careamics 0.0.8__py3-none-any.whl → 0.0.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of careamics might be problematic. Click here for more details.

Files changed (63) hide show
  1. careamics/__init__.py +0 -4
  2. careamics/careamist.py +0 -1
  3. careamics/config/__init__.py +1 -13
  4. careamics/config/algorithms/care_algorithm_model.py +84 -0
  5. careamics/config/algorithms/n2n_algorithm_model.py +85 -0
  6. careamics/config/algorithms/n2v_algorithm_model.py +269 -1
  7. careamics/config/configuration.py +21 -13
  8. careamics/config/configuration_factories.py +179 -187
  9. careamics/config/configuration_io.py +2 -2
  10. careamics/config/data/__init__.py +1 -4
  11. careamics/config/data/data_model.py +46 -62
  12. careamics/config/support/supported_transforms.py +1 -1
  13. careamics/config/transformations/__init__.py +0 -2
  14. careamics/config/transformations/n2v_manipulate_model.py +15 -0
  15. careamics/config/transformations/transform_unions.py +0 -13
  16. careamics/dataset/dataset_utils/iterate_over_files.py +2 -2
  17. careamics/dataset/in_memory_dataset.py +3 -10
  18. careamics/dataset/in_memory_pred_dataset.py +3 -5
  19. careamics/dataset/in_memory_tiled_pred_dataset.py +2 -2
  20. careamics/dataset/iterable_dataset.py +2 -2
  21. careamics/dataset/iterable_pred_dataset.py +3 -5
  22. careamics/dataset/iterable_tiled_pred_dataset.py +3 -3
  23. careamics/dataset_ng/dataset/__init__.py +3 -0
  24. careamics/dataset_ng/dataset/dataset.py +184 -0
  25. careamics/dataset_ng/demo_dataset.ipynb +271 -0
  26. careamics/dataset_ng/demo_patch_extractor.py +53 -0
  27. careamics/dataset_ng/demo_patch_extractor_factory.py +37 -0
  28. careamics/dataset_ng/patch_extractor/__init__.py +10 -0
  29. careamics/dataset_ng/patch_extractor/demo_custom_image_stack_loader.py +111 -0
  30. careamics/dataset_ng/patch_extractor/image_stack/__init__.py +9 -0
  31. careamics/dataset_ng/patch_extractor/image_stack/image_stack_protocol.py +53 -0
  32. careamics/dataset_ng/patch_extractor/image_stack/in_memory_image_stack.py +55 -0
  33. careamics/dataset_ng/patch_extractor/image_stack/zarr_image_stack.py +163 -0
  34. careamics/dataset_ng/patch_extractor/image_stack_loader.py +140 -0
  35. careamics/dataset_ng/patch_extractor/patch_extractor.py +29 -0
  36. careamics/dataset_ng/patch_extractor/patch_extractor_factory.py +208 -0
  37. careamics/dataset_ng/patching_strategies/__init__.py +11 -0
  38. careamics/dataset_ng/patching_strategies/patching_strategy_protocol.py +82 -0
  39. careamics/dataset_ng/patching_strategies/random_patching.py +338 -0
  40. careamics/dataset_ng/patching_strategies/sequential_patching.py +75 -0
  41. careamics/lightning/lightning_module.py +78 -27
  42. careamics/lightning/train_data_module.py +8 -39
  43. careamics/losses/fcn/losses.py +17 -10
  44. careamics/lvae_training/eval_utils.py +21 -8
  45. careamics/model_io/bioimage/bioimage_utils.py +5 -3
  46. careamics/model_io/bioimage/model_description.py +3 -3
  47. careamics/model_io/bmz_io.py +2 -2
  48. careamics/model_io/model_io_utils.py +2 -2
  49. careamics/transforms/__init__.py +2 -1
  50. careamics/transforms/compose.py +5 -15
  51. careamics/transforms/n2v_manipulate_torch.py +143 -0
  52. careamics/transforms/pixel_manipulation.py +1 -0
  53. careamics/transforms/pixel_manipulation_torch.py +418 -0
  54. careamics/utils/version.py +38 -0
  55. {careamics-0.0.8.dist-info → careamics-0.0.10.dist-info}/METADATA +7 -8
  56. {careamics-0.0.8.dist-info → careamics-0.0.10.dist-info}/RECORD +59 -42
  57. careamics/config/care_configuration.py +0 -100
  58. careamics/config/data/n2v_data_model.py +0 -193
  59. careamics/config/n2n_configuration.py +0 -101
  60. careamics/config/n2v_configuration.py +0 -266
  61. {careamics-0.0.8.dist-info → careamics-0.0.10.dist-info}/WHEEL +0 -0
  62. {careamics-0.0.8.dist-info → careamics-0.0.10.dist-info}/entry_points.txt +0 -0
  63. {careamics-0.0.8.dist-info → careamics-0.0.10.dist-info}/licenses/LICENSE +0 -0
@@ -1,39 +1,35 @@
1
- careamics/__init__.py,sha256=WF2JpQmC-MmuSB0L81XRo67NwaN_0qjyywcpRlbVJVE,569
2
- careamics/careamist.py,sha256=rakSaDSGRR0Pr0o1s8ejwIrjWknOQs4DgljukqfyWu0,37635
1
+ careamics/__init__.py,sha256=eHsl7oE8HTKmi7yLMj8Yyp0RbdtN3QDmQQb-4Sn9d8M,475
2
+ careamics/careamist.py,sha256=OhBkchHIVIvLyk57R5UXt2Euy4e_EDSbNp5NXJ53hS8,37588
3
3
  careamics/conftest.py,sha256=Od4WcaaP0UP-XUMrFr_oo4e6c2hi_RvNbuaRTopwlmI,911
4
4
  careamics/py.typed,sha256=esB4cHc6c07uVkGtqf8at7ttEnprwRxwk8obY8Qumq4,187
5
5
  careamics/cli/__init__.py,sha256=LbM9bVtU1dy-khmdiIDXwvKy2v8wPBCEUuWqV_8rosA,106
6
6
  careamics/cli/conf.py,sha256=oixGRZNylW-NTM_rkDtQkSRw8KUYwtmUC_hK5BEeLnA,13074
7
7
  careamics/cli/main.py,sha256=S4B3c1ZN-OQK0l2_W42CaW0KmF_Pe_y4pKgn_UOuyDg,6564
8
8
  careamics/cli/utils.py,sha256=q_dmG7lxg_FT62qX9fPilIWL1M8ibhLnnhUKqa4knPI,660
9
- careamics/config/__init__.py,sha256=c5FXtcQrtROHdLRl4cHpKo6V4_E4yr6HxYgNwqH9CHg,1917
9
+ careamics/config/__init__.py,sha256=K0N1GIqFCYhpPjalZG-Ygap6Ew_dDAC0uw5Npzhg9Lk,1524
10
10
  careamics/config/callback_model.py,sha256=EeYHqpMIPQwyNxLRzzX32Uncl5mZuB1bJO76RHpNymg,4555
11
- careamics/config/care_configuration.py,sha256=hSfNJ-dooHm4ujG6Q3Hawr8zDeYy1HNiebtM7gxsh7s,2714
12
- careamics/config/configuration.py,sha256=KmLeXHkFhQTrcru1erhfVf3tHvQdoi12ls_u254rtDw,11114
13
- careamics/config/configuration_factories.py,sha256=9civH9r1yfXcYeXJS61ft3Wsn8PoODNeqzGU45CTFCs,35460
14
- careamics/config/configuration_io.py,sha256=ks9R8lRCBY_m0sdy1k4ZWFPKEFSp7K9X47jCG4d0FY4,2353
11
+ careamics/config/configuration.py,sha256=D7i_g48P7d4H4_YSFyvDh9tRM7vLhM1mnU_XMeCC1HU,11193
12
+ careamics/config/configuration_factories.py,sha256=NhheOPkVhIF1cwz0FGNLQrxOByRQGrw-aZ_vGNIE8UE,34599
13
+ careamics/config/configuration_io.py,sha256=P-bP1kzkXxJWOEFP02dEZFNmpuLAPJfJtYhX4bFeaKk,2324
15
14
  careamics/config/inference_model.py,sha256=UE_-ZmCX6LFCbDBOwyGnvuAboF_JNX2m2LcF0WiwgCI,6961
16
15
  careamics/config/likelihood_model.py,sha256=VorUtc0_-xIWNxwVrd1kBba-003ICdVMtxpcDCxH4Io,2259
17
16
  careamics/config/loss_model.py,sha256=yYcUBS90Qyon1MxeaHiVP3dJHPJFC0GUvWKGcAb3IHk,2036
18
- careamics/config/n2n_configuration.py,sha256=QoHnEak0LiG6rBIXnmx61Chkz-Q0jr2Qt9I0NnmgZo4,2667
19
- careamics/config/n2v_configuration.py,sha256=5MagUFaVZ-9VGIiaKD-4RRkFpJen2imMoR3Lu07BD14,8489
20
17
  careamics/config/nm_model.py,sha256=5dAhDBLa4WPfKaNEK6ATNsSUwtlH8u8gYweEA4gZP6g,4758
21
18
  careamics/config/optimizer_models.py,sha256=OWpTydRBBR8wt_af1mZHNNwvL_RtnRFopAOdgjzLo30,5750
22
19
  careamics/config/tile_information.py,sha256=c-_xrVPOgcnjiEzQ-9A_GhNPamObkMANbeHaRP29R-4,2059
23
20
  careamics/config/training_model.py,sha256=67_ipo_-LxhT4-WqAs40Sg8PjU--my43Qn3BhjvlXxM,3212
24
21
  careamics/config/algorithms/__init__.py,sha256=on5D6zBO9Lu-Tf5To8xpF6owIFqdN7RSmZdpyXDOaNw,404
25
- careamics/config/algorithms/care_algorithm_model.py,sha256=-AEfzrA4HugYwMdDHqcc_i1H9kycXKS0YyRwT_MCCPo,951
26
- careamics/config/algorithms/n2n_algorithm_model.py,sha256=aWG6-YYB9T2e-QirxC-YijosO3QNA0rJRPIQZrorSi0,799
27
- careamics/config/algorithms/n2v_algorithm_model.py,sha256=b1M1ab9D8rhCG7RmhmaDi5rjHJjaQXebTdUEewJBnNg,709
22
+ careamics/config/algorithms/care_algorithm_model.py,sha256=ncf89BC2aFPFSquJ65-Y7NpwVbvgPE0BKH6Up1OHa1s,3238
23
+ careamics/config/algorithms/n2n_algorithm_model.py,sha256=OZbRis9jhRKWNK1-Z_aw2tfJRuGdlJiYEYlH4Hr1FRs,3066
24
+ careamics/config/algorithms/n2v_algorithm_model.py,sha256=ROeVsFVY2JDMtQEZWOZc75Muh1SnOxww7_Z2BzB9bZ8,9470
28
25
  careamics/config/algorithms/unet_algorithm_model.py,sha256=OaBFVlhsb9YhF3f2x1ImazvfnZ4_DPWvYWihRwurkeg,2587
29
26
  careamics/config/algorithms/vae_algorithm_model.py,sha256=1ZrShUGHA7zbjSiCQwhUSv7l7Hr7MbpcLOw8ucM27p8,4680
30
27
  careamics/config/architectures/__init__.py,sha256=lYUz56R7LDqVQWQDLkLgJL8VtOyxc_ege1r4bXGEBqA,220
31
28
  careamics/config/architectures/architecture_model.py,sha256=gXn4gdLrQP3bmTQxIhzkEHYlodPaIp6LI-kwZl23W-Y,911
32
29
  careamics/config/architectures/lvae_model.py,sha256=lwOiJYNUqPrZFl9SpPLYon77EiRbe2eI7pmpx45rO78,7606
33
30
  careamics/config/architectures/unet_model.py,sha256=HJJWf-wuYTv8KXMwikdjeB8htg1QOt0IyQbMuBt1LUI,3556
34
- careamics/config/data/__init__.py,sha256=ijFNSRKkKVF8fw6ym8kXq_wNhdwkWXxuNj2XKtD3KjE,218
35
- careamics/config/data/data_model.py,sha256=Z-sy6bJ_JYT5fzbVwLOH1PnjRkVY0YAmNG5OnQAd-SQ,12635
36
- careamics/config/data/n2v_data_model.py,sha256=-n5cncmcrd4-KUSmEk8rXAONMC7sfbYfGmshVNuySCU,5915
31
+ careamics/config/data/__init__.py,sha256=ijNcvrKQtKljmBuZ6DDxh86PMzpRob2l2JMqbPQLqPk,111
32
+ careamics/config/data/data_model.py,sha256=0YFN_NXL10f8h_Wr7ce6xsfOy86iZOPIkgLK-KIpeEU,12181
37
33
  careamics/config/support/__init__.py,sha256=ktWvxbTkRXnQPS_N84l9E2B5kTZVdd64SIjsJIQKB-k,1041
38
34
  careamics/config/support/supported_activations.py,sha256=CqOWoziIK5jZZXJO7G7cGg3TTid1POqv8FXqxjXxyME,535
39
35
  careamics/config/support/supported_algorithms.py,sha256=w6YzcIqGZ_bS85Tw1s7TEltBDXLt4SzgN3Tc6s19dGU,946
@@ -44,29 +40,29 @@ careamics/config/support/supported_losses.py,sha256=2x5sZuxRbWJzodoL35I1mMYUUDMz
44
40
  careamics/config/support/supported_optimizers.py,sha256=_2XmwzYENB6xpTedyWHUdWuGcDzdlfEAJjzm_qI3yRM,1392
45
41
  careamics/config/support/supported_pixel_manipulations.py,sha256=rFiktUlvoFU7s1NAKEMqsXOzLw5eaw9GtCKUznvq6xc,432
46
42
  careamics/config/support/supported_struct_axis.py,sha256=alZMA5Y-BpDymLPUEd1zqVY0xMkgl9Rv1d4ujED6sco,424
47
- careamics/config/support/supported_transforms.py,sha256=ODvmoTywvJWG_5-SJJZu-X1FNtKGhkNWQc-t26IFZWI,311
48
- careamics/config/transformations/__init__.py,sha256=jMTUX15n8ZF4Nc9gQp-qbXfhj-iEsEa65lzNbHwzyfY,631
49
- careamics/config/transformations/n2v_manipulate_model.py,sha256=Mdxc4J3vxe_dM2CIhmTwwGOIirQvrQXLoa2vRsTzoYI,1855
43
+ careamics/config/support/supported_transforms.py,sha256=ylTiS8fUFKFwfn85gh7kKF4Trb9Q4ENPKm-XDWCe-SY,311
44
+ careamics/config/transformations/__init__.py,sha256=6THr9oNI06umw_cchXW9sCeBLpFIcJfGC4hdq3WvUsI,577
45
+ careamics/config/transformations/n2v_manipulate_model.py,sha256=IJ_MeNbVzwnmvLhBjAVZPj5fxPzUXYGYYRe5PHcWIzQ,2428
50
46
  careamics/config/transformations/normalize_model.py,sha256=1Rkk6IkF-7ytGU6HSzP-TpOi4RRWiQJ6fOd8zammXcg,1936
51
47
  careamics/config/transformations/transform_model.py,sha256=6UVbXnxm-LLZOQQ-ZBwWwgmS_99DiBuERLfMxrta3-8,990
52
- careamics/config/transformations/transform_unions.py,sha256=uqlI8Nm827bKfMbDQLVhKFtT9e7TJ_zIYDBdHlOuQ1I,1137
48
+ careamics/config/transformations/transform_unions.py,sha256=lOwwX2LZPhfb0GR8B1jtJeuoDa9jIbOmh_W0rlebS1g,784
53
49
  careamics/config/transformations/xy_flip_model.py,sha256=zU-uZ1b1zNZWckbho3onN-B7BHKhN7jbgbNZyRQhv2s,1025
54
50
  careamics/config/transformations/xy_random_rotate90_model.py,sha256=6sYKmtCLvz0SV1qZgBSHUTH-CUjwvHnohq1HyPntbyE,894
55
51
  careamics/config/validators/__init__.py,sha256=zRrIse0O3ImwG97NphEupFVm3Ib9nEJhpNNrKGyDTps,423
56
52
  careamics/config/validators/model_validators.py,sha256=9OCdlf7rmndtTpmQ8COLaEjURYYmszic_RjY9mzS-k4,1941
57
53
  careamics/config/validators/validator_utils.py,sha256=NVkEOr5AQK4JXWNtmgeQgAaJOyieJNb5PHCjlcqNeew,2611
58
54
  careamics/dataset/__init__.py,sha256=31vop67zbtGesENEIig-LLw1q2lCydMFc_YWgfK2Yt4,547
59
- careamics/dataset/in_memory_dataset.py,sha256=MV_Vf4siIP-g7VKhxN4rU7MZXpaHKvfwr8ZXqk44Qhs,9958
60
- careamics/dataset/in_memory_pred_dataset.py,sha256=VvwW5D8TjgO_kR8eZinP-9qepSiI6ZsUN7FZ0Rvc8Bs,2161
61
- careamics/dataset/in_memory_tiled_pred_dataset.py,sha256=DANmlnlV1ysXKdwGvmJoOYKcjlgoMhnSGSDRpeK79ZA,3552
62
- careamics/dataset/iterable_dataset.py,sha256=pqtm-AWhDbuZTnXf0roAHWVxGPRTekAzVcJHLzaSyFU,9797
63
- careamics/dataset/iterable_pred_dataset.py,sha256=jee4b8bZOyvSS5qfIsb6Jkk1EV_MKEU2SyZ0m7p0p9k,3767
64
- careamics/dataset/iterable_tiled_pred_dataset.py,sha256=2j_kLMB6DfSKXPszZPYgsB08TVgcf1V5HY_kZVozrFM,4560
55
+ careamics/dataset/in_memory_dataset.py,sha256=Snbq7N8lYB06m018Yz0Mgx1PE3hHLh6__DeaArKPBvs,9665
56
+ careamics/dataset/in_memory_pred_dataset.py,sha256=0f_lS8APDmA7KPaZjF9NmD9kjB0tGwUefALu1MEiWB8,2141
57
+ careamics/dataset/in_memory_tiled_pred_dataset.py,sha256=fKg3_Mmx0hXlOjuWU6lhTVRsm02D21J-IOYmTIm4UsE,3561
58
+ careamics/dataset/iterable_dataset.py,sha256=QsrriN62jUQ7OPbGJoyBP9z9MkJV9kipp8maWb9aIfk,9783
59
+ careamics/dataset/iterable_pred_dataset.py,sha256=fgrVC-jdJf8fY8WnZe4QWTAkcKz6xKcw4Zlf5DpqB34,3750
60
+ careamics/dataset/iterable_tiled_pred_dataset.py,sha256=062FVJyj4RQhVdne6HreKgAeBdK9UFi--BXzK76tlBk,4594
65
61
  careamics/dataset/zarr_dataset.py,sha256=lojnK5bhiF1vyjuPtWXBrZ9sy5fT_rBvZJbbbnE-H_I,5665
66
62
  careamics/dataset/dataset_utils/__init__.py,sha256=MJ3xriL6R4ZtmzbvLsASUWLb85Hk5AdeRaYnHpNELJQ,507
67
63
  careamics/dataset/dataset_utils/dataset_utils.py,sha256=X83DzaOWmHdl4eOPac2IQJH3bPA43RVq0hPrFrzvIXQ,2630
68
64
  careamics/dataset/dataset_utils/file_utils.py,sha256=ru6AtQ9LCmo6raN1-GnJEN4UyP1PbmSdR9MEys3CuHo,4094
69
- careamics/dataset/dataset_utils/iterate_over_files.py,sha256=Jun35Qn9XevHOb_DixYBMHDAOykLmiwciA5Q2MzSUK8,2912
65
+ careamics/dataset/dataset_utils/iterate_over_files.py,sha256=zsNhIDMHUsPMbqwG7cfuSc26Svg5hERHcrXfftKaUoY,2898
70
66
  careamics/dataset/dataset_utils/running_stats.py,sha256=kWorioMH4S5uZj2cvUpjHB6cIUhMFa1XXwDQrrKIWdI,5752
71
67
  careamics/dataset/patching/__init__.py,sha256=7-s12oUAZNlMOwSkxSwbD7vojQINWYFzn_4qIJ87WBg,37
72
68
  careamics/dataset/patching/patching.py,sha256=deAxY34Iz-mguBlHQ-5EO4vRhPpR9I3LQ9onV1K_KqA,8858
@@ -77,6 +73,24 @@ careamics/dataset/tiling/__init__.py,sha256=aW_AMB9rzm0VmooUpjcyqv6sQP69RlPQMEdP
77
73
  careamics/dataset/tiling/collate_tiles.py,sha256=XK0BsDQE7XwIwmOoCHJIpVC3kqjSN6nDhrJ4POVeHS8,965
78
74
  careamics/dataset/tiling/lvae_tiled_patching.py,sha256=LYEEdjKuKaxIGFtOkhfpsE7hruBnIsD5HcW9aVH6WHI,13019
79
75
  careamics/dataset/tiling/tiled_patching.py,sha256=6vxsqlccUqIl4Ys92JWIPs0Kn95VzaHoAYMSGcp2dh8,5956
76
+ careamics/dataset_ng/demo_dataset.ipynb,sha256=gAWQnodNga5I6TrjsJspjeAGWCHiy23SFE5dPvKnETE,7130
77
+ careamics/dataset_ng/demo_patch_extractor.py,sha256=8iCAdvmfGdTJSR59yu0WOb_4r3HshRDDMrSiOpxoh5o,1510
78
+ careamics/dataset_ng/demo_patch_extractor_factory.py,sha256=4NRtb9hOL0bXz2f8PHOmjoltbMhoMl8UkFXIJTf8f5Y,981
79
+ careamics/dataset_ng/dataset/__init__.py,sha256=V8fSRAnabpo706OVLn6l9UtQCyp5Kc5CDwD1hMOjRAA,70
80
+ careamics/dataset_ng/dataset/dataset.py,sha256=g0-uBKxLHVUEuRtIQnKseiExhc_yb0-pfS4icTdOFkE,6406
81
+ careamics/dataset_ng/patch_extractor/__init__.py,sha256=X_UBCKi_5py0HfBAGiRMcTaqEu3EdJNVRI7eSG2wmlo,298
82
+ careamics/dataset_ng/patch_extractor/demo_custom_image_stack_loader.py,sha256=fv-izzYW5QyMQ2Oki2sDGzXLAt51uzxxphu-NdrQMOA,2884
83
+ careamics/dataset_ng/patch_extractor/image_stack_loader.py,sha256=0jSF-uM05kv-nqY3tB_bcbpC0Cb7qB1CBDDqkfTvjNs,4690
84
+ careamics/dataset_ng/patch_extractor/patch_extractor.py,sha256=CLexpuFQ_GiNWhzRSa3HoepbBj3lvCHu9ZU5PVfYWas,748
85
+ careamics/dataset_ng/patch_extractor/patch_extractor_factory.py,sha256=rIEuCMUhqslzd-7DHueOAQ13y8rgxjtvjlVX3dql0zk,6017
86
+ careamics/dataset_ng/patch_extractor/image_stack/__init__.py,sha256=xTGRg2W_CpxsTgyiG-cHSFuXh7hwA0fGrEPm61GrsBI,225
87
+ careamics/dataset_ng/patch_extractor/image_stack/image_stack_protocol.py,sha256=8QLpKEVqw3Edz-hL7lmKW_06x6DcbQo20feN8XkTnsY,1543
88
+ careamics/dataset_ng/patch_extractor/image_stack/in_memory_image_stack.py,sha256=FS9dEY5GXKEf0oeNe7Vb005HTby4thUvzTzWwCxe3Zk,1927
89
+ careamics/dataset_ng/patch_extractor/image_stack/zarr_image_stack.py,sha256=hmNOl6-FMUNQS65YMSa4eAz3Rp_2es98p1_UY6S8B50,6590
90
+ careamics/dataset_ng/patching_strategies/__init__.py,sha256=NLSjecNI_BOhkfznjogBEkq8BP74aixjpLhhRdkS9Bo,366
91
+ careamics/dataset_ng/patching_strategies/patching_strategy_protocol.py,sha256=gcbprNfRxG5gEBQzqZyJIhjCfwsC80PQvx0JQ-iunJg,2308
92
+ careamics/dataset_ng/patching_strategies/random_patching.py,sha256=AGlvn1NsjPJY5Ku8DEn92DaKkvAjX293coqMnwi7_UY,13410
93
+ careamics/dataset_ng/patching_strategies/sequential_patching.py,sha256=fngTPpY6D93guFwSdHuCakDebin7eEtK7Y2OFmJ1IG8,2485
80
94
  careamics/file_io/__init__.py,sha256=vgMI77X820VOWywAEW5W20FXfmbqBzx4V63D3V3_HhI,334
81
95
  careamics/file_io/read/__init__.py,sha256=wf8O_o80ghrlWQ-RGEuSqcc2LU55P1B-oxTacDToygo,259
82
96
  careamics/file_io/read/get_func.py,sha256=O_pdymjh2mc-JZ1je3ZnPAcsHc7Je3a005AMgAa0xuw,1388
@@ -86,9 +100,9 @@ careamics/file_io/write/__init__.py,sha256=CUt33cRjG9hm18L9a7XqaUKWQ_3xiuQ9ztz4A
86
100
  careamics/file_io/write/get_func.py,sha256=hyGHe1RX-lfa9QFAnwRCz_gS0NRiRnXEtg4Bdeh2Esc,1627
87
101
  careamics/file_io/write/tiff.py,sha256=tBGIgl-I1sMyBivgx-dOTBykXBODkgwPH8MT3_4KAE8,1050
88
102
  careamics/lightning/__init__.py,sha256=ATCVAGnX08Ik4TxbIv0-cXb52UinR42JgvZh_GIMSpc,588
89
- careamics/lightning/lightning_module.py,sha256=3nzRcjv7dlWmWjoWmGaBV7D6d698xMp3XO7fpIrZhwA,22630
103
+ careamics/lightning/lightning_module.py,sha256=_gMGKGSHOEoh00jblCX5egMI91Z0UJpIjEQ74AaVGss,24177
90
104
  careamics/lightning/predict_data_module.py,sha256=JNwujK6QwObSx6P25ghpGl2f2gGT3KVgYMTlonZzH20,12745
91
- careamics/lightning/train_data_module.py,sha256=LeTyjNtAJw8nNiw2k6Ifuw0fAgppyZyRxyEGbDq30Fo,28309
105
+ careamics/lightning/train_data_module.py,sha256=HyXeDZ_u3JLzyh1tqRBIH93spMj0iQhAP4nmHPEI4aM,26554
92
106
  careamics/lightning/callbacks/__init__.py,sha256=eA5ltzYNzuO0uMEr1jG4wP01b0s29s5I03WGJ290qkw,312
93
107
  careamics/lightning/callbacks/hyperparameters_callback.py,sha256=u45knOZHwoVHz6yYfrnERQuozT_SfZ1OrKP0QjeU4EM,1495
94
108
  careamics/lightning/callbacks/progress_bar_callback.py,sha256=w-j_nk2ysyc4THKfwWbpkiKGeqNUpLGtm-8dYBgla2c,2443
@@ -100,13 +114,13 @@ careamics/lightning/callbacks/prediction_writer_callback/write_strategy_factory.
100
114
  careamics/losses/__init__.py,sha256=nSWbkBcFhkyUkIT2wVcULqpieyY2Oro39NXZTtfQpXo,351
101
115
  careamics/losses/loss_factory.py,sha256=oPacrkwiabsmiW_r--IxX-XPRbzezZUvOuWKbUw5LiI,1518
102
116
  careamics/losses/fcn/__init__.py,sha256=kf92MKFGHr6upiztZVgWwtGPf734DZyub92Rn8uEq8o,18
103
- careamics/losses/fcn/losses.py,sha256=NdOz29hzJ7D26p13q-g0NWoYwNauIWrP2xWww6YPbB8,2360
117
+ careamics/losses/fcn/losses.py,sha256=KuoXqL24QbTxDdRmQJbERC95x0f3u4T0S77dqBZRarQ,2513
104
118
  careamics/losses/lvae/__init__.py,sha256=0FNtMLHrOMfagtWkaBdz1NTjyf2y0QLgysxJv5jq5uw,19
105
119
  careamics/losses/lvae/loss_utils.py,sha256=QxzA2N1TglR4H0X0uyTWWytDagE1lA9IB_TK1lms3ao,2720
106
120
  careamics/losses/lvae/losses.py,sha256=wHT1dx04BZ_OI-_S7cFQ5hFmMetm6FSnuZfwZBBtIpY,17977
107
121
  careamics/lvae_training/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
108
122
  careamics/lvae_training/calibration.py,sha256=xHbiLcY2csYos3s7rRSqp7P7G-9wzULcSo1JfVzfIjE,7239
109
- careamics/lvae_training/eval_utils.py,sha256=2Ij1L1enIwjox16cPrhGzkcVQooBzN_mcC9ma94mJrE,30180
123
+ careamics/lvae_training/eval_utils.py,sha256=FxZmmT6vMRluLYnnCEQtLcz5Q45OAqmxXbQo6KPbQEk,30372
110
124
  careamics/lvae_training/get_config.py,sha256=dwVfaQS7nzjQss0E1gGLUpQpjPcOWwLgIhbu3Z0I1rg,3068
111
125
  careamics/lvae_training/lightning_module.py,sha256=ryr7iHqCMzCl5esi6_gEcnKFDQkMrw0EXK9Zfgv1Nek,27186
112
126
  careamics/lvae_training/metrics.py,sha256=KTDAKhe3vh-YxzGibjtkIG2nnUyujbnwqX4xGwaRXwE,6718
@@ -124,13 +138,13 @@ careamics/lvae_training/dataset/utils/empty_patch_fetcher.py,sha256=OFjeqhZ6vFUL
124
138
  careamics/lvae_training/dataset/utils/index_manager.py,sha256=Gt1I-7lBaQDBgqguOmofAFDdAsJQfz7ktvq4_I80F9c,10084
125
139
  careamics/lvae_training/dataset/utils/index_switcher.py,sha256=ZoMi8LsaIkm8MFqIFaxN4oQGyzCcwOlCom8SYNus15E,6716
126
140
  careamics/model_io/__init__.py,sha256=khMIkk107LL5JGze0OVfl5Lfi14R3_e4W21tW0iJ1kE,155
127
- careamics/model_io/bmz_io.py,sha256=0fL0cz_80nsu_Jgk-ImXKTNbn_WSdrXB9flvLm2g3Is,7792
128
- careamics/model_io/model_io_utils.py,sha256=HCSoNvaOo55kI7teZleN57riqNK2fLq77zMadBKXCyc,2777
141
+ careamics/model_io/bmz_io.py,sha256=XQvRUxM4keEiYlnWNTZUxeLgLl3_c-_drOZcH4mjEDo,7801
142
+ careamics/model_io/model_io_utils.py,sha256=ZSBO1MEFBh--GwUqmK1iW7Vf57MgdQtxmucNBdXkHBw,2748
129
143
  careamics/model_io/bioimage/__init__.py,sha256=dKm-UluVwa_7EHQB0ukx-Qk8JVWtuT-OUinY8hE9EIw,298
130
144
  careamics/model_io/bioimage/_readme_factory.py,sha256=sRfHbuwhfYmpwsG0keXFCSK3qCS4VI4GQhX6OhSKLjY,3440
131
- careamics/model_io/bioimage/bioimage_utils.py,sha256=YVr75SDfafOiuYGonPbcsO-xVS0wI1WkmWQQZx6DXYQ,1246
145
+ careamics/model_io/bioimage/bioimage_utils.py,sha256=aX0rZny3OPaZZGGE-5Y3qXgnOAhyAQOtN15Ri0EVMTk,1297
132
146
  careamics/model_io/bioimage/cover_factory.py,sha256=8URrpEfJvdHBJeSrh5H2IQHSUybsTyAOR3_A-YYAAlw,4583
133
- careamics/model_io/bioimage/model_description.py,sha256=HwjWT77nIt6LkLvIBRxwgPOsL0ffrCMtDUjim39qgqE,10071
147
+ careamics/model_io/bioimage/model_description.py,sha256=caC9O0xyXEIMyCHW5j37HMX4IhMtNk0QWCF05VdPCQE,10050
134
148
  careamics/models/__init__.py,sha256=Xui2BLJd1I2r_E3Sj24fJALFTi2FGtfNscUWj_0c9Hk,93
135
149
  careamics/models/activation.py,sha256=nu3sDgd7Lsyw8rvmUwxNN-7SM09cEMfxZ9DRDzdSKns,1049
136
150
  careamics/models/layers.py,sha256=tpsxbolRWYycZGxS3hKlDRtMf6HpNdZs98uwx5K8lls,13757
@@ -148,11 +162,13 @@ careamics/prediction_utils/lvae_prediction.py,sha256=ZwPFCSeUGsULIMoMQWRYKHfLFaD
148
162
  careamics/prediction_utils/lvae_tiling_manager.py,sha256=SI-JaJvLrKWBSHdm-FjcqWdbhlcflTRiKxYF7CSGzvA,13736
149
163
  careamics/prediction_utils/prediction_outputs.py,sha256=fw-bJ2szWJD7BgZlECmxy5sgeXGFJl4T8cRNzLR1aUQ,4069
150
164
  careamics/prediction_utils/stitch_prediction.py,sha256=8YRW2rea-is5tYI0Q1bw3bpX7VMFmbpxSP_y6x9Yfug,3893
151
- careamics/transforms/__init__.py,sha256=WtgpSFL_CJwpa47XzqS7bVXHPJ4qW0TamEymy_kgWQQ,483
152
- careamics/transforms/compose.py,sha256=ZSVwKg3LT2PrwtSBKtkb6AHsVSSlZIdv9wTYl4To1s4,5682
165
+ careamics/transforms/__init__.py,sha256=n7D3SbcVSRaMOl5F5Rozo2_lY8dn0DH28ywYIdbXxBo,561
166
+ careamics/transforms/compose.py,sha256=QMCuqp0C5mJ5N6xh3ISKY7HfjfKp6NqDwQiKXoxEjug,5326
153
167
  careamics/transforms/n2v_manipulate.py,sha256=t9rtMbYV6P1IVp4yzuJfq5-giWyfGrxL8ZhzP29Pp8k,5686
168
+ careamics/transforms/n2v_manipulate_torch.py,sha256=Lxi94cbE0aEZ1fFD0m4T7VDrDSt3cbHPdYISa8XYemw,4830
154
169
  careamics/transforms/normalize.py,sha256=fxs813ydCWrIzrxFzkbk1gW8OGSr0esQSrNUFSJuGL0,7715
155
- careamics/transforms/pixel_manipulation.py,sha256=38NsxY8ARvz7GSNDKx5g67Hv5qciBzadiELAg5OcUSU,13355
170
+ careamics/transforms/pixel_manipulation.py,sha256=WSx2sqcZ2wUkm6qPi4pG3Ai0sE8ONPOpYLSvkW5M3bY,13393
171
+ careamics/transforms/pixel_manipulation_torch.py,sha256=W2sTQrM00TwmcoFf1bcYapAwE66pKIVVeAtBIW6ovK4,14343
156
172
  careamics/transforms/struct_mask_parameters.py,sha256=jE29Li9sx3olaRnqYfJsSlKi2t0WQzJmCm9aCbIQEsA,421
157
173
  careamics/transforms/transform.py,sha256=cEqc4ci8na70i-HIGYC7udRfVa8D_8OjdRVrr3txLvQ,464
158
174
  careamics/transforms/tta.py,sha256=78S7Df9rLHmEVSQSI1qDcRrRJGauyG3oaIrXkckCkmw,2335
@@ -171,8 +187,9 @@ careamics/utils/ram.py,sha256=tksyn8dVX_iJXmrDZDGub32hFZWIaNxnMheO5G1p43I,244
171
187
  careamics/utils/receptive_field.py,sha256=Y2h4c8S6glX3qcx5KHDmO17Kkuyey9voxfoXyqcAfiM,3296
172
188
  careamics/utils/serializers.py,sha256=mILUhz75IMpGKnEzcYu9hlOPG8YIiIW09fk6eZM7Y8k,1427
173
189
  careamics/utils/torch_utils.py,sha256=_Cf3HdlIRl5hxfpUg9aofCSlcW7GSsIJxsbSORXko0U,3010
174
- careamics-0.0.8.dist-info/METADATA,sha256=jBK6zEhnACTuo9igH-PT-5sphN-tj2-b20j1E2zE7_w,3967
175
- careamics-0.0.8.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
176
- careamics-0.0.8.dist-info/entry_points.txt,sha256=2fSNVXJWDJgFLATVj7MkjFNvpl53amG8tUzC3jf7G1s,53
177
- careamics-0.0.8.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
178
- careamics-0.0.8.dist-info/RECORD,,
190
+ careamics/utils/version.py,sha256=WKtMlrNmXymJqzMfguBX558D6tb6aoAZfbABRh_ViIs,1142
191
+ careamics-0.0.10.dist-info/METADATA,sha256=-OAGJepthRIcvZVDlc7uhgtipB5vOFb_8p5FTA09Zos,3917
192
+ careamics-0.0.10.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
193
+ careamics-0.0.10.dist-info/entry_points.txt,sha256=2fSNVXJWDJgFLATVj7MkjFNvpl53amG8tUzC3jf7G1s,53
194
+ careamics-0.0.10.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
195
+ careamics-0.0.10.dist-info/RECORD,,
@@ -1,100 +0,0 @@
1
- """CARE Pydantic configuration."""
2
-
3
- from bioimageio.spec.generic.v0_3 import CiteEntry
4
-
5
- from careamics.config.algorithms.care_algorithm_model import CAREAlgorithm
6
- from careamics.config.configuration import Configuration
7
- from careamics.config.data import DataConfig
8
-
9
- CARE = "CARE"
10
-
11
- CARE_DESCRIPTION = (
12
- "Content-aware image restoration (CARE) is a deep-learning-based "
13
- "algorithm that uses a U-Net architecture to restore images. CARE "
14
- "is a supervised algorithm that requires pairs of noisy and "
15
- "clean images to train the network. The algorithm learns to "
16
- "predict the clean image from the noisy image. CARE is "
17
- "particularly useful for denoising images acquired in low-light "
18
- "conditions, such as fluorescence microscopy images."
19
- )
20
- CARE_REF = CiteEntry(
21
- text='Weigert, Martin, et al. "Content-aware image restoration: pushing the '
22
- 'limits of fluorescence microscopy." Nature methods 15.12 (2018): 1090-1097.',
23
- doi="10.1038/s41592-018-0216-7",
24
- )
25
-
26
-
27
- class CAREConfiguration(Configuration):
28
- """CARE configuration."""
29
-
30
- algorithm_config: CAREAlgorithm
31
- """Algorithm configuration."""
32
-
33
- data_config: DataConfig
34
- """Data configuration."""
35
-
36
- def get_algorithm_friendly_name(self) -> str:
37
- """
38
- Get the algorithm friendly name.
39
-
40
- Returns
41
- -------
42
- str
43
- Friendly name of the algorithm.
44
- """
45
- return CARE
46
-
47
- def get_algorithm_keywords(self) -> list[str]:
48
- """
49
- Get algorithm keywords.
50
-
51
- Returns
52
- -------
53
- list[str]
54
- List of keywords.
55
- """
56
- return [
57
- "restoration",
58
- "UNet",
59
- "3D" if "Z" in self.data_config.axes else "2D",
60
- "CAREamics",
61
- "pytorch",
62
- CARE,
63
- ]
64
-
65
- def get_algorithm_references(self) -> str:
66
- """
67
- Get the algorithm references.
68
-
69
- This is used to generate the README of the BioImage Model Zoo export.
70
-
71
- Returns
72
- -------
73
- str
74
- Algorithm references.
75
- """
76
- return CARE_REF.text + " doi: " + CARE_REF.doi
77
-
78
- def get_algorithm_citations(self) -> list[CiteEntry]:
79
- """
80
- Return a list of citation entries of the current algorithm.
81
-
82
- This is used to generate the model description for the BioImage Model Zoo.
83
-
84
- Returns
85
- -------
86
- List[CiteEntry]
87
- List of citation entries.
88
- """
89
- return [CARE_REF]
90
-
91
- def get_algorithm_description(self) -> str:
92
- """
93
- Get the algorithm description.
94
-
95
- Returns
96
- -------
97
- str
98
- Algorithm description.
99
- """
100
- return CARE_DESCRIPTION
@@ -1,193 +0,0 @@
1
- """Noise2Void specific data configuration model."""
2
-
3
- from collections.abc import Sequence
4
- from typing import Literal
5
-
6
- from pydantic import Field, field_validator
7
-
8
- from careamics.config.data.data_model import GeneralDataConfig
9
- from careamics.config.support import SupportedTransform
10
- from careamics.config.transformations import (
11
- N2V_TRANSFORMS_UNION,
12
- N2VManipulateModel,
13
- XYFlipModel,
14
- XYRandomRotate90Model,
15
- )
16
-
17
-
18
- class N2VDataConfig(GeneralDataConfig):
19
- """N2V specific data configuration model."""
20
-
21
- transforms: Sequence[N2V_TRANSFORMS_UNION] = Field(
22
- default=[XYFlipModel(), XYRandomRotate90Model(), N2VManipulateModel()],
23
- validate_default=True,
24
- )
25
- """N2V compatible transforms. N2VManpulate should be the last transform."""
26
-
27
- @field_validator("transforms")
28
- @classmethod
29
- def validate_transforms(
30
- cls, transforms: list[N2V_TRANSFORMS_UNION]
31
- ) -> list[N2V_TRANSFORMS_UNION]:
32
- """
33
- Validate N2VManipulate transform position in the transform list.
34
-
35
- Parameters
36
- ----------
37
- transforms : list of transforms compatible with N2V
38
- Transforms.
39
-
40
- Returns
41
- -------
42
- list of transforms
43
- Validated transforms.
44
-
45
- Raises
46
- ------
47
- ValueError
48
- If multiple instances of N2VManipulate are found or if it is not the last
49
- transform.
50
- """
51
- transform_list = [t.name for t in transforms]
52
-
53
- if SupportedTransform.N2V_MANIPULATE in transform_list:
54
- # multiple N2V_MANIPULATE
55
- if transform_list.count(SupportedTransform.N2V_MANIPULATE.value) > 1:
56
- raise ValueError(
57
- f"Multiple instances of "
58
- f"{SupportedTransform.N2V_MANIPULATE} transforms "
59
- f"are not allowed."
60
- )
61
-
62
- # N2V_MANIPULATE not the last transform
63
- elif transform_list[-1] != SupportedTransform.N2V_MANIPULATE:
64
- raise ValueError(
65
- f"{SupportedTransform.N2V_MANIPULATE} transform "
66
- f"should be the last transform."
67
- )
68
-
69
- else:
70
- raise ValueError(
71
- f"{SupportedTransform.N2V_MANIPULATE} transform "
72
- f"is required for N2V training."
73
- )
74
-
75
- return transforms
76
-
77
- def set_n2v2(self, use_n2v2: bool) -> None:
78
- """
79
- Set the N2V transform to the N2V2 version.
80
-
81
- Parameters
82
- ----------
83
- use_n2v2 : bool
84
- Whether to use N2V2.
85
-
86
- Raises
87
- ------
88
- ValueError
89
- If the N2V pixel manipulate transform is not found in the transforms.
90
- """
91
- if use_n2v2:
92
- self.set_masking_strategy("median")
93
- else:
94
- self.set_masking_strategy("uniform")
95
-
96
- def set_masking_strategy(self, strategy: Literal["uniform", "median"]) -> None:
97
- """
98
- Set masking strategy.
99
-
100
- Parameters
101
- ----------
102
- strategy : "uniform" or "median"
103
- Strategy to use for N2V2.
104
-
105
- Raises
106
- ------
107
- ValueError
108
- If the N2V pixel manipulate transform is not found in the transforms.
109
- """
110
- found_n2v = False
111
-
112
- for transform in self.transforms:
113
- if transform.name == SupportedTransform.N2V_MANIPULATE.value:
114
- transform.strategy = strategy
115
- found_n2v = True
116
-
117
- if not found_n2v:
118
- transforms = [t.name for t in self.transforms]
119
- raise ValueError(
120
- f"N2V_Manipulate transform not found in the transforms list "
121
- f"({transforms})."
122
- )
123
-
124
- def get_masking_strategy(self) -> Literal["uniform", "median"]:
125
- """
126
- Get N2V2 strategy.
127
-
128
- Returns
129
- -------
130
- "uniform" or "median"
131
- Strategy used for N2V2.
132
- """
133
- for transform in self.transforms:
134
- if transform.name == SupportedTransform.N2V_MANIPULATE.value:
135
- return transform.strategy
136
-
137
- raise ValueError(
138
- f"{SupportedTransform.N2V_MANIPULATE} transform "
139
- f"is required for N2V training."
140
- )
141
-
142
- def set_structN2V_mask(
143
- self, mask_axis: Literal["horizontal", "vertical", "none"], mask_span: int
144
- ) -> None:
145
- """
146
- Set structN2V mask parameters.
147
-
148
- Setting `mask_axis` to `none` will disable structN2V.
149
-
150
- Parameters
151
- ----------
152
- mask_axis : Literal["horizontal", "vertical", "none"]
153
- Axis along which to apply the mask. `none` will disable structN2V.
154
- mask_span : int
155
- Total span of the mask in pixels.
156
-
157
- Raises
158
- ------
159
- ValueError
160
- If the N2V pixel manipulate transform is not found in the transforms.
161
- """
162
- found_n2v = False
163
-
164
- for transform in self.transforms:
165
- if transform.name == SupportedTransform.N2V_MANIPULATE.value:
166
- transform.struct_mask_axis = mask_axis
167
- transform.struct_mask_span = mask_span
168
- found_n2v = True
169
-
170
- if not found_n2v:
171
- transforms = [t.name for t in self.transforms]
172
- raise ValueError(
173
- f"N2V pixel manipulate transform not found in the transforms "
174
- f"({transforms})."
175
- )
176
-
177
- def is_using_struct_n2v(self) -> bool:
178
- """
179
- Check if structN2V is enabled.
180
-
181
- Returns
182
- -------
183
- bool
184
- Whether structN2V is enabled or not.
185
- """
186
- for transform in self.transforms:
187
- if transform.name == SupportedTransform.N2V_MANIPULATE.value:
188
- return transform.struct_mask_axis != "none"
189
-
190
- raise ValueError(
191
- f"N2V pixel manipulate transform not found in the transforms "
192
- f"({self.transforms})."
193
- )
@@ -1,101 +0,0 @@
1
- """N2N configuration."""
2
-
3
- from bioimageio.spec.generic.v0_3 import CiteEntry
4
-
5
- from careamics.config.algorithms import N2NAlgorithm
6
- from careamics.config.configuration import Configuration
7
- from careamics.config.data import DataConfig
8
-
9
- N2N = "Noise2Noise"
10
-
11
- N2N_DESCRIPTION = (
12
- "Noise2Noise is a deep-learning-based algorithm that uses a U-Net "
13
- "architecture to restore images. Noise2Noise is a self-supervised "
14
- "algorithm that requires only noisy images to train the network. "
15
- "The algorithm learns to predict the clean image from the noisy "
16
- "image. Noise2Noise is particularly useful when clean images are "
17
- "not available for training."
18
- )
19
-
20
- N2N_REF = CiteEntry(
21
- text="Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., "
22
- 'Aittala, M. and Aila, T., 2018. "Noise2Noise: Learning image restoration '
23
- 'without clean data". arXiv preprint arXiv:1803.04189.',
24
- doi="10.48550/arXiv.1803.04189",
25
- )
26
-
27
-
28
- class N2NConfiguration(Configuration):
29
- """Noise2Noise configuration."""
30
-
31
- algorithm_config: N2NAlgorithm
32
- """Algorithm configuration."""
33
-
34
- data_config: DataConfig
35
- """Data configuration."""
36
-
37
- def get_algorithm_friendly_name(self) -> str:
38
- """
39
- Get the algorithm friendly name.
40
-
41
- Returns
42
- -------
43
- str
44
- Friendly name of the algorithm.
45
- """
46
- return N2N
47
-
48
- def get_algorithm_keywords(self) -> list[str]:
49
- """
50
- Get algorithm keywords.
51
-
52
- Returns
53
- -------
54
- list[str]
55
- List of keywords.
56
- """
57
- return [
58
- "restoration",
59
- "UNet",
60
- "3D" if "Z" in self.data_config.axes else "2D",
61
- "CAREamics",
62
- "pytorch",
63
- N2N,
64
- ]
65
-
66
- def get_algorithm_references(self) -> str:
67
- """
68
- Get the algorithm references.
69
-
70
- This is used to generate the README of the BioImage Model Zoo export.
71
-
72
- Returns
73
- -------
74
- str
75
- Algorithm references.
76
- """
77
- return N2N_REF.text + " doi: " + N2N_REF.doi
78
-
79
- def get_algorithm_citations(self) -> list[CiteEntry]:
80
- """
81
- Return a list of citation entries of the current algorithm.
82
-
83
- This is used to generate the model description for the BioImage Model Zoo.
84
-
85
- Returns
86
- -------
87
- List[CiteEntry]
88
- List of citation entries.
89
- """
90
- return [N2N_REF]
91
-
92
- def get_algorithm_description(self) -> str:
93
- """
94
- Get the algorithm description.
95
-
96
- Returns
97
- -------
98
- str
99
- Algorithm description.
100
- """
101
- return N2N_DESCRIPTION