careamics 0.1.0rc1__py3-none-any.whl → 0.1.0rc3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of careamics might be problematic. Click here for more details.
- careamics/__init__.py +14 -4
- careamics/callbacks/__init__.py +6 -0
- careamics/callbacks/hyperparameters_callback.py +42 -0
- careamics/callbacks/progress_bar_callback.py +57 -0
- careamics/careamist.py +761 -0
- careamics/config/__init__.py +27 -3
- careamics/config/algorithm_model.py +167 -0
- careamics/config/architectures/__init__.py +17 -0
- careamics/config/architectures/architecture_model.py +29 -0
- careamics/config/architectures/custom_model.py +150 -0
- careamics/config/architectures/register_model.py +101 -0
- careamics/config/architectures/unet_model.py +96 -0
- careamics/config/architectures/vae_model.py +39 -0
- careamics/config/callback_model.py +92 -0
- careamics/config/configuration_factory.py +460 -0
- careamics/config/configuration_model.py +596 -0
- careamics/config/data_model.py +555 -0
- careamics/config/inference_model.py +283 -0
- careamics/config/noise_models.py +162 -0
- careamics/config/optimizer_models.py +181 -0
- careamics/config/references/__init__.py +45 -0
- careamics/config/references/algorithm_descriptions.py +131 -0
- careamics/config/references/references.py +38 -0
- careamics/config/support/__init__.py +33 -0
- careamics/config/support/supported_activations.py +24 -0
- careamics/config/support/supported_algorithms.py +18 -0
- careamics/config/support/supported_architectures.py +18 -0
- careamics/config/support/supported_data.py +82 -0
- careamics/{dataset/extraction_strategy.py → config/support/supported_extraction_strategies.py} +5 -2
- careamics/config/support/supported_loggers.py +8 -0
- careamics/config/support/supported_losses.py +25 -0
- careamics/config/support/supported_optimizers.py +55 -0
- careamics/config/support/supported_pixel_manipulations.py +15 -0
- careamics/config/support/supported_struct_axis.py +19 -0
- careamics/config/support/supported_transforms.py +23 -0
- careamics/config/tile_information.py +104 -0
- careamics/config/training_model.py +65 -0
- careamics/config/transformations/__init__.py +14 -0
- careamics/config/transformations/n2v_manipulate_model.py +63 -0
- careamics/config/transformations/nd_flip_model.py +32 -0
- careamics/config/transformations/normalize_model.py +31 -0
- careamics/config/transformations/transform_model.py +44 -0
- careamics/config/transformations/xy_random_rotate90_model.py +29 -0
- careamics/config/validators/__init__.py +5 -0
- careamics/config/validators/validator_utils.py +100 -0
- careamics/conftest.py +26 -0
- careamics/dataset/__init__.py +5 -0
- careamics/dataset/dataset_utils/__init__.py +19 -0
- careamics/dataset/dataset_utils/dataset_utils.py +100 -0
- careamics/dataset/dataset_utils/file_utils.py +140 -0
- careamics/dataset/dataset_utils/read_tiff.py +61 -0
- careamics/dataset/dataset_utils/read_utils.py +25 -0
- careamics/dataset/dataset_utils/read_zarr.py +56 -0
- careamics/dataset/in_memory_dataset.py +321 -131
- careamics/dataset/iterable_dataset.py +416 -0
- careamics/dataset/patching/__init__.py +8 -0
- careamics/dataset/patching/patch_transform.py +44 -0
- careamics/dataset/patching/patching.py +212 -0
- careamics/dataset/patching/random_patching.py +190 -0
- careamics/dataset/patching/sequential_patching.py +206 -0
- careamics/dataset/patching/tiled_patching.py +158 -0
- careamics/dataset/patching/validate_patch_dimension.py +60 -0
- careamics/dataset/zarr_dataset.py +149 -0
- careamics/lightning_datamodule.py +665 -0
- careamics/lightning_module.py +292 -0
- careamics/lightning_prediction_datamodule.py +390 -0
- careamics/lightning_prediction_loop.py +116 -0
- careamics/losses/__init__.py +4 -1
- careamics/losses/loss_factory.py +24 -13
- careamics/losses/losses.py +65 -5
- careamics/losses/noise_model_factory.py +40 -0
- careamics/losses/noise_models.py +524 -0
- careamics/model_io/__init__.py +8 -0
- careamics/model_io/bioimage/__init__.py +11 -0
- careamics/model_io/bioimage/_readme_factory.py +120 -0
- careamics/model_io/bioimage/bioimage_utils.py +48 -0
- careamics/model_io/bioimage/model_description.py +318 -0
- careamics/model_io/bmz_io.py +231 -0
- careamics/model_io/model_io_utils.py +80 -0
- careamics/models/__init__.py +4 -1
- careamics/models/activation.py +35 -0
- careamics/models/layers.py +244 -0
- careamics/models/model_factory.py +21 -202
- careamics/models/unet.py +46 -20
- careamics/prediction/__init__.py +1 -3
- careamics/prediction/stitch_prediction.py +73 -0
- careamics/transforms/__init__.py +41 -0
- careamics/transforms/n2v_manipulate.py +113 -0
- careamics/transforms/nd_flip.py +93 -0
- careamics/transforms/normalize.py +109 -0
- careamics/transforms/pixel_manipulation.py +383 -0
- careamics/transforms/struct_mask_parameters.py +18 -0
- careamics/transforms/tta.py +74 -0
- careamics/transforms/xy_random_rotate90.py +95 -0
- careamics/utils/__init__.py +10 -13
- careamics/utils/base_enum.py +32 -0
- careamics/utils/context.py +22 -2
- careamics/utils/metrics.py +0 -46
- careamics/utils/path_utils.py +24 -0
- careamics/utils/ram.py +13 -0
- careamics/utils/receptive_field.py +102 -0
- careamics/utils/running_stats.py +43 -0
- careamics/utils/torch_utils.py +89 -56
- careamics-0.1.0rc3.dist-info/METADATA +122 -0
- careamics-0.1.0rc3.dist-info/RECORD +109 -0
- {careamics-0.1.0rc1.dist-info → careamics-0.1.0rc3.dist-info}/WHEEL +1 -1
- careamics/bioimage/__init__.py +0 -15
- careamics/bioimage/docs/Noise2Void.md +0 -5
- careamics/bioimage/docs/__init__.py +0 -1
- careamics/bioimage/io.py +0 -271
- careamics/config/algorithm.py +0 -231
- careamics/config/config.py +0 -296
- careamics/config/config_filter.py +0 -44
- careamics/config/data.py +0 -194
- careamics/config/torch_optim.py +0 -118
- careamics/config/training.py +0 -534
- careamics/dataset/dataset_utils.py +0 -115
- careamics/dataset/patching.py +0 -493
- careamics/dataset/prepare_dataset.py +0 -174
- careamics/dataset/tiff_dataset.py +0 -211
- careamics/engine.py +0 -954
- careamics/manipulation/__init__.py +0 -4
- careamics/manipulation/pixel_manipulation.py +0 -158
- careamics/prediction/prediction_utils.py +0 -102
- careamics/utils/ascii_logo.txt +0 -9
- careamics/utils/augment.py +0 -65
- careamics/utils/normalization.py +0 -55
- careamics/utils/validators.py +0 -156
- careamics/utils/wandb.py +0 -121
- careamics-0.1.0rc1.dist-info/METADATA +0 -80
- careamics-0.1.0rc1.dist-info/RECORD +0 -46
- {careamics-0.1.0rc1.dist-info → careamics-0.1.0rc3.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,149 @@
|
|
|
1
|
+
# from itertools import islice
|
|
2
|
+
# from typing import Callable, Dict, List, Optional, Tuple, Union
|
|
3
|
+
|
|
4
|
+
# import numpy as np
|
|
5
|
+
# import torch
|
|
6
|
+
# import zarr
|
|
7
|
+
|
|
8
|
+
# from careamics.utils import RunningStats
|
|
9
|
+
# from careamics.utils.logging import get_logger
|
|
10
|
+
|
|
11
|
+
# from ..utils import normalize
|
|
12
|
+
# from .dataset_utils import read_zarr
|
|
13
|
+
# from .patching.patching import (
|
|
14
|
+
# generate_patches_unsupervised,
|
|
15
|
+
# )
|
|
16
|
+
|
|
17
|
+
# logger = get_logger(__name__)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
# class ZarrDataset(torch.utils.data.IterableDataset):
|
|
21
|
+
# """Dataset to extract patches from a zarr storage.
|
|
22
|
+
|
|
23
|
+
# Parameters
|
|
24
|
+
# ----------
|
|
25
|
+
# data_source : Union[zarr.Group, zarr.Array]
|
|
26
|
+
# Zarr storage.
|
|
27
|
+
# axes : str
|
|
28
|
+
# Description of axes in format STCZYX.
|
|
29
|
+
# patch_extraction_method : Union[ExtractionStrategies, None]
|
|
30
|
+
# Patch extraction strategy, as defined in extraction_strategy.
|
|
31
|
+
# patch_size : Optional[Union[List[int], Tuple[int]]], optional
|
|
32
|
+
# Size of the patches in each dimension, by default None.
|
|
33
|
+
# num_patches : Optional[int], optional
|
|
34
|
+
# Number of patches to extract, by default None.
|
|
35
|
+
# mean : Optional[float], optional
|
|
36
|
+
# Expected mean of the dataset, by default None.
|
|
37
|
+
# std : Optional[float], optional
|
|
38
|
+
# Expected standard deviation of the dataset, by default None.
|
|
39
|
+
# patch_transform : Optional[Callable], optional
|
|
40
|
+
# Patch transform callable, by default None.
|
|
41
|
+
# patch_transform_params : Optional[Dict], optional
|
|
42
|
+
# Patch transform parameters, by default None.
|
|
43
|
+
# running_stats_window_perc : float, optional
|
|
44
|
+
# Percentage of the dataset to use for calculating the initial mean and standard
|
|
45
|
+
# deviation, by default 0.01.
|
|
46
|
+
# mode : str, optional
|
|
47
|
+
# train/predict, controls running stats calculation.
|
|
48
|
+
# """
|
|
49
|
+
|
|
50
|
+
# def __init__(
|
|
51
|
+
# self,
|
|
52
|
+
# data_source: Union[zarr.Group, zarr.Array],
|
|
53
|
+
# axes: str,
|
|
54
|
+
# patch_extraction_method: Union[SupportedExtractionStrategy, None],
|
|
55
|
+
# patch_size: Optional[Union[List[int], Tuple[int]]] = None,
|
|
56
|
+
# num_patches: Optional[int] = None,
|
|
57
|
+
# mean: Optional[float] = None,
|
|
58
|
+
# std: Optional[float] = None,
|
|
59
|
+
# patch_transform: Optional[Callable] = None,
|
|
60
|
+
# patch_transform_params: Optional[Dict] = None,
|
|
61
|
+
# running_stats_window_perc: float = 0.01,
|
|
62
|
+
# mode: str = "train",
|
|
63
|
+
# ) -> None:
|
|
64
|
+
# self.data_source = data_source
|
|
65
|
+
# self.axes = axes
|
|
66
|
+
# self.patch_extraction_method = patch_extraction_method
|
|
67
|
+
# self.patch_size = patch_size
|
|
68
|
+
# self.num_patches = num_patches
|
|
69
|
+
# self.mean = mean
|
|
70
|
+
# self.std = std
|
|
71
|
+
# self.patch_transform = patch_transform
|
|
72
|
+
# self.patch_transform_params = patch_transform_params
|
|
73
|
+
# self.sample = read_zarr(self.data_source, self.axes)
|
|
74
|
+
# self.running_stats_window = int(
|
|
75
|
+
# np.prod(self.sample._cdata_shape) * running_stats_window_perc
|
|
76
|
+
# )
|
|
77
|
+
# self.mode = mode
|
|
78
|
+
# self.running_stats = RunningStats()
|
|
79
|
+
|
|
80
|
+
# self._calculate_initial_mean_std()
|
|
81
|
+
|
|
82
|
+
# def _calculate_initial_mean_std(self):
|
|
83
|
+
# """Calculate initial mean and std of the dataset."""
|
|
84
|
+
# if self.mean is None and self.std is None:
|
|
85
|
+
# idxs = np.random.randint(
|
|
86
|
+
# 0,
|
|
87
|
+
# np.prod(self.sample._cdata_shape),
|
|
88
|
+
# size=max(1, self.running_stats_window),
|
|
89
|
+
# )
|
|
90
|
+
# random_chunks = self.sample[idxs]
|
|
91
|
+
# self.running_stats.init(random_chunks.mean(), random_chunks.std())
|
|
92
|
+
|
|
93
|
+
# def _generate_patches(self):
|
|
94
|
+
# """Generate patches from the dataset and calculates running stats.
|
|
95
|
+
|
|
96
|
+
# Yields
|
|
97
|
+
# ------
|
|
98
|
+
# np.ndarray
|
|
99
|
+
# Patch.
|
|
100
|
+
# """
|
|
101
|
+
# patches = generate_patches_unsupervised(
|
|
102
|
+
# self.sample,
|
|
103
|
+
# self.patch_extraction_method,
|
|
104
|
+
# self.patch_size,
|
|
105
|
+
# )
|
|
106
|
+
|
|
107
|
+
# # num_patches = np.ceil(
|
|
108
|
+
# # np.prod(self.sample.chunks)
|
|
109
|
+
# # / (np.prod(self.patch_size) * self.running_stats_window)
|
|
110
|
+
# # ).astype(int)
|
|
111
|
+
|
|
112
|
+
# for idx, patch in enumerate(patches):
|
|
113
|
+
# if self.mode != "predict":
|
|
114
|
+
# self.running_stats.update(patch.mean())
|
|
115
|
+
# if isinstance(patch, tuple):
|
|
116
|
+
# normalized_patch = normalize(
|
|
117
|
+
# img=patch[0],
|
|
118
|
+
# mean=self.running_stats.avg_mean.value,
|
|
119
|
+
# std=self.running_stats.avg_std.value,
|
|
120
|
+
# )
|
|
121
|
+
# patch = (normalized_patch, *patch[1:])
|
|
122
|
+
# else:
|
|
123
|
+
# patch = normalize(
|
|
124
|
+
# img=patch,
|
|
125
|
+
# mean=self.running_stats.avg_mean.value,
|
|
126
|
+
# std=self.running_stats.avg_std.value,
|
|
127
|
+
# )
|
|
128
|
+
|
|
129
|
+
# if self.patch_transform is not None:
|
|
130
|
+
# assert self.patch_transform_params is not None
|
|
131
|
+
# patch = self.patch_transform(patch, **self.patch_transform_params)
|
|
132
|
+
# if self.num_patches is not None and idx >= self.num_patches:
|
|
133
|
+
# return
|
|
134
|
+
# else:
|
|
135
|
+
# yield patch
|
|
136
|
+
# self.mean = self.running_stats.avg_mean.value
|
|
137
|
+
# self.std = self.running_stats.avg_std.value
|
|
138
|
+
|
|
139
|
+
# def __iter__(self):
|
|
140
|
+
# """
|
|
141
|
+
# Iterate over data source and yield single patch.
|
|
142
|
+
|
|
143
|
+
# Yields
|
|
144
|
+
# ------
|
|
145
|
+
# np.ndarray
|
|
146
|
+
# """
|
|
147
|
+
# worker_info = torch.utils.data.get_worker_info()
|
|
148
|
+
# num_workers = worker_info.num_workers if worker_info is not None else 1
|
|
149
|
+
# yield from islice(self._generate_patches(), 0, None, num_workers)
|