j-DpDOdh5ArBH4BhQDSuXTQ,133
|
|
99
|
+
careamics/models/activation.py,sha256=xdqz4-yKV7oElG_dDrYuibS8HOiYvKdV_r9FwWPvaDE,977
|
|
100
|
+
careamics/models/layers.py,sha256=oWzpq8OdHFEJqPWC9X8IRPNe0XqAnesSqwoT6V3t1Mw,13712
|
|
101
|
+
careamics/models/model_factory.py,sha256=5YRwRRUemxb-pTRL3VWn8N61tCGyhrurqPgcFaNETb0,1360
|
|
102
|
+
careamics/models/unet.py,sha256=3pXpiCIw7WUaDV0Jmczkxi99C5-Zu3NpQpWxgRkeGL8,14321
|
|
103
|
+
careamics/models/lvae/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
104
|
+
careamics/models/lvae/layers.py,sha256=wFuQgmtJtB7YNuNi2dVoOEWq1ndR6ku4iGvC2u0TJlM,84991
|
|
105
|
+
careamics/models/lvae/likelihoods.py,sha256=FRFTh34FaBLGxn9OXFzqFyHhhJMSKYhgqxwG65VbGh8,10489
|
|
106
|
+
careamics/models/lvae/lvae.py,sha256=5RlK4-h55dGz9UMCh8JCbLsaaIQ5S2IKGeI9d4nD5dA,40167
|
|
107
|
+
careamics/models/lvae/noise_models.py,sha256=yotY5gkPAowbI7esOmHlzBWcSsZlH2G3U7uYIWghGwY,15703
|
|
108
|
+
careamics/models/lvae/utils.py,sha256=muy4nLHmnB3BPAI0tQbJK_vVtBZOLBvhrJigHIOx5V4,11542
|
|
109
|
+
careamics/prediction_utils/__init__.py,sha256=uYKzirlF-unFL9GbDPxFnYgOwSjGAtik9fonU7DfuEY,270
|
|
110
|
+
careamics/prediction_utils/prediction_outputs.py,sha256=cHbt45txofkMBWMUpJmdwOgHgG2By1gwnR6ZQv4n5qU,4104
|
|
111
|
+
careamics/prediction_utils/stitch_prediction.py,sha256=XSu2aSEbX1oXaXxhkXMnmhy2gKE8W28CmzH_bNc1Cm8,3369
|
|
112
|
+
careamics/transforms/__init__.py,sha256=VIHIsC8sMAh1TCm67ifB816Zp-LRo6rAONPuT2Qs3bs,483
|
|
113
|
+
careamics/transforms/compose.py,sha256=mTkhoxvgvsBqNoz9RWpJ_tqsDl1CDp0-UARTjUuBRf4,3477
|
|
114
|
+
careamics/transforms/n2v_manipulate.py,sha256=Gty7Jtu-RiFb1EnlrOi652qAOGKU5ZHvidRvykWqJxg,5438
|
|
115
|
+
careamics/transforms/normalize.py,sha256=dfGWCGPyNwyEqg5wUCAA8cGdT1MvNkpKUEpw8Cw8DfA,7274
|
|
116
|
+
careamics/transforms/pixel_manipulation.py,sha256=lNA19Vlo_3GHzRnT_4AFuv6eWQaxbie2PTYGalCY4YQ,13346
|
|
117
|
+
careamics/transforms/struct_mask_parameters.py,sha256=jE29Li9sx3olaRnqYfJsSlKi2t0WQzJmCm9aCbIQEsA,421
|
|
118
|
+
careamics/transforms/transform.py,sha256=cEqc4ci8na70i-HIGYC7udRfVa8D_8OjdRVrr3txLvQ,464
|
|
119
|
+
careamics/transforms/tta.py,sha256=78S7Df9rLHmEVSQSI1qDcRrRJGauyG3oaIrXkckCkmw,2335
|
|
120
|
+
careamics/transforms/xy_flip.py,sha256=Q1kKTa2kE3W1P3dlpT4GAVSSHM3TebnrvIyWh75Fnko,3443
|
|
121
|
+
careamics/transforms/xy_random_rotate90.py,sha256=zWdBROLLjgxTMSQEQesJr17j84BmZhKWCMVVONHU8mw,2781
|
|
122
|
+
careamics/utils/__init__.py,sha256=rG_dnqX7rdyNTFWlDkIdNtDwwMQBpg_ym14ZFeYrWfs,402
|
|
123
|
+
careamics/utils/autocorrelation.py,sha256=M_WYzrEOQngc5iSXWar4S3-EOnK6DfYHPC2vVMeu_Bs,945
|
|
124
|
+
careamics/utils/base_enum.py,sha256=bz1D8mDx5V5hdnJ3WAzJXWHJTbgwAky5FprUt9F5cMA,1387
|
|
125
|
+
careamics/utils/context.py,sha256=Ljf70OR1FcYpsVpxb5Sr2fzmPVIZgDS1uZob_3BcELg,1409
|
|
126
|
+
careamics/utils/logging.py,sha256=coIscjkDYpqcsGnsONuYOdIYd6_gHxdnYIZ-e9Y2Ybg,10322
|
|
127
|
+
careamics/utils/metrics.py,sha256=9YQe5Aj2Pv2h9jnRFeRbDQ_3qXAW0QHpucSqiUtwDcA,2382
|
|
128
|
+
careamics/utils/path_utils.py,sha256=8AugiG5DOmzgSnTCJI8vypXaPE0XhnR-9pzeiFUZ-0I,554
|
|
129
|
+
careamics/utils/ram.py,sha256=tksyn8dVX_iJXmrDZDGub32hFZWIaNxnMheO5G1p43I,244
|
|
130
|
+
careamics/utils/receptive_field.py,sha256=Y2h4c8S6glX3qcx5KHDmO17Kkuyey9voxfoXyqcAfiM,3296
|
|
131
|
+
careamics/utils/torch_utils.py,sha256=g1zxdlM7_BA7mMLcCzmrxZX4LmH__KXlJibC95muVaA,3014
|
|
132
|
+
careamics-0.1.0rc8.dist-info/METADATA,sha256=7hTsctBI62YC9wmgYwUaByOXUJzKrlHLV8iMpnTNY00,3525
|
|
133
|
+
careamics-0.1.0rc8.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
|
134
|
+
careamics-0.1.0rc8.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
|
|
135
|
+
careamics-0.1.0rc8.dist-info/RECORD,,
|
|
@@ -1,89 +0,0 @@
|
|
|
1
|
-
"""Example of configurations."""
|
|
2
|
-
|
|
3
|
-
from .algorithm_model import AlgorithmConfig
|
|
4
|
-
from .architectures import UNetModel
|
|
5
|
-
from .configuration_model import Configuration
|
|
6
|
-
from .data_model import DataConfig
|
|
7
|
-
from .optimizer_models import LrSchedulerModel, OptimizerModel
|
|
8
|
-
from .support import (
|
|
9
|
-
SupportedActivation,
|
|
10
|
-
SupportedAlgorithm,
|
|
11
|
-
SupportedArchitecture,
|
|
12
|
-
SupportedData,
|
|
13
|
-
SupportedLogger,
|
|
14
|
-
SupportedLoss,
|
|
15
|
-
SupportedOptimizer,
|
|
16
|
-
SupportedPixelManipulation,
|
|
17
|
-
SupportedScheduler,
|
|
18
|
-
SupportedTransform,
|
|
19
|
-
)
|
|
20
|
-
from .training_model import TrainingConfig
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
def full_configuration_example() -> Configuration:
|
|
24
|
-
"""Return a dictionnary representing a full configuration example.
|
|
25
|
-
|
|
26
|
-
Returns
|
|
27
|
-
-------
|
|
28
|
-
Configuration
|
|
29
|
-
Full configuration example.
|
|
30
|
-
"""
|
|
31
|
-
experiment_name = "Full example"
|
|
32
|
-
algorithm_model = AlgorithmConfig(
|
|
33
|
-
algorithm=SupportedAlgorithm.N2V.value,
|
|
34
|
-
loss=SupportedLoss.N2V.value,
|
|
35
|
-
model=UNetModel(
|
|
36
|
-
architecture=SupportedArchitecture.UNET.value,
|
|
37
|
-
in_channels=1,
|
|
38
|
-
num_classes=1,
|
|
39
|
-
depth=2,
|
|
40
|
-
num_channels_init=32,
|
|
41
|
-
final_activation=SupportedActivation.NONE.value,
|
|
42
|
-
n2v2=True,
|
|
43
|
-
),
|
|
44
|
-
optimizer=OptimizerModel(
|
|
45
|
-
name=SupportedOptimizer.ADAM.value, parameters={"lr": 0.0001}
|
|
46
|
-
),
|
|
47
|
-
lr_scheduler=LrSchedulerModel(
|
|
48
|
-
name=SupportedScheduler.REDUCE_LR_ON_PLATEAU.value,
|
|
49
|
-
),
|
|
50
|
-
)
|
|
51
|
-
data_model = DataConfig(
|
|
52
|
-
data_type=SupportedData.ARRAY.value,
|
|
53
|
-
patch_size=(256, 256),
|
|
54
|
-
batch_size=8,
|
|
55
|
-
axes="YX",
|
|
56
|
-
transforms=[
|
|
57
|
-
{
|
|
58
|
-
"name": SupportedTransform.NORMALIZE.value,
|
|
59
|
-
},
|
|
60
|
-
{
|
|
61
|
-
"name": SupportedTransform.XY_FLIP.value,
|
|
62
|
-
},
|
|
63
|
-
{
|
|
64
|
-
"name": SupportedTransform.XY_RANDOM_ROTATE90.value,
|
|
65
|
-
},
|
|
66
|
-
{
|
|
67
|
-
"name": SupportedTransform.N2V_MANIPULATE.value,
|
|
68
|
-
"roi_size": 11,
|
|
69
|
-
"masked_pixel_percentage": 0.2,
|
|
70
|
-
"strategy": SupportedPixelManipulation.MEDIAN.value,
|
|
71
|
-
},
|
|
72
|
-
],
|
|
73
|
-
mean=0.485,
|
|
74
|
-
std=0.229,
|
|
75
|
-
dataloader_params={
|
|
76
|
-
"num_workers": 4,
|
|
77
|
-
},
|
|
78
|
-
)
|
|
79
|
-
training_model = TrainingConfig(
|
|
80
|
-
num_epochs=30,
|
|
81
|
-
logger=SupportedLogger.WANDB.value,
|
|
82
|
-
)
|
|
83
|
-
|
|
84
|
-
return Configuration(
|
|
85
|
-
experiment_name=experiment_name,
|
|
86
|
-
algorithm_config=algorithm_model,
|
|
87
|
-
data_config=data_model,
|
|
88
|
-
training_config=training_model,
|
|
89
|
-
)
|
|
@@ -1,27 +0,0 @@
|
|
|
1
|
-
"""Read function utilities."""
|
|
2
|
-
|
|
3
|
-
from typing import Callable, Union
|
|
4
|
-
|
|
5
|
-
from careamics.config.support import SupportedData
|
|
6
|
-
|
|
7
|
-
from .read_tiff import read_tiff
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
def get_read_func(data_type: Union[SupportedData, str]) -> Callable:
|
|
11
|
-
"""
|
|
12
|
-
Get the read function for the data type.
|
|
13
|
-
|
|
14
|
-
Parameters
|
|
15
|
-
----------
|
|
16
|
-
data_type : SupportedData
|
|
17
|
-
Data type.
|
|
18
|
-
|
|
19
|
-
Returns
|
|
20
|
-
-------
|
|
21
|
-
Callable
|
|
22
|
-
Read function.
|
|
23
|
-
"""
|
|
24
|
-
if data_type == SupportedData.TIFF:
|
|
25
|
-
return read_tiff
|
|
26
|
-
else:
|
|
27
|
-
raise NotImplementedError(f"Data type {data_type} is not supported.")
|
|
@@ -1,118 +0,0 @@
|
|
|
1
|
-
"""Lithning prediction loop allowing tiling."""
|
|
2
|
-
|
|
3
|
-
from typing import Optional
|
|
4
|
-
|
|
5
|
-
import pytorch_lightning as L
|
|
6
|
-
from pytorch_lightning.loops.fetchers import _DataLoaderIterDataFetcher
|
|
7
|
-
from pytorch_lightning.loops.utilities import _no_grad_context
|
|
8
|
-
from pytorch_lightning.trainer import call
|
|
9
|
-
from pytorch_lightning.utilities.types import _PREDICT_OUTPUT
|
|
10
|
-
|
|
11
|
-
from careamics.prediction import stitch_prediction
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
class CAREamicsPredictionLoop(L.loops._PredictionLoop):
|
|
15
|
-
"""
|
|
16
|
-
CAREamics prediction loop.
|
|
17
|
-
|
|
18
|
-
This class extends the PyTorch Lightning `_PredictionLoop` class to include
|
|
19
|
-
the stitching of the tiles into a single prediction result.
|
|
20
|
-
"""
|
|
21
|
-
|
|
22
|
-
def _on_predict_epoch_end(self) -> Optional[_PREDICT_OUTPUT]:
|
|
23
|
-
"""Call `on_predict_epoch_end` hook.
|
|
24
|
-
|
|
25
|
-
Adapted from the parent method.
|
|
26
|
-
|
|
27
|
-
Returns
|
|
28
|
-
-------
|
|
29
|
-
Optional[_PREDICT_OUTPUT]
|
|
30
|
-
Prediction output.
|
|
31
|
-
"""
|
|
32
|
-
trainer = self.trainer
|
|
33
|
-
call._call_callback_hooks(trainer, "on_predict_epoch_end")
|
|
34
|
-
call._call_lightning_module_hook(trainer, "on_predict_epoch_end")
|
|
35
|
-
|
|
36
|
-
if self.return_predictions:
|
|
37
|
-
########################################################
|
|
38
|
-
################ CAREamics specific code ###############
|
|
39
|
-
if len(self.predicted_array) == 1:
|
|
40
|
-
# TODO does this make sense to here? (force numpy array)
|
|
41
|
-
return self.predicted_array[0].numpy()
|
|
42
|
-
else:
|
|
43
|
-
# TODO revisit logic
|
|
44
|
-
return [element.numpy() for element in self.predicted_array]
|
|
45
|
-
########################################################
|
|
46
|
-
return None
|
|
47
|
-
|
|
48
|
-
@_no_grad_context
|
|
49
|
-
def run(self) -> Optional[_PREDICT_OUTPUT]:
|
|
50
|
-
"""Run the prediction loop.
|
|
51
|
-
|
|
52
|
-
Adapted from the parent method in order to stitch the predictions.
|
|
53
|
-
|
|
54
|
-
Returns
|
|
55
|
-
-------
|
|
56
|
-
Optional[_PREDICT_OUTPUT]
|
|
57
|
-
Prediction output.
|
|
58
|
-
"""
|
|
59
|
-
self.setup_data()
|
|
60
|
-
if self.skip:
|
|
61
|
-
return None
|
|
62
|
-
self.reset()
|
|
63
|
-
self.on_run_start()
|
|
64
|
-
data_fetcher = self._data_fetcher
|
|
65
|
-
assert data_fetcher is not None
|
|
66
|
-
|
|
67
|
-
self.predicted_array = []
|
|
68
|
-
self.tiles = []
|
|
69
|
-
self.stitching_data = []
|
|
70
|
-
|
|
71
|
-
while True:
|
|
72
|
-
try:
|
|
73
|
-
if isinstance(data_fetcher, _DataLoaderIterDataFetcher):
|
|
74
|
-
dataloader_iter = next(data_fetcher)
|
|
75
|
-
# hook's batch_idx and dataloader_idx arguments correctness cannot
|
|
76
|
-
# be guaranteed in this setting
|
|
77
|
-
batch = data_fetcher._batch
|
|
78
|
-
batch_idx = data_fetcher._batch_idx
|
|
79
|
-
dataloader_idx = data_fetcher._dataloader_idx
|
|
80
|
-
else:
|
|
81
|
-
dataloader_iter = None
|
|
82
|
-
batch, batch_idx, dataloader_idx = next(data_fetcher)
|
|
83
|
-
self.batch_progress.is_last_batch = data_fetcher.done
|
|
84
|
-
|
|
85
|
-
# run step hooks
|
|
86
|
-
self._predict_step(batch, batch_idx, dataloader_idx, dataloader_iter)
|
|
87
|
-
|
|
88
|
-
########################################################
|
|
89
|
-
################ CAREamics specific code ###############
|
|
90
|
-
# TODO: next line is not compatible with muSplit
|
|
91
|
-
is_tiled = len(self.predictions[batch_idx]) == 2
|
|
92
|
-
if is_tiled:
|
|
93
|
-
# extract the last tile flag and the coordinates (crop and stitch)
|
|
94
|
-
last_tile, *stitch_data = self.predictions[batch_idx][1]
|
|
95
|
-
|
|
96
|
-
# append the tile and the coordinates to the lists
|
|
97
|
-
self.tiles.append(self.predictions[batch_idx][0])
|
|
98
|
-
self.stitching_data.append(stitch_data)
|
|
99
|
-
|
|
100
|
-
# if last tile, stitch the tiles and add array to the prediction
|
|
101
|
-
if any(last_tile):
|
|
102
|
-
predicted_batches = stitch_prediction(
|
|
103
|
-
self.tiles, self.stitching_data
|
|
104
|
-
)
|
|
105
|
-
self.predicted_array.append(predicted_batches)
|
|
106
|
-
self.tiles.clear()
|
|
107
|
-
self.stitching_data.clear()
|
|
108
|
-
else:
|
|
109
|
-
# simply add the prediction to the list
|
|
110
|
-
self.predicted_array.append(self.predictions[batch_idx])
|
|
111
|
-
########################################################
|
|
112
|
-
except StopIteration:
|
|
113
|
-
break
|
|
114
|
-
finally:
|
|
115
|
-
self._restarting = False
|
|
116
|
-
return self.on_run_end()
|
|
117
|
-
|
|
118
|
-
# TODO predictions aren't stacked, list returned
|
careamics/prediction/__init__.py
DELETED
|
@@ -1,70 +0,0 @@
|
|
|
1
|
-
"""Prediction utility functions."""
|
|
2
|
-
|
|
3
|
-
from typing import List
|
|
4
|
-
|
|
5
|
-
import numpy as np
|
|
6
|
-
import torch
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
def stitch_prediction(
|
|
10
|
-
tiles: List[torch.Tensor],
|
|
11
|
-
stitching_data: List[List[torch.Tensor]],
|
|
12
|
-
) -> torch.Tensor:
|
|
13
|
-
"""
|
|
14
|
-
Stitch tiles back together to form a full image.
|
|
15
|
-
|
|
16
|
-
Parameters
|
|
17
|
-
----------
|
|
18
|
-
tiles : List[torch.Tensor]
|
|
19
|
-
Cropped tiles and their respective stitching coordinates.
|
|
20
|
-
stitching_data : List
|
|
21
|
-
List of information and coordinates obtained from
|
|
22
|
-
`dataset.tiled_patching.extract_tiles`.
|
|
23
|
-
|
|
24
|
-
Returns
|
|
25
|
-
-------
|
|
26
|
-
np.ndarray
|
|
27
|
-
Full image.
|
|
28
|
-
"""
|
|
29
|
-
# retrieve whole array size, there is two cases to consider:
|
|
30
|
-
# 1. the tiles are stored in a list
|
|
31
|
-
# 2. the tiles are stored in a list with batches along the first dim
|
|
32
|
-
if tiles[0].shape[0] > 1:
|
|
33
|
-
input_shape = np.array(
|
|
34
|
-
[el.numpy() for el in stitching_data[0][0][0]], dtype=int
|
|
35
|
-
).squeeze()
|
|
36
|
-
else:
|
|
37
|
-
input_shape = np.array(
|
|
38
|
-
[el.numpy() for el in stitching_data[0][0]], dtype=int
|
|
39
|
-
).squeeze()
|
|
40
|
-
|
|
41
|
-
# TODO should use torch.zeros instead of np.zeros
|
|
42
|
-
predicted_image = torch.Tensor(np.zeros(input_shape, dtype=np.float32))
|
|
43
|
-
|
|
44
|
-
for tile_batch, (_, overlap_crop_coords_batch, stitch_coords_batch) in zip(
|
|
45
|
-
tiles, stitching_data
|
|
46
|
-
):
|
|
47
|
-
for batch_idx in range(tile_batch.shape[0]):
|
|
48
|
-
# Compute coordinates for cropping predicted tile
|
|
49
|
-
slices = tuple(
|
|
50
|
-
[
|
|
51
|
-
slice(c[0][batch_idx], c[1][batch_idx])
|
|
52
|
-
for c in overlap_crop_coords_batch
|
|
53
|
-
]
|
|
54
|
-
)
|
|
55
|
-
|
|
56
|
-
# Crop predited tile according to overlap coordinates
|
|
57
|
-
cropped_tile = tile_batch[batch_idx].squeeze()[slices]
|
|
58
|
-
|
|
59
|
-
# Insert cropped tile into predicted image using stitch coordinates
|
|
60
|
-
predicted_image[
|
|
61
|
-
(
|
|
62
|
-
...,
|
|
63
|
-
*[
|
|
64
|
-
slice(c[0][batch_idx], c[1][batch_idx])
|
|
65
|
-
for c in stitch_coords_batch
|
|
66
|
-
],
|
|
67
|
-
)
|
|
68
|
-
] = cropped_tile.to(torch.float32)
|
|
69
|
-
|
|
70
|
-
return predicted_image
|
careamics/utils/running_stats.py
DELETED
|
@@ -1,43 +0,0 @@
|
|
|
1
|
-
"""Running stats submodule, used in the Zarr dataset."""
|
|
2
|
-
|
|
3
|
-
# from multiprocessing import Value
|
|
4
|
-
# from typing import Tuple
|
|
5
|
-
|
|
6
|
-
# import numpy as np
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
# class RunningStats:
|
|
10
|
-
# """Calculates running mean and std."""
|
|
11
|
-
|
|
12
|
-
# def __init__(self) -> None:
|
|
13
|
-
# self.reset()
|
|
14
|
-
|
|
15
|
-
# def reset(self) -> None:
|
|
16
|
-
# """Reset the running stats."""
|
|
17
|
-
# self.avg_mean = Value("d", 0)
|
|
18
|
-
# self.avg_std = Value("d", 0)
|
|
19
|
-
# self.m2 = Value("d", 0)
|
|
20
|
-
# self.count = Value("i", 0)
|
|
21
|
-
|
|
22
|
-
# def init(self, mean: float, std: float) -> None:
|
|
23
|
-
# """Initialize running stats."""
|
|
24
|
-
# with self.avg_mean.get_lock():
|
|
25
|
-
# self.avg_mean.value += mean
|
|
26
|
-
# with self.avg_std.get_lock():
|
|
27
|
-
# self.avg_std.value = std
|
|
28
|
-
|
|
29
|
-
# def compute_std(self) -> Tuple[float, float]:
|
|
30
|
-
# """Compute std."""
|
|
31
|
-
# if self.count.value >= 2:
|
|
32
|
-
# self.avg_std.value = np.sqrt(self.m2.value / self.count.value)
|
|
33
|
-
|
|
34
|
-
# def update(self, value: float) -> None:
|
|
35
|
-
# """Update running stats."""
|
|
36
|
-
# with self.count.get_lock():
|
|
37
|
-
# self.count.value += 1
|
|
38
|
-
# delta = value - self.avg_mean.value
|
|
39
|
-
# with self.avg_mean.get_lock():
|
|
40
|
-
# self.avg_mean.value += delta / self.count.value
|
|
41
|
-
# delta2 = value - self.avg_mean.value
|
|
42
|
-
# with self.m2.get_lock():
|
|
43
|
-
# self.m2.value += delta * delta2
|
|
@@ -1,107 +0,0 @@
|
|
|
1
|
-
careamics/__init__.py,sha256=DkMGt4t9ua0gCgvZFEtb6eydvoxG976T0KUro8KnDNA,760
|
|
2
|
-
careamics/careamist.py,sha256=vn-XiawERTTIKZqcfTg8leoVoLdBmHWIe9tkGrgkEGY,29719
|
|
3
|
-
careamics/conftest.py,sha256=Od4WcaaP0UP-XUMrFr_oo4e6c2hi_RvNbuaRTopwlmI,911
|
|
4
|
-
careamics/lightning_datamodule.py,sha256=TBKTpVfOvgsQg_8gwU68Au-aw_OXfUSsah7snXef43Y,32685
|
|
5
|
-
careamics/lightning_module.py,sha256=MSUxZfkhM1-D5AEZrkuNazOBbZCgbxCuuGtgYjhLEHU,10313
|
|
6
|
-
careamics/lightning_prediction_datamodule.py,sha256=4aTyMSbHiy1ebp6WSfDMDoYCJJU4qf4T5ShAjRNn_yM,15057
|
|
7
|
-
careamics/lightning_prediction_loop.py,sha256=qDfRVXPiCVyRz-P3l9tmlCfMT8mx9waKNfNrIMrjt3w,4599
|
|
8
|
-
careamics/py.typed,sha256=esB4cHc6c07uVkGtqf8at7ttEnprwRxwk8obY8Qumq4,187
|
|
9
|
-
careamics/callbacks/__init__.py,sha256=spxJlDByD-6QtMl9vcIty8Wb0tyHaSTKTItozHenI44,204
|
|
10
|
-
careamics/callbacks/hyperparameters_callback.py,sha256=ODJpwwdgc1-Py8yEUpXLar8_IOAcfR7lF3--6LfSiGc,1496
|
|
11
|
-
careamics/callbacks/progress_bar_callback.py,sha256=8HvNSWZldixd6pjz0dLDo0apIbzTovv5smKmZ6tZQ8U,2444
|
|
12
|
-
careamics/config/__init__.py,sha256=SP1oJKhK3VDN9ABwnpfR3H02qRprzymjRfNYeC7kHEo,1019
|
|
13
|
-
careamics/config/algorithm_model.py,sha256=2y4SWagzIyZH_WWYeZWLF-4SGcBk-g04QwKdSzmYTiM,5771
|
|
14
|
-
careamics/config/callback_model.py,sha256=CcamVhgRsVdskCe_9EtyWi1YbrNX5vKEplc97AYz1h8,3118
|
|
15
|
-
careamics/config/configuration_example.py,sha256=vxXYGB05cOqQwGGBuPN4kQ3uQJxRwzyFq5Tflk5HNvc,2575
|
|
16
|
-
careamics/config/configuration_factory.py,sha256=cnv6Qod5Wx1J0h951wgbayMO1KVUWxK0OmAIvscPzm8,21286
|
|
17
|
-
careamics/config/configuration_model.py,sha256=j7QryeMNQAsD_0byb81u99Oek2uyj3Syr0nUepFYTe8,18494
|
|
18
|
-
careamics/config/data_model.py,sha256=58cS8a1Tk4ZXMf8z4QA7NtJKi_EwlfGTsB0e59q9hhE,12741
|
|
19
|
-
careamics/config/inference_model.py,sha256=gbLV4B_7VRAc0QCa8r2EYk-YOdGuGswJIQGDFkj7XUM,5936
|
|
20
|
-
careamics/config/optimizer_models.py,sha256=eWCyH9rMTUl82ubqrHFHssQwVyTYNh9lRpVQGv96ppM,5336
|
|
21
|
-
careamics/config/tile_information.py,sha256=-k9hcJrL-QBp9n0Nf5qufEMcudnNNe8pWY37NtlWLxs,3009
|
|
22
|
-
careamics/config/training_model.py,sha256=oghv91J7xIdI69wpNJGmLUAwgM9l3VhMsbsOo4USqkU,1559
|
|
23
|
-
careamics/config/architectures/__init__.py,sha256=CdnViydyTdQixus3uWHBIgbgxmu9t1_ADehqpjN_57U,444
|
|
24
|
-
careamics/config/architectures/architecture_model.py,sha256=545hlbOZU9EJNGTcSpy7eXpfzCtvIm28dDJGMo36AfQ,886
|
|
25
|
-
careamics/config/architectures/custom_model.py,sha256=MxsFK4cvwjt59_-ZWeIFrlExQ9PpR5X0s9SqxN_B4YQ,4598
|
|
26
|
-
careamics/config/architectures/register_model.py,sha256=lHH0aUPmXtI3Bq_76zkhg07_Yb_nOJZkZJLCC_G-rZM,2434
|
|
27
|
-
careamics/config/architectures/unet_model.py,sha256=sQjfqTjh1kTNi369U3_94jroU6LyLlflaIe8FwdHQvo,2892
|
|
28
|
-
careamics/config/architectures/vae_model.py,sha256=Z0satmte4udManh_bxtl93ZmQlmo6JFE1NQIuZkTsQk,926
|
|
29
|
-
careamics/config/references/__init__.py,sha256=rZAQzmrciX5cNICcXaBH6sbE6N6L7_qYQUkasNy9y-c,763
|
|
30
|
-
careamics/config/references/algorithm_descriptions.py,sha256=wR3hIoeg5eiUEPbwTxMpQYLTKQyRl_5naSDbBZOZESU,3541
|
|
31
|
-
careamics/config/references/references.py,sha256=AXx08FJQxHb7SYOluCr_eQn_mbOris5dXqhKrCnhBTE,1573
|
|
32
|
-
careamics/config/support/__init__.py,sha256=pKqk76kyBraiSC1SQos-cyiQwsfOLLkLuWj6Hw60LZ4,1041
|
|
33
|
-
careamics/config/support/supported_activations.py,sha256=O27_dGDgw2P-DslKJsXGVAyS2NUQM6Ta4jeo2uTQlW0,519
|
|
34
|
-
careamics/config/support/supported_algorithms.py,sha256=GCkauFDlmb2hJwFSdoIpGmpLjPeYFHOGy2NweKdw8T4,358
|
|
35
|
-
careamics/config/support/supported_architectures.py,sha256=LLD6hyje9Q0BcvA7p2E8WW_cY5yEgMI_NAP4HBi27UU,540
|
|
36
|
-
careamics/config/support/supported_data.py,sha256=C0VcP1DkZqJ4MPn6UZcCZX8ZfVNdz0ZJk6y89fiim2I,2084
|
|
37
|
-
careamics/config/support/supported_loggers.py,sha256=ubSOkGoYabGbm_jmyc1R3eFcvcP-sHmuyiBi_d3_wLg,197
|
|
38
|
-
careamics/config/support/supported_losses.py,sha256=TPsMCuDdgb64TRyDwonnwHb1R-rkn3OzhtHimyVtrOY,540
|
|
39
|
-
careamics/config/support/supported_optimizers.py,sha256=xxbJsyohJTlHeUz2I4eRwcE3BeACs-6PH8cpX6w2wX8,1394
|
|
40
|
-
careamics/config/support/supported_pixel_manipulations.py,sha256=rFiktUlvoFU7s1NAKEMqsXOzLw5eaw9GtCKUznvq6xc,432
|
|
41
|
-
careamics/config/support/supported_struct_axis.py,sha256=alZMA5Y-BpDymLPUEd1zqVY0xMkgl9Rv1d4ujED6sco,424
|
|
42
|
-
careamics/config/support/supported_transforms.py,sha256=ylTiS8fUFKFwfn85gh7kKF4Trb9Q4ENPKm-XDWCe-SY,311
|
|
43
|
-
careamics/config/transformations/__init__.py,sha256=oqwBAL2XXbPRZZ5iOzNqalX6SyJ1M-S0lkfbDGZOzyE,378
|
|
44
|
-
careamics/config/transformations/n2v_manipulate_model.py,sha256=UTyfpm1mmMvYg_HoMzXilZhJGx_muiV-lLQ4UThCFJ0,1854
|
|
45
|
-
careamics/config/transformations/normalize_model.py,sha256=fua-JAcfNdTuikERreaR_0mz9ExsYSDJ7mUgIDl-U0M,804
|
|
46
|
-
careamics/config/transformations/transform_model.py,sha256=i7KAtSv4nah2H7uyJFKqg7RdKF68OHIPMNNvDo0HxGY,1000
|
|
47
|
-
careamics/config/transformations/xy_flip_model.py,sha256=zU-uZ1b1zNZWckbho3onN-B7BHKhN7jbgbNZyRQhv2s,1025
|
|
48
|
-
careamics/config/transformations/xy_random_rotate90_model.py,sha256=6sYKmtCLvz0SV1qZgBSHUTH-CUjwvHnohq1HyPntbyE,894
|
|
49
|
-
careamics/config/validators/__init__.py,sha256=iv0nVI0W7j9DxFPwh0DjRCzM9P8oLQn4Gwi5rfuFrrI,180
|
|
50
|
-
careamics/config/validators/validator_utils.py,sha256=H11pttfXFdnlUw9FFIgPWy3sxO1ks38dtmYAS6Kl9-c,2624
|
|
51
|
-
careamics/dataset/__init__.py,sha256=cUcqy1Nxa5WhDQim6948r3i1kGQ-HijUqAACyyM7cuU,174
|
|
52
|
-
careamics/dataset/in_memory_dataset.py,sha256=WcVfE7sdqac07dzmb4Wz2yML6t-0PmQaIfmvyv6uQQE,12567
|
|
53
|
-
careamics/dataset/iterable_dataset.py,sha256=aJKL3F6SesOy-WTRXarYDJjGh7RlxqmYDrYAv09J4I0,15070
|
|
54
|
-
careamics/dataset/zarr_dataset.py,sha256=lojnK5bhiF1vyjuPtWXBrZ9sy5fT_rBvZJbbbnE-H_I,5665
|
|
55
|
-
careamics/dataset/dataset_utils/__init__.py,sha256=5U_kavgh_QEvTiDuM-O4hsqmDOKh6_y6iDvZPE8Jtsc,446
|
|
56
|
-
careamics/dataset/dataset_utils/dataset_utils.py,sha256=zYNglet5lYKxIhTeOGG2K24oujC-m5zyYlwJcQcleVA,2662
|
|
57
|
-
careamics/dataset/dataset_utils/file_utils.py,sha256=hOCDYlVcoBCFR3B9Eh5nTYSiTW0wskAecUfykB1Mj_I,4047
|
|
58
|
-
careamics/dataset/dataset_utils/read_tiff.py,sha256=nbSAU11Tv-jViFHRAtrG8pGH09CG3IIdF2WF6duAxxQ,1729
|
|
59
|
-
careamics/dataset/dataset_utils/read_utils.py,sha256=0nsfzHq3zr9kjm2qZZrMRKI5LC5MiRSH35xPBCYyBrQ,579
|
|
60
|
-
careamics/dataset/dataset_utils/read_zarr.py,sha256=2jzREAnJDQSv0qmsL-v00BxmiZ_sp0ijq667LZSQ_hY,1685
|
|
61
|
-
careamics/dataset/patching/__init__.py,sha256=7-s12oUAZNlMOwSkxSwbD7vojQINWYFzn_4qIJ87WBg,37
|
|
62
|
-
careamics/dataset/patching/patching.py,sha256=vS7wQ1JdSNsFlqJi41Y_NupFIez2BXOO86r0UY1gDJA,7535
|
|
63
|
-
careamics/dataset/patching/random_patching.py,sha256=B1POeDApLyvcRRBpg0loLsOoUGWVkMojEzt4xD_WiaQ,6281
|
|
64
|
-
careamics/dataset/patching/sequential_patching.py,sha256=_l3Q2uYIhjMJMaxDdSbHC9_2kRF9eLz-Xs3r9i7j3Nc,5903
|
|
65
|
-
careamics/dataset/patching/tiled_patching.py,sha256=_IUl5zcBM-BMcRfQajDOQ7RIXmqympM3O75jRHqRi0M,5888
|
|
66
|
-
careamics/dataset/patching/validate_patch_dimension.py,sha256=Y7SWajYWtU7pdZpAI3t_H3Mxw5GMjd9hPpdRygORwK8,2036
|
|
67
|
-
careamics/losses/__init__.py,sha256=kVEwfZ2xXfd8x0n-VHGKm6qvzbto5pIIJYP_jN-bCtw,89
|
|
68
|
-
careamics/losses/loss_factory.py,sha256=vaMlxH5oescWTKlK1adWwbeD9tW4Ti-p7qKmc1iHCi0,1005
|
|
69
|
-
careamics/losses/losses.py,sha256=DKwHZ9ifVe6wMd3tBOiswLC-saU1bj1RCcXGOkREmKU,2328
|
|
70
|
-
careamics/model_io/__init__.py,sha256=HITzjiuZQwo-rQ2_Ma3bz9l7PDANv1_S489E-tffV9s,155
|
|
71
|
-
careamics/model_io/bmz_io.py,sha256=MGZklRek3WI8VqV0gt63hL-APDsMkYbDGdqkih_iWAY,7031
|
|
72
|
-
careamics/model_io/model_io_utils.py,sha256=x5u1HszZgRfvuku4eKQhmInyxRaEzkgNqAhGSyLS6e4,2116
|
|
73
|
-
careamics/model_io/bioimage/__init__.py,sha256=r94nu8WDAvj0Fbu4C-iJXdOhfSQXeZBvN3UKsLG0RNI,298
|
|
74
|
-
careamics/model_io/bioimage/_readme_factory.py,sha256=LZAuEiWNBTPaD8KrLPMq16yJuOPKDZiGQuTMHKLvoT4,3514
|
|
75
|
-
careamics/model_io/bioimage/bioimage_utils.py,sha256=nlW0J1daYyLbL6yVN3QSn3HhA2joMjIG-thK64lpVTY,1085
|
|
76
|
-
careamics/model_io/bioimage/model_description.py,sha256=wXGJBzGGSwEds-V0G4mgPvoi4dDXNn_7Tp6iPCsAeTY,9208
|
|
77
|
-
careamics/models/__init__.py,sha256=Wty5hwQb_As33pQOZqY5j-DpDOdh5ArBH4BhQDSuXTQ,133
|
|
78
|
-
careamics/models/activation.py,sha256=xdqz4-yKV7oElG_dDrYuibS8HOiYvKdV_r9FwWPvaDE,977
|
|
79
|
-
careamics/models/layers.py,sha256=oWzpq8OdHFEJqPWC9X8IRPNe0XqAnesSqwoT6V3t1Mw,13712
|
|
80
|
-
careamics/models/model_factory.py,sha256=5YRwRRUemxb-pTRL3VWn8N61tCGyhrurqPgcFaNETb0,1360
|
|
81
|
-
careamics/models/unet.py,sha256=3pXpiCIw7WUaDV0Jmczkxi99C5-Zu3NpQpWxgRkeGL8,14321
|
|
82
|
-
careamics/prediction/__init__.py,sha256=-Bfc7UqPSqpGx0NGvHMkE-bHOkZYMn7EaxQ9tO6A3uU,118
|
|
83
|
-
careamics/prediction/stitch_prediction.py,sha256=lC9qdcR4BTNezCxoTeombg6k8mmTmN45TZSbEHg13Mk,2163
|
|
84
|
-
careamics/transforms/__init__.py,sha256=VIHIsC8sMAh1TCm67ifB816Zp-LRo6rAONPuT2Qs3bs,483
|
|
85
|
-
careamics/transforms/compose.py,sha256=mTkhoxvgvsBqNoz9RWpJ_tqsDl1CDp0-UARTjUuBRf4,3477
|
|
86
|
-
careamics/transforms/n2v_manipulate.py,sha256=6O0RmL6zgBvZgbga6yyu1FwrxPlWXuviDoHzyxQQXfY,5404
|
|
87
|
-
careamics/transforms/normalize.py,sha256=Ts1gOuzWYPmjAlMf4OgN3y6bHVgvBaq91GdkKGWpTy4,4237
|
|
88
|
-
careamics/transforms/pixel_manipulation.py,sha256=qjTfgk86VkwVVu69E0sXQEfASi170IlzxorpAPmYOe0,12657
|
|
89
|
-
careamics/transforms/struct_mask_parameters.py,sha256=jE29Li9sx3olaRnqYfJsSlKi2t0WQzJmCm9aCbIQEsA,421
|
|
90
|
-
careamics/transforms/transform.py,sha256=cEqc4ci8na70i-HIGYC7udRfVa8D_8OjdRVrr3txLvQ,464
|
|
91
|
-
careamics/transforms/tta.py,sha256=6H0E0yxmZT_TEslenOIXqlEM-l_0oCtIk59gAGP0byM,1960
|
|
92
|
-
careamics/transforms/xy_flip.py,sha256=Q1kKTa2kE3W1P3dlpT4GAVSSHM3TebnrvIyWh75Fnko,3443
|
|
93
|
-
careamics/transforms/xy_random_rotate90.py,sha256=zWdBROLLjgxTMSQEQesJr17j84BmZhKWCMVVONHU8mw,2781
|
|
94
|
-
careamics/utils/__init__.py,sha256=tO1X5QTfnthepuW0uYagz5fWehtLtwK2gPmkUeqhdOw,334
|
|
95
|
-
careamics/utils/base_enum.py,sha256=bz1D8mDx5V5hdnJ3WAzJXWHJTbgwAky5FprUt9F5cMA,1387
|
|
96
|
-
careamics/utils/context.py,sha256=Ljf70OR1FcYpsVpxb5Sr2fzmPVIZgDS1uZob_3BcELg,1409
|
|
97
|
-
careamics/utils/logging.py,sha256=coIscjkDYpqcsGnsONuYOdIYd6_gHxdnYIZ-e9Y2Ybg,10322
|
|
98
|
-
careamics/utils/metrics.py,sha256=9YQe5Aj2Pv2h9jnRFeRbDQ_3qXAW0QHpucSqiUtwDcA,2382
|
|
99
|
-
careamics/utils/path_utils.py,sha256=8AugiG5DOmzgSnTCJI8vypXaPE0XhnR-9pzeiFUZ-0I,554
|
|
100
|
-
careamics/utils/ram.py,sha256=mhZVA_DsIlXMvABSxot4eBBxbvWx7JzfijC_cVBtF1s,239
|
|
101
|
-
careamics/utils/receptive_field.py,sha256=Y2h4c8S6glX3qcx5KHDmO17Kkuyey9voxfoXyqcAfiM,3296
|
|
102
|
-
careamics/utils/running_stats.py,sha256=GIPMPuH9EOUKD_cYBkJFPggXRKnQEiOXx68Pq9UCCVI,1384
|
|
103
|
-
careamics/utils/torch_utils.py,sha256=g1zxdlM7_BA7mMLcCzmrxZX4LmH__KXlJibC95muVaA,3014
|
|
104
|
-
careamics-0.1.0rc6.dist-info/METADATA,sha256=o_1ZDxRYCTLnSruXdXEHT8Y3qNiBW-fShITOyT_wO3E,3464
|
|
105
|
-
careamics-0.1.0rc6.dist-info/WHEEL,sha256=zEMcRr9Kr03x1ozGwg5v9NQBKn3kndp6LSoSlVg-jhU,87
|
|
106
|
-
careamics-0.1.0rc6.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
|
|
107
|
-
careamics-0.1.0rc6.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|