careamics 0.1.0rc3__py3-none-any.whl → 0.1.0rc5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of careamics might be problematic. Click here for more details.
- careamics/__init__.py +8 -6
- careamics/careamist.py +30 -29
- careamics/config/__init__.py +12 -9
- careamics/config/algorithm_model.py +5 -5
- careamics/config/architectures/unet_model.py +1 -0
- careamics/config/callback_model.py +1 -0
- careamics/config/configuration_example.py +87 -0
- careamics/config/configuration_factory.py +285 -78
- careamics/config/configuration_model.py +22 -23
- careamics/config/data_model.py +62 -160
- careamics/config/inference_model.py +20 -21
- careamics/config/references/algorithm_descriptions.py +1 -0
- careamics/config/references/references.py +1 -0
- careamics/config/support/supported_extraction_strategies.py +1 -0
- careamics/config/support/supported_optimizers.py +3 -3
- careamics/config/training_model.py +2 -1
- careamics/config/transformations/n2v_manipulate_model.py +2 -1
- careamics/config/transformations/nd_flip_model.py +7 -12
- careamics/config/transformations/normalize_model.py +2 -1
- careamics/config/transformations/transform_model.py +1 -0
- careamics/config/transformations/xy_random_rotate90_model.py +7 -9
- careamics/config/validators/validator_utils.py +1 -0
- careamics/conftest.py +1 -0
- careamics/dataset/dataset_utils/__init__.py +0 -1
- careamics/dataset/dataset_utils/dataset_utils.py +1 -0
- careamics/dataset/in_memory_dataset.py +17 -48
- careamics/dataset/iterable_dataset.py +16 -71
- careamics/dataset/patching/__init__.py +0 -7
- careamics/dataset/patching/patching.py +1 -0
- careamics/dataset/patching/sequential_patching.py +6 -6
- careamics/dataset/patching/tiled_patching.py +10 -6
- careamics/lightning_datamodule.py +123 -49
- careamics/lightning_module.py +7 -7
- careamics/lightning_prediction_datamodule.py +59 -48
- careamics/losses/__init__.py +0 -1
- careamics/losses/loss_factory.py +1 -0
- careamics/model_io/__init__.py +0 -1
- careamics/model_io/bioimage/_readme_factory.py +2 -1
- careamics/model_io/bioimage/bioimage_utils.py +1 -0
- careamics/model_io/bioimage/model_description.py +4 -3
- careamics/model_io/bmz_io.py +8 -7
- careamics/model_io/model_io_utils.py +4 -4
- careamics/models/layers.py +1 -0
- careamics/models/model_factory.py +1 -0
- careamics/models/unet.py +91 -17
- careamics/prediction/stitch_prediction.py +1 -0
- careamics/transforms/__init__.py +2 -23
- careamics/transforms/compose.py +98 -0
- careamics/transforms/n2v_manipulate.py +18 -23
- careamics/transforms/nd_flip.py +38 -64
- careamics/transforms/normalize.py +45 -34
- careamics/transforms/pixel_manipulation.py +2 -2
- careamics/transforms/transform.py +33 -0
- careamics/transforms/tta.py +2 -2
- careamics/transforms/xy_random_rotate90.py +41 -68
- careamics/utils/__init__.py +0 -1
- careamics/utils/context.py +1 -0
- careamics/utils/logging.py +1 -0
- careamics/utils/metrics.py +1 -0
- careamics/utils/torch_utils.py +1 -0
- {careamics-0.1.0rc3.dist-info → careamics-0.1.0rc5.dist-info}/METADATA +16 -61
- careamics-0.1.0rc5.dist-info/RECORD +111 -0
- careamics/dataset/patching/patch_transform.py +0 -44
- careamics-0.1.0rc3.dist-info/RECORD +0 -109
- {careamics-0.1.0rc3.dist-info → careamics-0.1.0rc5.dist-info}/WHEEL +0 -0
- {careamics-0.1.0rc3.dist-info → careamics-0.1.0rc5.dist-info}/licenses/LICENSE +0 -0
careamics/__init__.py
CHANGED
|
@@ -9,16 +9,18 @@ except PackageNotFoundError:
|
|
|
9
9
|
|
|
10
10
|
__all__ = [
|
|
11
11
|
"CAREamist",
|
|
12
|
-
"
|
|
12
|
+
"CAREamicsModuleWrapper",
|
|
13
|
+
"CAREamicsPredictData",
|
|
14
|
+
"CAREamicsTrainData",
|
|
13
15
|
"Configuration",
|
|
14
16
|
"load_configuration",
|
|
15
17
|
"save_configuration",
|
|
16
|
-
"
|
|
17
|
-
"
|
|
18
|
+
"TrainingDataWrapper",
|
|
19
|
+
"PredictDataWrapper",
|
|
18
20
|
]
|
|
19
21
|
|
|
20
22
|
from .careamist import CAREamist
|
|
21
23
|
from .config import Configuration, load_configuration, save_configuration
|
|
22
|
-
from .lightning_datamodule import
|
|
23
|
-
from .lightning_module import
|
|
24
|
-
from .lightning_prediction_datamodule import
|
|
24
|
+
from .lightning_datamodule import CAREamicsTrainData, TrainingDataWrapper
|
|
25
|
+
from .lightning_module import CAREamicsModuleWrapper
|
|
26
|
+
from .lightning_prediction_datamodule import CAREamicsPredictData, PredictDataWrapper
|
careamics/careamist.py
CHANGED
|
@@ -20,9 +20,9 @@ from careamics.config import (
|
|
|
20
20
|
)
|
|
21
21
|
from careamics.config.inference_model import TRANSFORMS_UNION
|
|
22
22
|
from careamics.config.support import SupportedAlgorithm, SupportedData, SupportedLogger
|
|
23
|
-
from careamics.lightning_datamodule import
|
|
24
|
-
from careamics.lightning_module import
|
|
25
|
-
from careamics.lightning_prediction_datamodule import
|
|
23
|
+
from careamics.lightning_datamodule import CAREamicsTrainData
|
|
24
|
+
from careamics.lightning_module import CAREamicsModule
|
|
25
|
+
from careamics.lightning_prediction_datamodule import CAREamicsPredictData
|
|
26
26
|
from careamics.lightning_prediction_loop import CAREamicsPredictionLoop
|
|
27
27
|
from careamics.model_io import export_to_bmz, load_pretrained
|
|
28
28
|
from careamics.utils import check_path_exists, get_logger
|
|
@@ -73,8 +73,7 @@ class CAREamist:
|
|
|
73
73
|
source: Union[Path, str],
|
|
74
74
|
work_dir: Optional[str] = None,
|
|
75
75
|
experiment_name: str = "CAREamics",
|
|
76
|
-
) -> None:
|
|
77
|
-
...
|
|
76
|
+
) -> None: ...
|
|
78
77
|
|
|
79
78
|
@overload
|
|
80
79
|
def __init__( # numpydoc ignore=GL08
|
|
@@ -82,8 +81,7 @@ class CAREamist:
|
|
|
82
81
|
source: Configuration,
|
|
83
82
|
work_dir: Optional[str] = None,
|
|
84
83
|
experiment_name: str = "CAREamics",
|
|
85
|
-
) -> None:
|
|
86
|
-
...
|
|
84
|
+
) -> None: ...
|
|
87
85
|
|
|
88
86
|
def __init__(
|
|
89
87
|
self,
|
|
@@ -140,7 +138,7 @@ class CAREamist:
|
|
|
140
138
|
self.cfg = source
|
|
141
139
|
|
|
142
140
|
# instantiate model
|
|
143
|
-
self.model =
|
|
141
|
+
self.model = CAREamicsModule(
|
|
144
142
|
algorithm_config=self.cfg.algorithm_config,
|
|
145
143
|
)
|
|
146
144
|
|
|
@@ -156,7 +154,7 @@ class CAREamist:
|
|
|
156
154
|
self.cfg = load_configuration(source)
|
|
157
155
|
|
|
158
156
|
# instantiate model
|
|
159
|
-
self.model =
|
|
157
|
+
self.model = CAREamicsModule(
|
|
160
158
|
algorithm_config=self.cfg.algorithm_config,
|
|
161
159
|
)
|
|
162
160
|
|
|
@@ -193,8 +191,8 @@ class CAREamist:
|
|
|
193
191
|
self.trainer.predict_loop = CAREamicsPredictionLoop(self.trainer)
|
|
194
192
|
|
|
195
193
|
# place holder for the datamodules
|
|
196
|
-
self.train_datamodule: Optional[
|
|
197
|
-
self.pred_datamodule: Optional[
|
|
194
|
+
self.train_datamodule: Optional[CAREamicsTrainData] = None
|
|
195
|
+
self.pred_datamodule: Optional[CAREamicsPredictData] = None
|
|
198
196
|
|
|
199
197
|
def _define_callbacks(self) -> List[Callback]:
|
|
200
198
|
"""
|
|
@@ -227,7 +225,7 @@ class CAREamist:
|
|
|
227
225
|
def train(
|
|
228
226
|
self,
|
|
229
227
|
*,
|
|
230
|
-
datamodule: Optional[
|
|
228
|
+
datamodule: Optional[CAREamicsTrainData] = None,
|
|
231
229
|
train_source: Optional[Union[Path, str, np.ndarray]] = None,
|
|
232
230
|
val_source: Optional[Union[Path, str, np.ndarray]] = None,
|
|
233
231
|
train_target: Optional[Union[Path, str, np.ndarray]] = None,
|
|
@@ -360,7 +358,7 @@ class CAREamist:
|
|
|
360
358
|
f"instance (got {type(train_source)})."
|
|
361
359
|
)
|
|
362
360
|
|
|
363
|
-
def _train_on_datamodule(self, datamodule:
|
|
361
|
+
def _train_on_datamodule(self, datamodule: CAREamicsTrainData) -> None:
|
|
364
362
|
"""
|
|
365
363
|
Train the model on the provided datamodule.
|
|
366
364
|
|
|
@@ -402,7 +400,7 @@ class CAREamist:
|
|
|
402
400
|
Minimum number of patches to use for validation, by default 5.
|
|
403
401
|
"""
|
|
404
402
|
# create datamodule
|
|
405
|
-
datamodule =
|
|
403
|
+
datamodule = CAREamicsTrainData(
|
|
406
404
|
data_config=self.cfg.data_config,
|
|
407
405
|
train_data=train_data,
|
|
408
406
|
val_data=val_data,
|
|
@@ -458,7 +456,7 @@ class CAREamist:
|
|
|
458
456
|
path_to_val_target = check_path_exists(path_to_val_target)
|
|
459
457
|
|
|
460
458
|
# create datamodule
|
|
461
|
-
datamodule =
|
|
459
|
+
datamodule = CAREamicsTrainData(
|
|
462
460
|
data_config=self.cfg.data_config,
|
|
463
461
|
train_data=path_to_train_data,
|
|
464
462
|
val_data=path_to_val_data,
|
|
@@ -475,11 +473,10 @@ class CAREamist:
|
|
|
475
473
|
@overload
|
|
476
474
|
def predict( # numpydoc ignore=GL08
|
|
477
475
|
self,
|
|
478
|
-
source:
|
|
476
|
+
source: CAREamicsPredictData,
|
|
479
477
|
*,
|
|
480
478
|
checkpoint: Optional[Literal["best", "last"]] = None,
|
|
481
|
-
) -> Union[list, np.ndarray]:
|
|
482
|
-
...
|
|
479
|
+
) -> Union[list, np.ndarray]: ...
|
|
483
480
|
|
|
484
481
|
@overload
|
|
485
482
|
def predict( # numpydoc ignore=GL08
|
|
@@ -497,8 +494,7 @@ class CAREamist:
|
|
|
497
494
|
read_source_func: Optional[Callable] = None,
|
|
498
495
|
extension_filter: str = "",
|
|
499
496
|
checkpoint: Optional[Literal["best", "last"]] = None,
|
|
500
|
-
) -> Union[list, np.ndarray]:
|
|
501
|
-
...
|
|
497
|
+
) -> Union[list, np.ndarray]: ...
|
|
502
498
|
|
|
503
499
|
@overload
|
|
504
500
|
def predict( # numpydoc ignore=GL08
|
|
@@ -514,12 +510,11 @@ class CAREamist:
|
|
|
514
510
|
tta_transforms: bool = True,
|
|
515
511
|
dataloader_params: Optional[Dict] = None,
|
|
516
512
|
checkpoint: Optional[Literal["best", "last"]] = None,
|
|
517
|
-
) -> Union[list, np.ndarray]:
|
|
518
|
-
...
|
|
513
|
+
) -> Union[list, np.ndarray]: ...
|
|
519
514
|
|
|
520
515
|
def predict(
|
|
521
516
|
self,
|
|
522
|
-
source: Union[
|
|
517
|
+
source: Union[CAREamicsPredictData, Path, str, np.ndarray],
|
|
523
518
|
*,
|
|
524
519
|
batch_size: int = 1,
|
|
525
520
|
tile_size: Optional[Tuple[int, ...]] = None,
|
|
@@ -548,6 +543,12 @@ class CAREamist:
|
|
|
548
543
|
Test-time augmentation (TTA) can be switched off using the `tta_transforms`
|
|
549
544
|
parameter.
|
|
550
545
|
|
|
546
|
+
Note that if you are using a UNet model and tiling, the tile size must be
|
|
547
|
+
divisible in every dimension by 2**d, where d is the depth of the model. This
|
|
548
|
+
avoids artefacts arising from the broken shift invariance induced by the
|
|
549
|
+
pooling layers of the UNet. If your image has less dimensions, as it may
|
|
550
|
+
happen in the Z dimension, consider padding your image.
|
|
551
|
+
|
|
551
552
|
Parameters
|
|
552
553
|
----------
|
|
553
554
|
source : Union[CAREamicsClay, Path, str, np.ndarray]
|
|
@@ -587,7 +588,7 @@ class CAREamist:
|
|
|
587
588
|
ValueError
|
|
588
589
|
If the input is not a CAREamicsClay instance, a path or a numpy array.
|
|
589
590
|
"""
|
|
590
|
-
if isinstance(source,
|
|
591
|
+
if isinstance(source, CAREamicsPredictData):
|
|
591
592
|
# record datamodule
|
|
592
593
|
self.pred_datamodule = source
|
|
593
594
|
|
|
@@ -602,7 +603,7 @@ class CAREamist:
|
|
|
602
603
|
)
|
|
603
604
|
# create predict config, reuse training config if parameters missing
|
|
604
605
|
prediction_config = create_inference_configuration(
|
|
605
|
-
|
|
606
|
+
configuration=self.cfg,
|
|
606
607
|
tile_size=tile_size,
|
|
607
608
|
tile_overlap=tile_overlap,
|
|
608
609
|
data_type=data_type,
|
|
@@ -623,8 +624,8 @@ class CAREamist:
|
|
|
623
624
|
source_path = check_path_exists(source)
|
|
624
625
|
|
|
625
626
|
# create datamodule
|
|
626
|
-
datamodule =
|
|
627
|
-
|
|
627
|
+
datamodule = CAREamicsPredictData(
|
|
628
|
+
pred_config=prediction_config,
|
|
628
629
|
pred_data=source_path,
|
|
629
630
|
read_source_func=read_source_func,
|
|
630
631
|
extension_filter=extension_filter,
|
|
@@ -640,8 +641,8 @@ class CAREamist:
|
|
|
640
641
|
|
|
641
642
|
elif isinstance(source, np.ndarray):
|
|
642
643
|
# create datamodule
|
|
643
|
-
datamodule =
|
|
644
|
-
|
|
644
|
+
datamodule = CAREamicsPredictData(
|
|
645
|
+
pred_config=prediction_config,
|
|
645
646
|
pred_data=source,
|
|
646
647
|
dataloader_params=dataloader_params,
|
|
647
648
|
)
|
careamics/config/__init__.py
CHANGED
|
@@ -1,16 +1,17 @@
|
|
|
1
1
|
"""Configuration module."""
|
|
2
2
|
|
|
3
|
-
|
|
4
3
|
__all__ = [
|
|
5
|
-
"
|
|
6
|
-
"
|
|
4
|
+
"AlgorithmConfig",
|
|
5
|
+
"DataConfig",
|
|
7
6
|
"Configuration",
|
|
8
7
|
"CheckpointModel",
|
|
9
|
-
"
|
|
8
|
+
"InferenceConfig",
|
|
10
9
|
"load_configuration",
|
|
11
10
|
"save_configuration",
|
|
12
|
-
"
|
|
11
|
+
"TrainingConfig",
|
|
13
12
|
"create_n2v_configuration",
|
|
13
|
+
"create_n2n_configuration",
|
|
14
|
+
"create_care_configuration",
|
|
14
15
|
"register_model",
|
|
15
16
|
"CustomModel",
|
|
16
17
|
"create_inference_configuration",
|
|
@@ -18,11 +19,13 @@ __all__ = [
|
|
|
18
19
|
"ConfigurationInformation",
|
|
19
20
|
]
|
|
20
21
|
|
|
21
|
-
from .algorithm_model import
|
|
22
|
+
from .algorithm_model import AlgorithmConfig
|
|
22
23
|
from .architectures import CustomModel, clear_custom_models, register_model
|
|
23
24
|
from .callback_model import CheckpointModel
|
|
24
25
|
from .configuration_factory import (
|
|
26
|
+
create_care_configuration,
|
|
25
27
|
create_inference_configuration,
|
|
28
|
+
create_n2n_configuration,
|
|
26
29
|
create_n2v_configuration,
|
|
27
30
|
)
|
|
28
31
|
from .configuration_model import (
|
|
@@ -30,6 +33,6 @@ from .configuration_model import (
|
|
|
30
33
|
load_configuration,
|
|
31
34
|
save_configuration,
|
|
32
35
|
)
|
|
33
|
-
from .data_model import
|
|
34
|
-
from .inference_model import
|
|
35
|
-
from .training_model import
|
|
36
|
+
from .data_model import DataConfig
|
|
37
|
+
from .inference_model import InferenceConfig
|
|
38
|
+
from .training_model import TrainingConfig
|
|
@@ -10,7 +10,7 @@ from .architectures import CustomModel, UNetModel, VAEModel
|
|
|
10
10
|
from .optimizer_models import LrSchedulerModel, OptimizerModel
|
|
11
11
|
|
|
12
12
|
|
|
13
|
-
class
|
|
13
|
+
class AlgorithmConfig(BaseModel):
|
|
14
14
|
"""Algorithm configuration.
|
|
15
15
|
|
|
16
16
|
This Pydantic model validates the parameters governing the components of the
|
|
@@ -45,7 +45,7 @@ class AlgorithmModel(BaseModel):
|
|
|
45
45
|
Examples
|
|
46
46
|
--------
|
|
47
47
|
Minimum example:
|
|
48
|
-
>>> from careamics.config import
|
|
48
|
+
>>> from careamics.config import AlgorithmConfig
|
|
49
49
|
>>> config_dict = {
|
|
50
50
|
... "algorithm": "n2v",
|
|
51
51
|
... "loss": "n2v",
|
|
@@ -53,11 +53,11 @@ class AlgorithmModel(BaseModel):
|
|
|
53
53
|
... "architecture": "UNet",
|
|
54
54
|
... }
|
|
55
55
|
... }
|
|
56
|
-
>>> config =
|
|
56
|
+
>>> config = AlgorithmConfig(**config_dict)
|
|
57
57
|
|
|
58
58
|
Using a custom model:
|
|
59
59
|
>>> from torch import nn, ones
|
|
60
|
-
>>> from careamics.config import
|
|
60
|
+
>>> from careamics.config import AlgorithmConfig, register_model
|
|
61
61
|
...
|
|
62
62
|
>>> @register_model(name="linear_model")
|
|
63
63
|
... class LinearModel(nn.Module):
|
|
@@ -80,7 +80,7 @@ class AlgorithmModel(BaseModel):
|
|
|
80
80
|
... "out_features": 5,
|
|
81
81
|
... }
|
|
82
82
|
... }
|
|
83
|
-
>>> config =
|
|
83
|
+
>>> config = AlgorithmConfig(**config_dict)
|
|
84
84
|
"""
|
|
85
85
|
|
|
86
86
|
# Pydantic class configuration
|
|
@@ -39,6 +39,7 @@ class UNetModel(ArchitectureModel):
|
|
|
39
39
|
"None", "Sigmoid", "Softmax", "Tanh", "ReLU", "LeakyReLU"
|
|
40
40
|
] = Field(default="None", validate_default=True)
|
|
41
41
|
n2v2: bool = Field(default=False, validate_default=True)
|
|
42
|
+
independent_channels: bool = Field(default=True, validate_default=True)
|
|
42
43
|
|
|
43
44
|
@field_validator("num_channels_init")
|
|
44
45
|
@classmethod
|
|
@@ -0,0 +1,87 @@
|
|
|
1
|
+
from .algorithm_model import AlgorithmConfig
|
|
2
|
+
from .architectures import UNetModel
|
|
3
|
+
from .configuration_model import Configuration
|
|
4
|
+
from .data_model import DataConfig
|
|
5
|
+
from .optimizer_models import LrSchedulerModel, OptimizerModel
|
|
6
|
+
from .support import (
|
|
7
|
+
SupportedActivation,
|
|
8
|
+
SupportedAlgorithm,
|
|
9
|
+
SupportedArchitecture,
|
|
10
|
+
SupportedData,
|
|
11
|
+
SupportedLogger,
|
|
12
|
+
SupportedLoss,
|
|
13
|
+
SupportedOptimizer,
|
|
14
|
+
SupportedPixelManipulation,
|
|
15
|
+
SupportedScheduler,
|
|
16
|
+
SupportedTransform,
|
|
17
|
+
)
|
|
18
|
+
from .training_model import TrainingConfig
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def full_configuration_example() -> Configuration:
|
|
22
|
+
"""Returns a dictionnary representing a full configuration example.
|
|
23
|
+
|
|
24
|
+
Returns
|
|
25
|
+
-------
|
|
26
|
+
Configuration
|
|
27
|
+
Full configuration example.
|
|
28
|
+
"""
|
|
29
|
+
experiment_name = "Full example"
|
|
30
|
+
algorithm_model = AlgorithmConfig(
|
|
31
|
+
algorithm=SupportedAlgorithm.N2V.value,
|
|
32
|
+
loss=SupportedLoss.N2V.value,
|
|
33
|
+
model=UNetModel(
|
|
34
|
+
architecture=SupportedArchitecture.UNET.value,
|
|
35
|
+
in_channels=1,
|
|
36
|
+
num_classes=1,
|
|
37
|
+
depth=2,
|
|
38
|
+
num_channels_init=32,
|
|
39
|
+
final_activation=SupportedActivation.NONE.value,
|
|
40
|
+
n2v2=True,
|
|
41
|
+
),
|
|
42
|
+
optimizer=OptimizerModel(
|
|
43
|
+
name=SupportedOptimizer.ADAM.value, parameters={"lr": 0.0001}
|
|
44
|
+
),
|
|
45
|
+
lr_scheduler=LrSchedulerModel(
|
|
46
|
+
name=SupportedScheduler.REDUCE_LR_ON_PLATEAU.value,
|
|
47
|
+
),
|
|
48
|
+
)
|
|
49
|
+
data_model = DataConfig(
|
|
50
|
+
data_type=SupportedData.ARRAY.value,
|
|
51
|
+
patch_size=(256, 256),
|
|
52
|
+
batch_size=8,
|
|
53
|
+
axes="YX",
|
|
54
|
+
transforms=[
|
|
55
|
+
{
|
|
56
|
+
"name": SupportedTransform.NORMALIZE.value,
|
|
57
|
+
},
|
|
58
|
+
{
|
|
59
|
+
"name": SupportedTransform.NDFLIP.value,
|
|
60
|
+
},
|
|
61
|
+
{
|
|
62
|
+
"name": SupportedTransform.XY_RANDOM_ROTATE90.value,
|
|
63
|
+
},
|
|
64
|
+
{
|
|
65
|
+
"name": SupportedTransform.N2V_MANIPULATE.value,
|
|
66
|
+
"roi_size": 11,
|
|
67
|
+
"masked_pixel_percentage": 0.2,
|
|
68
|
+
"strategy": SupportedPixelManipulation.MEDIAN.value,
|
|
69
|
+
},
|
|
70
|
+
],
|
|
71
|
+
mean=0.485,
|
|
72
|
+
std=0.229,
|
|
73
|
+
dataloader_params={
|
|
74
|
+
"num_workers": 4,
|
|
75
|
+
},
|
|
76
|
+
)
|
|
77
|
+
training_model = TrainingConfig(
|
|
78
|
+
num_epochs=30,
|
|
79
|
+
logger=SupportedLogger.WANDB.value,
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
return Configuration(
|
|
83
|
+
experiment_name=experiment_name,
|
|
84
|
+
algorithm_config=algorithm_model,
|
|
85
|
+
data_config=data_model,
|
|
86
|
+
training_config=training_model,
|
|
87
|
+
)
|