careamics 0.0.6__py3-none-any.whl → 0.0.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of careamics might be problematic. Click here for more details.

@@ -193,6 +193,7 @@ class NormalStochasticBlock(nn.Module):
193
193
  z: torch.Tensor
194
194
  The sampled latent tensor.
195
195
  """
196
+ kl_samplewise_restricted = None
196
197
  if mode_pred is False: # if not predicting
197
198
  if analytical_kl:
198
199
  kl_elementwise = kl_divergence(q, p)
@@ -14,6 +14,31 @@ from torchmetrics.image import MultiScaleStructuralSimilarityIndexMeasure
14
14
  # TODO: does this add additional dependency?
15
15
 
16
16
 
17
+ # TODO revisit metric for notebook
18
+ def avg_range_invariant_psnr(
19
+ pred: np.ndarray,
20
+ target: np.ndarray,
21
+ ) -> float:
22
+ """Compute the average range-invariant PSNR.
23
+
24
+ Parameters
25
+ ----------
26
+ pred : np.ndarray
27
+ Predicted images.
28
+ target : np.ndarray
29
+ Target images.
30
+
31
+ Returns
32
+ -------
33
+ float
34
+ Average range-invariant PSNR value.
35
+ """
36
+ psnr_arr = []
37
+ for i in range(pred.shape[0]):
38
+ psnr_arr.append(scale_invariant_psnr(pred[i], target[i]))
39
+ return np.mean(psnr_arr)
40
+
41
+
17
42
  def psnr(gt: np.ndarray, pred: np.ndarray, data_range: float) -> float:
18
43
  """
19
44
  Peak Signal to Noise Ratio.
@@ -0,0 +1,78 @@
1
+ """Plotting utilities."""
2
+
3
+ from typing import Optional
4
+
5
+ import matplotlib.pyplot as plt
6
+ import numpy as np
7
+ import torch
8
+ from numpy.typing import NDArray
9
+
10
+ from careamics.models.lvae.noise_models import GaussianMixtureNoiseModel
11
+
12
+
13
+ def plot_noise_model_probability_distribution(
14
+ noise_model: GaussianMixtureNoiseModel,
15
+ signalBinIndex: int,
16
+ histogram: NDArray,
17
+ channel: Optional[str] = None,
18
+ number_of_bins: int = 100,
19
+ ) -> None:
20
+ """Plot probability distribution P(x|s) for a certain ground truth signal.
21
+
22
+ Predictions from both Histogram and GMM-based
23
+ Noise models are displayed for comparison.
24
+
25
+ Parameters
26
+ ----------
27
+ noise_model : GaussianMixtureNoiseModel
28
+ Trained GaussianMixtureNoiseModel.
29
+ signalBinIndex : int
30
+ Index of signal bin. Values go from 0 to number of bins (`n_bin`).
31
+ histogram : NDArray
32
+ Histogram based noise model.
33
+ channel : Optional[str], optional
34
+ Channel name used for plotting. Default is None.
35
+ number_of_bins : int, optional
36
+ Number of bins in the resulting histogram. Default is 100.
37
+ """
38
+ min_signal = noise_model.min_signal.item()
39
+ max_signal = noise_model.max_signal.item()
40
+ bin_size = (max_signal - min_signal) / number_of_bins
41
+
42
+ query_signal_normalized = signalBinIndex / number_of_bins
43
+ query_signal = query_signal_normalized * (max_signal - min_signal) + min_signal
44
+ query_signal += bin_size / 2
45
+ query_signal = torch.tensor(query_signal)
46
+
47
+ query_observations = torch.arange(min_signal, max_signal, bin_size)
48
+ query_observations += bin_size / 2
49
+
50
+ likelihoods = noise_model.likelihood(
51
+ observations=query_observations, signals=query_signal
52
+ ).numpy()
53
+
54
+ plt.figure(figsize=(12, 5))
55
+ if channel:
56
+ plt.suptitle(f"Noise model for channel {channel}")
57
+ else:
58
+ plt.suptitle("Noise model")
59
+
60
+ plt.subplot(1, 2, 1)
61
+ plt.xlabel("Observation Bin")
62
+ plt.ylabel("Signal Bin")
63
+ plt.imshow(histogram**0.25, cmap="gray")
64
+ plt.axhline(y=signalBinIndex + 0.5, linewidth=5, color="blue", alpha=0.5)
65
+
66
+ plt.subplot(1, 2, 2)
67
+ plt.plot(
68
+ query_observations,
69
+ likelihoods,
70
+ label="GMM : " + " signal = " + str(np.round(query_signal, 2)),
71
+ marker=".",
72
+ color="red",
73
+ linewidth=2,
74
+ )
75
+ plt.xlabel("Observations (x) for signal s = " + str(query_signal))
76
+ plt.ylabel("Probability Density")
77
+ plt.title("Probability Distribution P(x|s) at signal =" + str(query_signal))
78
+ plt.legend()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: careamics
3
- Version: 0.0.6
3
+ Version: 0.0.7
4
4
  Summary: Toolbox for running N2V and friends.
5
5
  Project-URL: homepage, https://careamics.github.io/
6
6
  Project-URL: repository, https://github.com/CAREamics/careamics
@@ -17,16 +17,18 @@ Classifier: Programming Language :: Python :: 3.12
17
17
  Classifier: Typing :: Typed
18
18
  Requires-Python: >=3.9
19
19
  Requires-Dist: bioimageio-core==0.7
20
+ Requires-Dist: matplotlib<=3.10.0
20
21
  Requires-Dist: numpy<2.0.0
21
22
  Requires-Dist: pillow<=11.1.0
22
23
  Requires-Dist: psutil<=6.1.1
23
24
  Requires-Dist: pydantic<2.11,>=2.5
24
25
  Requires-Dist: pytorch-lightning<=2.5.0.post0,>=2.2
25
26
  Requires-Dist: pyyaml!=6.0.0,<=6.0.2
26
- Requires-Dist: scikit-image<=0.25.0
27
+ Requires-Dist: scikit-image<=0.25.1
27
28
  Requires-Dist: tifffile<=2025.1.10
28
- Requires-Dist: torch<=2.5.1,>=2.0
29
+ Requires-Dist: torch<=2.6.0,>=2.0
29
30
  Requires-Dist: torchvision<=0.20.1
31
+ Requires-Dist: torchvision<=0.21.0
30
32
  Requires-Dist: typer<=0.15.1,>=0.12.3
31
33
  Requires-Dist: zarr<3.0.0
32
34
  Provides-Extra: dev
@@ -10,7 +10,7 @@ careamics/config/__init__.py,sha256=c5FXtcQrtROHdLRl4cHpKo6V4_E4yr6HxYgNwqH9CHg,
10
10
  careamics/config/callback_model.py,sha256=EeYHqpMIPQwyNxLRzzX32Uncl5mZuB1bJO76RHpNymg,4555
11
11
  careamics/config/care_configuration.py,sha256=hSfNJ-dooHm4ujG6Q3Hawr8zDeYy1HNiebtM7gxsh7s,2714
12
12
  careamics/config/configuration.py,sha256=KmLeXHkFhQTrcru1erhfVf3tHvQdoi12ls_u254rtDw,11114
13
- careamics/config/configuration_factories.py,sha256=-kdoLQ0dkV4xlcUx_odrtMsvL4NqGYg5-4HVl3PqY4c,32423
13
+ careamics/config/configuration_factories.py,sha256=9civH9r1yfXcYeXJS61ft3Wsn8PoODNeqzGU45CTFCs,35460
14
14
  careamics/config/configuration_io.py,sha256=ks9R8lRCBY_m0sdy1k4ZWFPKEFSp7K9X47jCG4d0FY4,2353
15
15
  careamics/config/inference_model.py,sha256=UE_-ZmCX6LFCbDBOwyGnvuAboF_JNX2m2LcF0WiwgCI,6961
16
16
  careamics/config/likelihood_model.py,sha256=VorUtc0_-xIWNxwVrd1kBba-003ICdVMtxpcDCxH4Io,2259
@@ -22,9 +22,9 @@ careamics/config/optimizer_models.py,sha256=OWpTydRBBR8wt_af1mZHNNwvL_RtnRFopAOd
22
22
  careamics/config/tile_information.py,sha256=c-_xrVPOgcnjiEzQ-9A_GhNPamObkMANbeHaRP29R-4,2059
23
23
  careamics/config/training_model.py,sha256=67_ipo_-LxhT4-WqAs40Sg8PjU--my43Qn3BhjvlXxM,3212
24
24
  careamics/config/algorithms/__init__.py,sha256=on5D6zBO9Lu-Tf5To8xpF6owIFqdN7RSmZdpyXDOaNw,404
25
- careamics/config/algorithms/care_algorithm_model.py,sha256=mdMDc0Vr0V7LZmksdjNDlRx3ofwy57IMXygY_vg6hPY,1175
26
- careamics/config/algorithms/n2n_algorithm_model.py,sha256=FO04TRecvMPikz_s2WupwODzi4g3x84g1HXRPgMAZWo,1015
27
- careamics/config/algorithms/n2v_algorithm_model.py,sha256=TBAUKeFxdRtomYhFrVqfq31hpOiNQO2YOogYzVVFknM,919
25
+ careamics/config/algorithms/care_algorithm_model.py,sha256=-AEfzrA4HugYwMdDHqcc_i1H9kycXKS0YyRwT_MCCPo,951
26
+ careamics/config/algorithms/n2n_algorithm_model.py,sha256=aWG6-YYB9T2e-QirxC-YijosO3QNA0rJRPIQZrorSi0,799
27
+ careamics/config/algorithms/n2v_algorithm_model.py,sha256=b1M1ab9D8rhCG7RmhmaDi5rjHJjaQXebTdUEewJBnNg,709
28
28
  careamics/config/algorithms/unet_algorithm_model.py,sha256=OaBFVlhsb9YhF3f2x1ImazvfnZ4_DPWvYWihRwurkeg,2587
29
29
  careamics/config/algorithms/vae_algorithm_model.py,sha256=1ZrShUGHA7zbjSiCQwhUSv7l7Hr7MbpcLOw8ucM27p8,4680
30
30
  careamics/config/architectures/__init__.py,sha256=lYUz56R7LDqVQWQDLkLgJL8VtOyxc_ege1r4bXGEBqA,220
@@ -32,11 +32,11 @@ careamics/config/architectures/architecture_model.py,sha256=gXn4gdLrQP3bmTQxIhzk
32
32
  careamics/config/architectures/lvae_model.py,sha256=lwOiJYNUqPrZFl9SpPLYon77EiRbe2eI7pmpx45rO78,7606
33
33
  careamics/config/architectures/unet_model.py,sha256=HJJWf-wuYTv8KXMwikdjeB8htg1QOt0IyQbMuBt1LUI,3556
34
34
  careamics/config/data/__init__.py,sha256=ijFNSRKkKVF8fw6ym8kXq_wNhdwkWXxuNj2XKtD3KjE,218
35
- careamics/config/data/data_model.py,sha256=lSAIjpxuLaw1GMJ0rOHOZghYBwqWwlZf5sCphwAKMUc,11111
35
+ careamics/config/data/data_model.py,sha256=Z-sy6bJ_JYT5fzbVwLOH1PnjRkVY0YAmNG5OnQAd-SQ,12635
36
36
  careamics/config/data/n2v_data_model.py,sha256=-n5cncmcrd4-KUSmEk8rXAONMC7sfbYfGmshVNuySCU,5915
37
37
  careamics/config/support/__init__.py,sha256=ktWvxbTkRXnQPS_N84l9E2B5kTZVdd64SIjsJIQKB-k,1041
38
38
  careamics/config/support/supported_activations.py,sha256=CqOWoziIK5jZZXJO7G7cGg3TTid1POqv8FXqxjXxyME,535
39
- careamics/config/support/supported_algorithms.py,sha256=ivLECrplTLjSUsa7AyT1n2aOo_WM3sMJJlW3OOT1fPk,846
39
+ careamics/config/support/supported_algorithms.py,sha256=w6YzcIqGZ_bS85Tw1s7TEltBDXLt4SzgN3Tc6s19dGU,946
40
40
  careamics/config/support/supported_architectures.py,sha256=pOxvHOAIUkc7HCO0IIg4K22h-Ti5ErtcIkGOjN-zh1s,340
41
41
  careamics/config/support/supported_data.py,sha256=T_mDiWLFMVji_EpjBABUObAJcnv-XBnqp9XUZP37Tdk,2902
42
42
  careamics/config/support/supported_loggers.py,sha256=ubSOkGoYabGbm_jmyc1R3eFcvcP-sHmuyiBi_d3_wLg,197
@@ -52,7 +52,8 @@ careamics/config/transformations/transform_model.py,sha256=6UVbXnxm-LLZOQQ-ZBwWw
52
52
  careamics/config/transformations/transform_unions.py,sha256=uqlI8Nm827bKfMbDQLVhKFtT9e7TJ_zIYDBdHlOuQ1I,1137
53
53
  careamics/config/transformations/xy_flip_model.py,sha256=zU-uZ1b1zNZWckbho3onN-B7BHKhN7jbgbNZyRQhv2s,1025
54
54
  careamics/config/transformations/xy_random_rotate90_model.py,sha256=6sYKmtCLvz0SV1qZgBSHUTH-CUjwvHnohq1HyPntbyE,894
55
- careamics/config/validators/__init__.py,sha256=iv0nVI0W7j9DxFPwh0DjRCzM9P8oLQn4Gwi5rfuFrrI,180
55
+ careamics/config/validators/__init__.py,sha256=zRrIse0O3ImwG97NphEupFVm3Ib9nEJhpNNrKGyDTps,423
56
+ careamics/config/validators/model_validators.py,sha256=9OCdlf7rmndtTpmQ8COLaEjURYYmszic_RjY9mzS-k4,1941
56
57
  careamics/config/validators/validator_utils.py,sha256=NVkEOr5AQK4JXWNtmgeQgAaJOyieJNb5PHCjlcqNeew,2611
57
58
  careamics/dataset/__init__.py,sha256=31vop67zbtGesENEIig-LLw1q2lCydMFc_YWgfK2Yt4,547
58
59
  careamics/dataset/in_memory_dataset.py,sha256=MV_Vf4siIP-g7VKhxN4rU7MZXpaHKvfwr8ZXqk44Qhs,9958
@@ -87,10 +88,10 @@ careamics/file_io/write/tiff.py,sha256=tBGIgl-I1sMyBivgx-dOTBykXBODkgwPH8MT3_4KA
87
88
  careamics/lightning/__init__.py,sha256=ATCVAGnX08Ik4TxbIv0-cXb52UinR42JgvZh_GIMSpc,588
88
89
  careamics/lightning/lightning_module.py,sha256=3nzRcjv7dlWmWjoWmGaBV7D6d698xMp3XO7fpIrZhwA,22630
89
90
  careamics/lightning/predict_data_module.py,sha256=JNwujK6QwObSx6P25ghpGl2f2gGT3KVgYMTlonZzH20,12745
90
- careamics/lightning/train_data_module.py,sha256=7fti07y2TTV_Airl-D9FRTJf7AmsFmErSKnWUGLQE58,28699
91
+ careamics/lightning/train_data_module.py,sha256=LeTyjNtAJw8nNiw2k6Ifuw0fAgppyZyRxyEGbDq30Fo,28309
91
92
  careamics/lightning/callbacks/__init__.py,sha256=eA5ltzYNzuO0uMEr1jG4wP01b0s29s5I03WGJ290qkw,312
92
93
  careamics/lightning/callbacks/hyperparameters_callback.py,sha256=u45knOZHwoVHz6yYfrnERQuozT_SfZ1OrKP0QjeU4EM,1495
93
- careamics/lightning/callbacks/progress_bar_callback.py,sha256=RilGAVUa90AlCLdooIGJF2cAcHAjGn24zKZiBmRRkwg,2438
94
+ careamics/lightning/callbacks/progress_bar_callback.py,sha256=w-j_nk2ysyc4THKfwWbpkiKGeqNUpLGtm-8dYBgla2c,2443
94
95
  careamics/lightning/callbacks/prediction_writer_callback/__init__.py,sha256=ZVf3vaSU_NjSjrKbI24H0kK9WAiP9oKXfhP670EaWMo,548
95
96
  careamics/lightning/callbacks/prediction_writer_callback/file_path_utils.py,sha256=i4vGGiVLslafi-5iuvkAKzBgZ0BpwTTxSTo31oViFz4,1480
96
97
  careamics/lightning/callbacks/prediction_writer_callback/prediction_writer_callback.py,sha256=8HHUSKcG7G0FSCVPnpGQHLfpara5mnKAwsiiyWp2wzo,8210
@@ -104,8 +105,8 @@ careamics/losses/lvae/__init__.py,sha256=0FNtMLHrOMfagtWkaBdz1NTjyf2y0QLgysxJv5j
104
105
  careamics/losses/lvae/loss_utils.py,sha256=QxzA2N1TglR4H0X0uyTWWytDagE1lA9IB_TK1lms3ao,2720
105
106
  careamics/losses/lvae/losses.py,sha256=wHT1dx04BZ_OI-_S7cFQ5hFmMetm6FSnuZfwZBBtIpY,17977
106
107
  careamics/lvae_training/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
107
- careamics/lvae_training/calibration.py,sha256=CvtmRC1s-2XHDjt1XG3RdHlPgCOaoCweJMKZYmDmgnU,6508
108
- careamics/lvae_training/eval_utils.py,sha256=RU1FYK9z1Hno6b6n7XyTTOu6An0MX0_6C8Og9FFqpyM,30949
108
+ careamics/lvae_training/calibration.py,sha256=xHbiLcY2csYos3s7rRSqp7P7G-9wzULcSo1JfVzfIjE,7239
109
+ careamics/lvae_training/eval_utils.py,sha256=7N1thslU4IU1lM1tGg3-wa8AFf5_R2lOSQ7ZZ91AUII,30030
109
110
  careamics/lvae_training/get_config.py,sha256=dwVfaQS7nzjQss0E1gGLUpQpjPcOWwLgIhbu3Z0I1rg,3068
110
111
  careamics/lvae_training/lightning_module.py,sha256=ryr7iHqCMzCl5esi6_gEcnKFDQkMrw0EXK9Zfgv1Nek,27186
111
112
  careamics/lvae_training/metrics.py,sha256=KTDAKhe3vh-YxzGibjtkIG2nnUyujbnwqX4xGwaRXwE,6718
@@ -113,10 +114,10 @@ careamics/lvae_training/train_lvae.py,sha256=lJEBlBGdISVkZBcEnPNRYgJ7VbapYzZHRaF
113
114
  careamics/lvae_training/train_utils.py,sha256=e-d4QsF-li8MmAPkAmB1daHpkuU16nBTnQFZYqpTjn4,3567
114
115
  careamics/lvae_training/dataset/__init__.py,sha256=dvdHHaRA9ZfOt_uOnXkYyra2_b0Wsxs8qmrze6zxJAE,377
115
116
  careamics/lvae_training/dataset/config.py,sha256=hGIggj5uOZrFBK54o9vii0sG5WGhF_E32URKIIzQMec,4342
116
- careamics/lvae_training/dataset/lc_dataset.py,sha256=xErygllUu6Q-PfPZ24sHf5_NP7YGHD2NVyzmDZgDd2U,10697
117
- careamics/lvae_training/dataset/multich_dataset.py,sha256=J1QWXlTSLZ40D3MFKw2StarZpq82sFeaHSXk7j48RAc,41608
117
+ careamics/lvae_training/dataset/lc_dataset.py,sha256=r4PffRXzuTJ0tLWei4B3wq6f1Q34raaZQzZ0IQXi8OI,10762
118
+ careamics/lvae_training/dataset/multich_dataset.py,sha256=5yMC6bgEIYHBsjFj5gXlc68xJQz8A05TYbYfOo-TdUQ,41672
118
119
  careamics/lvae_training/dataset/multifile_dataset.py,sha256=hJBs6iBrf_FcyUYzg8rDjvKEICHxDYyXVOj-5L0F6FE,10273
119
- careamics/lvae_training/dataset/types.py,sha256=zfi-zMmMe7GTaX-MYrYfVbAM4D2LPHrJkmqSFl9ulxA,632
120
+ careamics/lvae_training/dataset/types.py,sha256=SQ99hV9R3iwrRLJs-aRkL3OlmrWWkCrca2JqkntoWZs,633
120
121
  careamics/lvae_training/dataset/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
121
122
  careamics/lvae_training/dataset/utils/data_utils.py,sha256=8PvRPqSbYHPCl87cycZHxXIFOT_EoBV-8XCt3ZLh36s,3125
122
123
  careamics/lvae_training/dataset/utils/empty_patch_fetcher.py,sha256=OFjeqhZ6vFULJsF5tnoByhEhE8aLHujFToU_yyqMCP4,2266
@@ -137,10 +138,10 @@ careamics/models/model_factory.py,sha256=GWbouERvEfHj_BrpKHYgrPAj8dpdoh1R-X--Jt0
137
138
  careamics/models/unet.py,sha256=9m8GxsTXX9c0mC-eVe2ZXQn2afose1CG6Z8vIhELb7I,14308
138
139
  careamics/models/lvae/__init__.py,sha256=6dT6uqgT__V08EjoTGxXguTbTkySZmByS9J2Bj6WWLM,53
139
140
  careamics/models/lvae/layers.py,sha256=UPxZiZjgnBnPs_wdSzcP-_s17MEw4P1CoIZzn4OdUA0,57944
140
- careamics/models/lvae/likelihoods.py,sha256=SHsaZZTjGg8TO6JkvjdQOZtu8CCOvlSxtqRBZhrGXKk,12098
141
- careamics/models/lvae/lvae.py,sha256=AWll857rAnlvjTom5CX0CpbEcf-ci_Icoz5wFKVLu5E,34220
142
- careamics/models/lvae/noise_models.py,sha256=dFWM9DDJ7qzsyiT8sDWR8THbEiZmu3XnW5UzGJl7Mck,21834
143
- careamics/models/lvae/stochastic.py,sha256=019M6BBR6GtYjUVF6pcOTOsfEAYeg0vclz55V6Fl4yY,16588
141
+ careamics/models/lvae/likelihoods.py,sha256=qRYRewQv6PqzJO-7nDnFkK86-R8dI4HSp1_ilRSc2I4,12233
142
+ careamics/models/lvae/lvae.py,sha256=Jlw3mxVCxMDtjMvBWI9C9javHHyrngm8RfTYPsYhbI4,34767
143
+ careamics/models/lvae/noise_models.py,sha256=lpSygXsJmD_erP0V72u9i5CX51wpopLNCH_YjmEL29s,24095
144
+ careamics/models/lvae/stochastic.py,sha256=wiTrLBSYwOvsF1araKxUHy1CHp1mdH9bazctVo0NchA,16628
144
145
  careamics/models/lvae/utils.py,sha256=EE3paHu3vhCaqfOrGypzUsImZJO94uBhx8q6kZ-R36o,11516
145
146
  careamics/prediction_utils/__init__.py,sha256=k5hsPGY8FOkwIT0fQgrUz7fVCH2NlwuOdZiISdXjEWg,270
146
147
  careamics/prediction_utils/lvae_prediction.py,sha256=ZwPFCSeUGsULIMoMQWRYKHfLFaDm7UKyGaUMVfSUqfs,6210
@@ -163,14 +164,15 @@ careamics/utils/base_enum.py,sha256=bz1D8mDx5V5hdnJ3WAzJXWHJTbgwAky5FprUt9F5cMA,
163
164
  careamics/utils/context.py,sha256=SoTZfzG6fO4SDOGHOTL2Xlm1n1CSgb9B57GVhrEkFls,1436
164
165
  careamics/utils/lightning_utils.py,sha256=DMMmqx-AlNtddBCqm8b_W3h09qUetz32OMPhdDieFwg,1769
165
166
  careamics/utils/logging.py,sha256=5U4VsQ4m4OajtirLH6qUjrM1CAc-oXeCsd6JyROjkWE,10337
166
- careamics/utils/metrics.py,sha256=yAoCvrZ1kQx-kT9xdTBYz-oh0I52ef6uBnw8qgzpwn8,10318
167
+ careamics/utils/metrics.py,sha256=i9TQNzVF6lUL9c6OwRZFFDhelZfinkEDpWSCKeduscc,10853
167
168
  careamics/utils/path_utils.py,sha256=8AugiG5DOmzgSnTCJI8vypXaPE0XhnR-9pzeiFUZ-0I,554
169
+ careamics/utils/plotting.py,sha256=cea1GQB932j2UA3IQZnh-0EenQdnjzPOFoGoFKJ4how,2518
168
170
  careamics/utils/ram.py,sha256=tksyn8dVX_iJXmrDZDGub32hFZWIaNxnMheO5G1p43I,244
169
171
  careamics/utils/receptive_field.py,sha256=Y2h4c8S6glX3qcx5KHDmO17Kkuyey9voxfoXyqcAfiM,3296
170
172
  careamics/utils/serializers.py,sha256=mILUhz75IMpGKnEzcYu9hlOPG8YIiIW09fk6eZM7Y8k,1427
171
173
  careamics/utils/torch_utils.py,sha256=_Cf3HdlIRl5hxfpUg9aofCSlcW7GSsIJxsbSORXko0U,3010
172
- careamics-0.0.6.dist-info/METADATA,sha256=Hz6RQlh5szAGllr7baFnc86U_sSC2fCjvU4FhjmhYMk,3898
173
- careamics-0.0.6.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
174
- careamics-0.0.6.dist-info/entry_points.txt,sha256=2fSNVXJWDJgFLATVj7MkjFNvpl53amG8tUzC3jf7G1s,53
175
- careamics-0.0.6.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
176
- careamics-0.0.6.dist-info/RECORD,,
174
+ careamics-0.0.7.dist-info/METADATA,sha256=K3w_i8E8INNeZwEQdVtGHDFS_C0031Bfqzn23e8SSO4,3967
175
+ careamics-0.0.7.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
176
+ careamics-0.0.7.dist-info/entry_points.txt,sha256=2fSNVXJWDJgFLATVj7MkjFNvpl53amG8tUzC3jf7G1s,53
177
+ careamics-0.0.7.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
178
+ careamics-0.0.7.dist-info/RECORD,,