careamics 0.0.6__py3-none-any.whl → 0.0.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of careamics might be problematic. Click here for more details.
- careamics/config/algorithms/care_algorithm_model.py +12 -24
- careamics/config/algorithms/n2n_algorithm_model.py +13 -25
- careamics/config/algorithms/n2v_algorithm_model.py +13 -19
- careamics/config/configuration_factories.py +84 -23
- careamics/config/data/data_model.py +47 -2
- careamics/config/support/supported_algorithms.py +5 -1
- careamics/config/validators/__init__.py +12 -1
- careamics/config/validators/model_validators.py +84 -0
- careamics/lightning/callbacks/progress_bar_callback.py +1 -1
- careamics/lightning/train_data_module.py +10 -19
- careamics/lvae_training/calibration.py +64 -57
- careamics/lvae_training/dataset/lc_dataset.py +2 -1
- careamics/lvae_training/dataset/multich_dataset.py +2 -2
- careamics/lvae_training/dataset/types.py +1 -1
- careamics/lvae_training/eval_utils.py +123 -128
- careamics/models/lvae/likelihoods.py +2 -0
- careamics/models/lvae/lvae.py +13 -1
- careamics/models/lvae/noise_models.py +280 -217
- careamics/models/lvae/stochastic.py +1 -0
- careamics/utils/metrics.py +25 -0
- careamics/utils/plotting.py +78 -0
- {careamics-0.0.6.dist-info → careamics-0.0.7.dist-info}/METADATA +5 -3
- {careamics-0.0.6.dist-info → careamics-0.0.7.dist-info}/RECORD +26 -24
- {careamics-0.0.6.dist-info → careamics-0.0.7.dist-info}/WHEEL +0 -0
- {careamics-0.0.6.dist-info → careamics-0.0.7.dist-info}/entry_points.txt +0 -0
- {careamics-0.0.6.dist-info → careamics-0.0.7.dist-info}/licenses/LICENSE +0 -0
careamics/utils/metrics.py
CHANGED
|
@@ -14,6 +14,31 @@ from torchmetrics.image import MultiScaleStructuralSimilarityIndexMeasure
|
|
|
14
14
|
# TODO: does this add additional dependency?
|
|
15
15
|
|
|
16
16
|
|
|
17
|
+
# TODO revisit metric for notebook
|
|
18
|
+
def avg_range_invariant_psnr(
|
|
19
|
+
pred: np.ndarray,
|
|
20
|
+
target: np.ndarray,
|
|
21
|
+
) -> float:
|
|
22
|
+
"""Compute the average range-invariant PSNR.
|
|
23
|
+
|
|
24
|
+
Parameters
|
|
25
|
+
----------
|
|
26
|
+
pred : np.ndarray
|
|
27
|
+
Predicted images.
|
|
28
|
+
target : np.ndarray
|
|
29
|
+
Target images.
|
|
30
|
+
|
|
31
|
+
Returns
|
|
32
|
+
-------
|
|
33
|
+
float
|
|
34
|
+
Average range-invariant PSNR value.
|
|
35
|
+
"""
|
|
36
|
+
psnr_arr = []
|
|
37
|
+
for i in range(pred.shape[0]):
|
|
38
|
+
psnr_arr.append(scale_invariant_psnr(pred[i], target[i]))
|
|
39
|
+
return np.mean(psnr_arr)
|
|
40
|
+
|
|
41
|
+
|
|
17
42
|
def psnr(gt: np.ndarray, pred: np.ndarray, data_range: float) -> float:
|
|
18
43
|
"""
|
|
19
44
|
Peak Signal to Noise Ratio.
|
|
@@ -0,0 +1,78 @@
|
|
|
1
|
+
"""Plotting utilities."""
|
|
2
|
+
|
|
3
|
+
from typing import Optional
|
|
4
|
+
|
|
5
|
+
import matplotlib.pyplot as plt
|
|
6
|
+
import numpy as np
|
|
7
|
+
import torch
|
|
8
|
+
from numpy.typing import NDArray
|
|
9
|
+
|
|
10
|
+
from careamics.models.lvae.noise_models import GaussianMixtureNoiseModel
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def plot_noise_model_probability_distribution(
|
|
14
|
+
noise_model: GaussianMixtureNoiseModel,
|
|
15
|
+
signalBinIndex: int,
|
|
16
|
+
histogram: NDArray,
|
|
17
|
+
channel: Optional[str] = None,
|
|
18
|
+
number_of_bins: int = 100,
|
|
19
|
+
) -> None:
|
|
20
|
+
"""Plot probability distribution P(x|s) for a certain ground truth signal.
|
|
21
|
+
|
|
22
|
+
Predictions from both Histogram and GMM-based
|
|
23
|
+
Noise models are displayed for comparison.
|
|
24
|
+
|
|
25
|
+
Parameters
|
|
26
|
+
----------
|
|
27
|
+
noise_model : GaussianMixtureNoiseModel
|
|
28
|
+
Trained GaussianMixtureNoiseModel.
|
|
29
|
+
signalBinIndex : int
|
|
30
|
+
Index of signal bin. Values go from 0 to number of bins (`n_bin`).
|
|
31
|
+
histogram : NDArray
|
|
32
|
+
Histogram based noise model.
|
|
33
|
+
channel : Optional[str], optional
|
|
34
|
+
Channel name used for plotting. Default is None.
|
|
35
|
+
number_of_bins : int, optional
|
|
36
|
+
Number of bins in the resulting histogram. Default is 100.
|
|
37
|
+
"""
|
|
38
|
+
min_signal = noise_model.min_signal.item()
|
|
39
|
+
max_signal = noise_model.max_signal.item()
|
|
40
|
+
bin_size = (max_signal - min_signal) / number_of_bins
|
|
41
|
+
|
|
42
|
+
query_signal_normalized = signalBinIndex / number_of_bins
|
|
43
|
+
query_signal = query_signal_normalized * (max_signal - min_signal) + min_signal
|
|
44
|
+
query_signal += bin_size / 2
|
|
45
|
+
query_signal = torch.tensor(query_signal)
|
|
46
|
+
|
|
47
|
+
query_observations = torch.arange(min_signal, max_signal, bin_size)
|
|
48
|
+
query_observations += bin_size / 2
|
|
49
|
+
|
|
50
|
+
likelihoods = noise_model.likelihood(
|
|
51
|
+
observations=query_observations, signals=query_signal
|
|
52
|
+
).numpy()
|
|
53
|
+
|
|
54
|
+
plt.figure(figsize=(12, 5))
|
|
55
|
+
if channel:
|
|
56
|
+
plt.suptitle(f"Noise model for channel {channel}")
|
|
57
|
+
else:
|
|
58
|
+
plt.suptitle("Noise model")
|
|
59
|
+
|
|
60
|
+
plt.subplot(1, 2, 1)
|
|
61
|
+
plt.xlabel("Observation Bin")
|
|
62
|
+
plt.ylabel("Signal Bin")
|
|
63
|
+
plt.imshow(histogram**0.25, cmap="gray")
|
|
64
|
+
plt.axhline(y=signalBinIndex + 0.5, linewidth=5, color="blue", alpha=0.5)
|
|
65
|
+
|
|
66
|
+
plt.subplot(1, 2, 2)
|
|
67
|
+
plt.plot(
|
|
68
|
+
query_observations,
|
|
69
|
+
likelihoods,
|
|
70
|
+
label="GMM : " + " signal = " + str(np.round(query_signal, 2)),
|
|
71
|
+
marker=".",
|
|
72
|
+
color="red",
|
|
73
|
+
linewidth=2,
|
|
74
|
+
)
|
|
75
|
+
plt.xlabel("Observations (x) for signal s = " + str(query_signal))
|
|
76
|
+
plt.ylabel("Probability Density")
|
|
77
|
+
plt.title("Probability Distribution P(x|s) at signal =" + str(query_signal))
|
|
78
|
+
plt.legend()
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: careamics
|
|
3
|
-
Version: 0.0.
|
|
3
|
+
Version: 0.0.7
|
|
4
4
|
Summary: Toolbox for running N2V and friends.
|
|
5
5
|
Project-URL: homepage, https://careamics.github.io/
|
|
6
6
|
Project-URL: repository, https://github.com/CAREamics/careamics
|
|
@@ -17,16 +17,18 @@ Classifier: Programming Language :: Python :: 3.12
|
|
|
17
17
|
Classifier: Typing :: Typed
|
|
18
18
|
Requires-Python: >=3.9
|
|
19
19
|
Requires-Dist: bioimageio-core==0.7
|
|
20
|
+
Requires-Dist: matplotlib<=3.10.0
|
|
20
21
|
Requires-Dist: numpy<2.0.0
|
|
21
22
|
Requires-Dist: pillow<=11.1.0
|
|
22
23
|
Requires-Dist: psutil<=6.1.1
|
|
23
24
|
Requires-Dist: pydantic<2.11,>=2.5
|
|
24
25
|
Requires-Dist: pytorch-lightning<=2.5.0.post0,>=2.2
|
|
25
26
|
Requires-Dist: pyyaml!=6.0.0,<=6.0.2
|
|
26
|
-
Requires-Dist: scikit-image<=0.25.
|
|
27
|
+
Requires-Dist: scikit-image<=0.25.1
|
|
27
28
|
Requires-Dist: tifffile<=2025.1.10
|
|
28
|
-
Requires-Dist: torch<=2.
|
|
29
|
+
Requires-Dist: torch<=2.6.0,>=2.0
|
|
29
30
|
Requires-Dist: torchvision<=0.20.1
|
|
31
|
+
Requires-Dist: torchvision<=0.21.0
|
|
30
32
|
Requires-Dist: typer<=0.15.1,>=0.12.3
|
|
31
33
|
Requires-Dist: zarr<3.0.0
|
|
32
34
|
Provides-Extra: dev
|
|
@@ -10,7 +10,7 @@ careamics/config/__init__.py,sha256=c5FXtcQrtROHdLRl4cHpKo6V4_E4yr6HxYgNwqH9CHg,
|
|
|
10
10
|
careamics/config/callback_model.py,sha256=EeYHqpMIPQwyNxLRzzX32Uncl5mZuB1bJO76RHpNymg,4555
|
|
11
11
|
careamics/config/care_configuration.py,sha256=hSfNJ-dooHm4ujG6Q3Hawr8zDeYy1HNiebtM7gxsh7s,2714
|
|
12
12
|
careamics/config/configuration.py,sha256=KmLeXHkFhQTrcru1erhfVf3tHvQdoi12ls_u254rtDw,11114
|
|
13
|
-
careamics/config/configuration_factories.py,sha256
|
|
13
|
+
careamics/config/configuration_factories.py,sha256=9civH9r1yfXcYeXJS61ft3Wsn8PoODNeqzGU45CTFCs,35460
|
|
14
14
|
careamics/config/configuration_io.py,sha256=ks9R8lRCBY_m0sdy1k4ZWFPKEFSp7K9X47jCG4d0FY4,2353
|
|
15
15
|
careamics/config/inference_model.py,sha256=UE_-ZmCX6LFCbDBOwyGnvuAboF_JNX2m2LcF0WiwgCI,6961
|
|
16
16
|
careamics/config/likelihood_model.py,sha256=VorUtc0_-xIWNxwVrd1kBba-003ICdVMtxpcDCxH4Io,2259
|
|
@@ -22,9 +22,9 @@ careamics/config/optimizer_models.py,sha256=OWpTydRBBR8wt_af1mZHNNwvL_RtnRFopAOd
|
|
|
22
22
|
careamics/config/tile_information.py,sha256=c-_xrVPOgcnjiEzQ-9A_GhNPamObkMANbeHaRP29R-4,2059
|
|
23
23
|
careamics/config/training_model.py,sha256=67_ipo_-LxhT4-WqAs40Sg8PjU--my43Qn3BhjvlXxM,3212
|
|
24
24
|
careamics/config/algorithms/__init__.py,sha256=on5D6zBO9Lu-Tf5To8xpF6owIFqdN7RSmZdpyXDOaNw,404
|
|
25
|
-
careamics/config/algorithms/care_algorithm_model.py,sha256
|
|
26
|
-
careamics/config/algorithms/n2n_algorithm_model.py,sha256=
|
|
27
|
-
careamics/config/algorithms/n2v_algorithm_model.py,sha256=
|
|
25
|
+
careamics/config/algorithms/care_algorithm_model.py,sha256=-AEfzrA4HugYwMdDHqcc_i1H9kycXKS0YyRwT_MCCPo,951
|
|
26
|
+
careamics/config/algorithms/n2n_algorithm_model.py,sha256=aWG6-YYB9T2e-QirxC-YijosO3QNA0rJRPIQZrorSi0,799
|
|
27
|
+
careamics/config/algorithms/n2v_algorithm_model.py,sha256=b1M1ab9D8rhCG7RmhmaDi5rjHJjaQXebTdUEewJBnNg,709
|
|
28
28
|
careamics/config/algorithms/unet_algorithm_model.py,sha256=OaBFVlhsb9YhF3f2x1ImazvfnZ4_DPWvYWihRwurkeg,2587
|
|
29
29
|
careamics/config/algorithms/vae_algorithm_model.py,sha256=1ZrShUGHA7zbjSiCQwhUSv7l7Hr7MbpcLOw8ucM27p8,4680
|
|
30
30
|
careamics/config/architectures/__init__.py,sha256=lYUz56R7LDqVQWQDLkLgJL8VtOyxc_ege1r4bXGEBqA,220
|
|
@@ -32,11 +32,11 @@ careamics/config/architectures/architecture_model.py,sha256=gXn4gdLrQP3bmTQxIhzk
|
|
|
32
32
|
careamics/config/architectures/lvae_model.py,sha256=lwOiJYNUqPrZFl9SpPLYon77EiRbe2eI7pmpx45rO78,7606
|
|
33
33
|
careamics/config/architectures/unet_model.py,sha256=HJJWf-wuYTv8KXMwikdjeB8htg1QOt0IyQbMuBt1LUI,3556
|
|
34
34
|
careamics/config/data/__init__.py,sha256=ijFNSRKkKVF8fw6ym8kXq_wNhdwkWXxuNj2XKtD3KjE,218
|
|
35
|
-
careamics/config/data/data_model.py,sha256=
|
|
35
|
+
careamics/config/data/data_model.py,sha256=Z-sy6bJ_JYT5fzbVwLOH1PnjRkVY0YAmNG5OnQAd-SQ,12635
|
|
36
36
|
careamics/config/data/n2v_data_model.py,sha256=-n5cncmcrd4-KUSmEk8rXAONMC7sfbYfGmshVNuySCU,5915
|
|
37
37
|
careamics/config/support/__init__.py,sha256=ktWvxbTkRXnQPS_N84l9E2B5kTZVdd64SIjsJIQKB-k,1041
|
|
38
38
|
careamics/config/support/supported_activations.py,sha256=CqOWoziIK5jZZXJO7G7cGg3TTid1POqv8FXqxjXxyME,535
|
|
39
|
-
careamics/config/support/supported_algorithms.py,sha256=
|
|
39
|
+
careamics/config/support/supported_algorithms.py,sha256=w6YzcIqGZ_bS85Tw1s7TEltBDXLt4SzgN3Tc6s19dGU,946
|
|
40
40
|
careamics/config/support/supported_architectures.py,sha256=pOxvHOAIUkc7HCO0IIg4K22h-Ti5ErtcIkGOjN-zh1s,340
|
|
41
41
|
careamics/config/support/supported_data.py,sha256=T_mDiWLFMVji_EpjBABUObAJcnv-XBnqp9XUZP37Tdk,2902
|
|
42
42
|
careamics/config/support/supported_loggers.py,sha256=ubSOkGoYabGbm_jmyc1R3eFcvcP-sHmuyiBi_d3_wLg,197
|
|
@@ -52,7 +52,8 @@ careamics/config/transformations/transform_model.py,sha256=6UVbXnxm-LLZOQQ-ZBwWw
|
|
|
52
52
|
careamics/config/transformations/transform_unions.py,sha256=uqlI8Nm827bKfMbDQLVhKFtT9e7TJ_zIYDBdHlOuQ1I,1137
|
|
53
53
|
careamics/config/transformations/xy_flip_model.py,sha256=zU-uZ1b1zNZWckbho3onN-B7BHKhN7jbgbNZyRQhv2s,1025
|
|
54
54
|
careamics/config/transformations/xy_random_rotate90_model.py,sha256=6sYKmtCLvz0SV1qZgBSHUTH-CUjwvHnohq1HyPntbyE,894
|
|
55
|
-
careamics/config/validators/__init__.py,sha256=
|
|
55
|
+
careamics/config/validators/__init__.py,sha256=zRrIse0O3ImwG97NphEupFVm3Ib9nEJhpNNrKGyDTps,423
|
|
56
|
+
careamics/config/validators/model_validators.py,sha256=9OCdlf7rmndtTpmQ8COLaEjURYYmszic_RjY9mzS-k4,1941
|
|
56
57
|
careamics/config/validators/validator_utils.py,sha256=NVkEOr5AQK4JXWNtmgeQgAaJOyieJNb5PHCjlcqNeew,2611
|
|
57
58
|
careamics/dataset/__init__.py,sha256=31vop67zbtGesENEIig-LLw1q2lCydMFc_YWgfK2Yt4,547
|
|
58
59
|
careamics/dataset/in_memory_dataset.py,sha256=MV_Vf4siIP-g7VKhxN4rU7MZXpaHKvfwr8ZXqk44Qhs,9958
|
|
@@ -87,10 +88,10 @@ careamics/file_io/write/tiff.py,sha256=tBGIgl-I1sMyBivgx-dOTBykXBODkgwPH8MT3_4KA
|
|
|
87
88
|
careamics/lightning/__init__.py,sha256=ATCVAGnX08Ik4TxbIv0-cXb52UinR42JgvZh_GIMSpc,588
|
|
88
89
|
careamics/lightning/lightning_module.py,sha256=3nzRcjv7dlWmWjoWmGaBV7D6d698xMp3XO7fpIrZhwA,22630
|
|
89
90
|
careamics/lightning/predict_data_module.py,sha256=JNwujK6QwObSx6P25ghpGl2f2gGT3KVgYMTlonZzH20,12745
|
|
90
|
-
careamics/lightning/train_data_module.py,sha256=
|
|
91
|
+
careamics/lightning/train_data_module.py,sha256=LeTyjNtAJw8nNiw2k6Ifuw0fAgppyZyRxyEGbDq30Fo,28309
|
|
91
92
|
careamics/lightning/callbacks/__init__.py,sha256=eA5ltzYNzuO0uMEr1jG4wP01b0s29s5I03WGJ290qkw,312
|
|
92
93
|
careamics/lightning/callbacks/hyperparameters_callback.py,sha256=u45knOZHwoVHz6yYfrnERQuozT_SfZ1OrKP0QjeU4EM,1495
|
|
93
|
-
careamics/lightning/callbacks/progress_bar_callback.py,sha256=
|
|
94
|
+
careamics/lightning/callbacks/progress_bar_callback.py,sha256=w-j_nk2ysyc4THKfwWbpkiKGeqNUpLGtm-8dYBgla2c,2443
|
|
94
95
|
careamics/lightning/callbacks/prediction_writer_callback/__init__.py,sha256=ZVf3vaSU_NjSjrKbI24H0kK9WAiP9oKXfhP670EaWMo,548
|
|
95
96
|
careamics/lightning/callbacks/prediction_writer_callback/file_path_utils.py,sha256=i4vGGiVLslafi-5iuvkAKzBgZ0BpwTTxSTo31oViFz4,1480
|
|
96
97
|
careamics/lightning/callbacks/prediction_writer_callback/prediction_writer_callback.py,sha256=8HHUSKcG7G0FSCVPnpGQHLfpara5mnKAwsiiyWp2wzo,8210
|
|
@@ -104,8 +105,8 @@ careamics/losses/lvae/__init__.py,sha256=0FNtMLHrOMfagtWkaBdz1NTjyf2y0QLgysxJv5j
|
|
|
104
105
|
careamics/losses/lvae/loss_utils.py,sha256=QxzA2N1TglR4H0X0uyTWWytDagE1lA9IB_TK1lms3ao,2720
|
|
105
106
|
careamics/losses/lvae/losses.py,sha256=wHT1dx04BZ_OI-_S7cFQ5hFmMetm6FSnuZfwZBBtIpY,17977
|
|
106
107
|
careamics/lvae_training/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
107
|
-
careamics/lvae_training/calibration.py,sha256=
|
|
108
|
-
careamics/lvae_training/eval_utils.py,sha256=
|
|
108
|
+
careamics/lvae_training/calibration.py,sha256=xHbiLcY2csYos3s7rRSqp7P7G-9wzULcSo1JfVzfIjE,7239
|
|
109
|
+
careamics/lvae_training/eval_utils.py,sha256=7N1thslU4IU1lM1tGg3-wa8AFf5_R2lOSQ7ZZ91AUII,30030
|
|
109
110
|
careamics/lvae_training/get_config.py,sha256=dwVfaQS7nzjQss0E1gGLUpQpjPcOWwLgIhbu3Z0I1rg,3068
|
|
110
111
|
careamics/lvae_training/lightning_module.py,sha256=ryr7iHqCMzCl5esi6_gEcnKFDQkMrw0EXK9Zfgv1Nek,27186
|
|
111
112
|
careamics/lvae_training/metrics.py,sha256=KTDAKhe3vh-YxzGibjtkIG2nnUyujbnwqX4xGwaRXwE,6718
|
|
@@ -113,10 +114,10 @@ careamics/lvae_training/train_lvae.py,sha256=lJEBlBGdISVkZBcEnPNRYgJ7VbapYzZHRaF
|
|
|
113
114
|
careamics/lvae_training/train_utils.py,sha256=e-d4QsF-li8MmAPkAmB1daHpkuU16nBTnQFZYqpTjn4,3567
|
|
114
115
|
careamics/lvae_training/dataset/__init__.py,sha256=dvdHHaRA9ZfOt_uOnXkYyra2_b0Wsxs8qmrze6zxJAE,377
|
|
115
116
|
careamics/lvae_training/dataset/config.py,sha256=hGIggj5uOZrFBK54o9vii0sG5WGhF_E32URKIIzQMec,4342
|
|
116
|
-
careamics/lvae_training/dataset/lc_dataset.py,sha256=
|
|
117
|
-
careamics/lvae_training/dataset/multich_dataset.py,sha256=
|
|
117
|
+
careamics/lvae_training/dataset/lc_dataset.py,sha256=r4PffRXzuTJ0tLWei4B3wq6f1Q34raaZQzZ0IQXi8OI,10762
|
|
118
|
+
careamics/lvae_training/dataset/multich_dataset.py,sha256=5yMC6bgEIYHBsjFj5gXlc68xJQz8A05TYbYfOo-TdUQ,41672
|
|
118
119
|
careamics/lvae_training/dataset/multifile_dataset.py,sha256=hJBs6iBrf_FcyUYzg8rDjvKEICHxDYyXVOj-5L0F6FE,10273
|
|
119
|
-
careamics/lvae_training/dataset/types.py,sha256=
|
|
120
|
+
careamics/lvae_training/dataset/types.py,sha256=SQ99hV9R3iwrRLJs-aRkL3OlmrWWkCrca2JqkntoWZs,633
|
|
120
121
|
careamics/lvae_training/dataset/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
121
122
|
careamics/lvae_training/dataset/utils/data_utils.py,sha256=8PvRPqSbYHPCl87cycZHxXIFOT_EoBV-8XCt3ZLh36s,3125
|
|
122
123
|
careamics/lvae_training/dataset/utils/empty_patch_fetcher.py,sha256=OFjeqhZ6vFULJsF5tnoByhEhE8aLHujFToU_yyqMCP4,2266
|
|
@@ -137,10 +138,10 @@ careamics/models/model_factory.py,sha256=GWbouERvEfHj_BrpKHYgrPAj8dpdoh1R-X--Jt0
|
|
|
137
138
|
careamics/models/unet.py,sha256=9m8GxsTXX9c0mC-eVe2ZXQn2afose1CG6Z8vIhELb7I,14308
|
|
138
139
|
careamics/models/lvae/__init__.py,sha256=6dT6uqgT__V08EjoTGxXguTbTkySZmByS9J2Bj6WWLM,53
|
|
139
140
|
careamics/models/lvae/layers.py,sha256=UPxZiZjgnBnPs_wdSzcP-_s17MEw4P1CoIZzn4OdUA0,57944
|
|
140
|
-
careamics/models/lvae/likelihoods.py,sha256=
|
|
141
|
-
careamics/models/lvae/lvae.py,sha256=
|
|
142
|
-
careamics/models/lvae/noise_models.py,sha256=
|
|
143
|
-
careamics/models/lvae/stochastic.py,sha256=
|
|
141
|
+
careamics/models/lvae/likelihoods.py,sha256=qRYRewQv6PqzJO-7nDnFkK86-R8dI4HSp1_ilRSc2I4,12233
|
|
142
|
+
careamics/models/lvae/lvae.py,sha256=Jlw3mxVCxMDtjMvBWI9C9javHHyrngm8RfTYPsYhbI4,34767
|
|
143
|
+
careamics/models/lvae/noise_models.py,sha256=lpSygXsJmD_erP0V72u9i5CX51wpopLNCH_YjmEL29s,24095
|
|
144
|
+
careamics/models/lvae/stochastic.py,sha256=wiTrLBSYwOvsF1araKxUHy1CHp1mdH9bazctVo0NchA,16628
|
|
144
145
|
careamics/models/lvae/utils.py,sha256=EE3paHu3vhCaqfOrGypzUsImZJO94uBhx8q6kZ-R36o,11516
|
|
145
146
|
careamics/prediction_utils/__init__.py,sha256=k5hsPGY8FOkwIT0fQgrUz7fVCH2NlwuOdZiISdXjEWg,270
|
|
146
147
|
careamics/prediction_utils/lvae_prediction.py,sha256=ZwPFCSeUGsULIMoMQWRYKHfLFaDm7UKyGaUMVfSUqfs,6210
|
|
@@ -163,14 +164,15 @@ careamics/utils/base_enum.py,sha256=bz1D8mDx5V5hdnJ3WAzJXWHJTbgwAky5FprUt9F5cMA,
|
|
|
163
164
|
careamics/utils/context.py,sha256=SoTZfzG6fO4SDOGHOTL2Xlm1n1CSgb9B57GVhrEkFls,1436
|
|
164
165
|
careamics/utils/lightning_utils.py,sha256=DMMmqx-AlNtddBCqm8b_W3h09qUetz32OMPhdDieFwg,1769
|
|
165
166
|
careamics/utils/logging.py,sha256=5U4VsQ4m4OajtirLH6qUjrM1CAc-oXeCsd6JyROjkWE,10337
|
|
166
|
-
careamics/utils/metrics.py,sha256=
|
|
167
|
+
careamics/utils/metrics.py,sha256=i9TQNzVF6lUL9c6OwRZFFDhelZfinkEDpWSCKeduscc,10853
|
|
167
168
|
careamics/utils/path_utils.py,sha256=8AugiG5DOmzgSnTCJI8vypXaPE0XhnR-9pzeiFUZ-0I,554
|
|
169
|
+
careamics/utils/plotting.py,sha256=cea1GQB932j2UA3IQZnh-0EenQdnjzPOFoGoFKJ4how,2518
|
|
168
170
|
careamics/utils/ram.py,sha256=tksyn8dVX_iJXmrDZDGub32hFZWIaNxnMheO5G1p43I,244
|
|
169
171
|
careamics/utils/receptive_field.py,sha256=Y2h4c8S6glX3qcx5KHDmO17Kkuyey9voxfoXyqcAfiM,3296
|
|
170
172
|
careamics/utils/serializers.py,sha256=mILUhz75IMpGKnEzcYu9hlOPG8YIiIW09fk6eZM7Y8k,1427
|
|
171
173
|
careamics/utils/torch_utils.py,sha256=_Cf3HdlIRl5hxfpUg9aofCSlcW7GSsIJxsbSORXko0U,3010
|
|
172
|
-
careamics-0.0.
|
|
173
|
-
careamics-0.0.
|
|
174
|
-
careamics-0.0.
|
|
175
|
-
careamics-0.0.
|
|
176
|
-
careamics-0.0.
|
|
174
|
+
careamics-0.0.7.dist-info/METADATA,sha256=K3w_i8E8INNeZwEQdVtGHDFS_C0031Bfqzn23e8SSO4,3967
|
|
175
|
+
careamics-0.0.7.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
176
|
+
careamics-0.0.7.dist-info/entry_points.txt,sha256=2fSNVXJWDJgFLATVj7MkjFNvpl53amG8tUzC3jf7G1s,53
|
|
177
|
+
careamics-0.0.7.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
|
|
178
|
+
careamics-0.0.7.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|