careamics 0.0.5__py3-none-any.whl → 0.0.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of careamics might be problematic. Click here for more details.

Files changed (111) hide show
  1. careamics/__init__.py +17 -2
  2. careamics/careamist.py +4 -3
  3. careamics/cli/conf.py +1 -2
  4. careamics/cli/main.py +1 -2
  5. careamics/cli/utils.py +3 -3
  6. careamics/config/__init__.py +47 -25
  7. careamics/config/algorithms/__init__.py +15 -0
  8. careamics/config/algorithms/care_algorithm_model.py +38 -0
  9. careamics/config/algorithms/n2n_algorithm_model.py +30 -0
  10. careamics/config/algorithms/n2v_algorithm_model.py +29 -0
  11. careamics/config/algorithms/unet_algorithm_model.py +88 -0
  12. careamics/config/{vae_algorithm_model.py → algorithms/vae_algorithm_model.py} +14 -12
  13. careamics/config/architectures/__init__.py +1 -11
  14. careamics/config/architectures/architecture_model.py +3 -3
  15. careamics/config/architectures/lvae_model.py +6 -1
  16. careamics/config/architectures/unet_model.py +1 -0
  17. careamics/config/care_configuration.py +100 -0
  18. careamics/config/configuration.py +354 -0
  19. careamics/config/{configuration_factory.py → configuration_factories.py} +185 -57
  20. careamics/config/configuration_io.py +85 -0
  21. careamics/config/data/__init__.py +10 -0
  22. careamics/config/{data_model.py → data/data_model.py} +91 -186
  23. careamics/config/data/n2v_data_model.py +193 -0
  24. careamics/config/likelihood_model.py +1 -2
  25. careamics/config/n2n_configuration.py +101 -0
  26. careamics/config/n2v_configuration.py +266 -0
  27. careamics/config/nm_model.py +1 -2
  28. careamics/config/support/__init__.py +7 -7
  29. careamics/config/support/supported_algorithms.py +5 -4
  30. careamics/config/support/supported_architectures.py +0 -4
  31. careamics/config/transformations/__init__.py +10 -4
  32. careamics/config/transformations/transform_model.py +3 -3
  33. careamics/config/transformations/transform_unions.py +42 -0
  34. careamics/config/validators/__init__.py +12 -1
  35. careamics/config/validators/model_validators.py +84 -0
  36. careamics/config/validators/validator_utils.py +3 -3
  37. careamics/dataset/__init__.py +2 -2
  38. careamics/dataset/dataset_utils/__init__.py +3 -3
  39. careamics/dataset/dataset_utils/dataset_utils.py +4 -6
  40. careamics/dataset/dataset_utils/file_utils.py +9 -9
  41. careamics/dataset/dataset_utils/iterate_over_files.py +4 -3
  42. careamics/dataset/in_memory_dataset.py +11 -12
  43. careamics/dataset/iterable_dataset.py +4 -4
  44. careamics/dataset/iterable_pred_dataset.py +2 -1
  45. careamics/dataset/iterable_tiled_pred_dataset.py +2 -1
  46. careamics/dataset/patching/random_patching.py +11 -10
  47. careamics/dataset/patching/sequential_patching.py +26 -26
  48. careamics/dataset/patching/validate_patch_dimension.py +3 -3
  49. careamics/dataset/tiling/__init__.py +2 -2
  50. careamics/dataset/tiling/collate_tiles.py +3 -3
  51. careamics/dataset/tiling/lvae_tiled_patching.py +2 -1
  52. careamics/dataset/tiling/tiled_patching.py +11 -10
  53. careamics/file_io/__init__.py +5 -5
  54. careamics/file_io/read/__init__.py +1 -1
  55. careamics/file_io/read/get_func.py +2 -2
  56. careamics/file_io/write/__init__.py +2 -2
  57. careamics/lightning/__init__.py +5 -5
  58. careamics/lightning/callbacks/__init__.py +1 -1
  59. careamics/lightning/callbacks/prediction_writer_callback/__init__.py +3 -3
  60. careamics/lightning/callbacks/prediction_writer_callback/prediction_writer_callback.py +2 -1
  61. careamics/lightning/callbacks/prediction_writer_callback/write_strategy.py +2 -1
  62. careamics/lightning/callbacks/progress_bar_callback.py +3 -3
  63. careamics/lightning/lightning_module.py +11 -7
  64. careamics/lightning/train_data_module.py +36 -45
  65. careamics/losses/__init__.py +3 -3
  66. careamics/lvae_training/calibration.py +64 -57
  67. careamics/lvae_training/dataset/lc_dataset.py +2 -1
  68. careamics/lvae_training/dataset/multich_dataset.py +2 -2
  69. careamics/lvae_training/dataset/types.py +1 -1
  70. careamics/lvae_training/eval_utils.py +123 -128
  71. careamics/model_io/__init__.py +1 -1
  72. careamics/model_io/bioimage/__init__.py +1 -1
  73. careamics/model_io/bioimage/_readme_factory.py +1 -1
  74. careamics/model_io/bioimage/model_description.py +17 -17
  75. careamics/model_io/bmz_io.py +6 -17
  76. careamics/model_io/model_io_utils.py +9 -9
  77. careamics/models/layers.py +16 -16
  78. careamics/models/lvae/likelihoods.py +2 -0
  79. careamics/models/lvae/lvae.py +13 -4
  80. careamics/models/lvae/noise_models.py +280 -217
  81. careamics/models/lvae/stochastic.py +1 -0
  82. careamics/models/model_factory.py +2 -15
  83. careamics/models/unet.py +8 -8
  84. careamics/prediction_utils/__init__.py +1 -1
  85. careamics/prediction_utils/prediction_outputs.py +15 -15
  86. careamics/prediction_utils/stitch_prediction.py +6 -6
  87. careamics/transforms/__init__.py +5 -5
  88. careamics/transforms/compose.py +13 -13
  89. careamics/transforms/n2v_manipulate.py +3 -3
  90. careamics/transforms/pixel_manipulation.py +9 -9
  91. careamics/transforms/xy_random_rotate90.py +4 -4
  92. careamics/utils/__init__.py +5 -5
  93. careamics/utils/context.py +2 -1
  94. careamics/utils/logging.py +11 -10
  95. careamics/utils/metrics.py +25 -0
  96. careamics/utils/plotting.py +78 -0
  97. careamics/utils/torch_utils.py +7 -7
  98. {careamics-0.0.5.dist-info → careamics-0.0.7.dist-info}/METADATA +13 -11
  99. careamics-0.0.7.dist-info/RECORD +178 -0
  100. careamics/config/architectures/custom_model.py +0 -162
  101. careamics/config/architectures/register_model.py +0 -103
  102. careamics/config/configuration_model.py +0 -603
  103. careamics/config/fcn_algorithm_model.py +0 -152
  104. careamics/config/references/__init__.py +0 -45
  105. careamics/config/references/algorithm_descriptions.py +0 -132
  106. careamics/config/references/references.py +0 -39
  107. careamics/config/transformations/transform_union.py +0 -20
  108. careamics-0.0.5.dist-info/RECORD +0 -171
  109. {careamics-0.0.5.dist-info → careamics-0.0.7.dist-info}/WHEEL +0 -0
  110. {careamics-0.0.5.dist-info → careamics-0.0.7.dist-info}/entry_points.txt +0 -0
  111. {careamics-0.0.5.dist-info → careamics-0.0.7.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,266 @@
1
+ """N2V configuration."""
2
+
3
+ from bioimageio.spec.generic.v0_3 import CiteEntry
4
+ from pydantic import model_validator
5
+ from typing_extensions import Self
6
+
7
+ from careamics.config.algorithms import N2VAlgorithm
8
+ from careamics.config.configuration import Configuration
9
+ from careamics.config.data.n2v_data_model import N2VDataConfig
10
+ from careamics.config.support import SupportedPixelManipulation
11
+
12
+ N2V = "Noise2Void"
13
+ N2V2 = "N2V2"
14
+ STRUCT_N2V = "StructN2V"
15
+ STRUCT_N2V2 = "StructN2V2"
16
+
17
+ N2V_REF = CiteEntry(
18
+ text='Krull, A., Buchholz, T.O. and Jug, F., 2019. "Noise2Void - Learning '
19
+ 'denoising from single noisy images". In Proceedings of the IEEE/CVF '
20
+ "conference on computer vision and pattern recognition (pp. 2129-2137).",
21
+ doi="10.1109/cvpr.2019.00223",
22
+ )
23
+
24
+ N2V2_REF = CiteEntry(
25
+ text="Höck, E., Buchholz, T.O., Brachmann, A., Jug, F. and Freytag, A., "
26
+ '2022. "N2V2 - Fixing Noise2Void checkerboard artifacts with modified '
27
+ 'sampling strategies and a tweaked network architecture". In European '
28
+ "Conference on Computer Vision (pp. 503-518).",
29
+ doi="10.1007/978-3-031-25069-9_33",
30
+ )
31
+
32
+ STRUCTN2V_REF = CiteEntry(
33
+ text="Broaddus, C., Krull, A., Weigert, M., Schmidt, U. and Myers, G., 2020."
34
+ '"Removing structured noise with self-supervised blind-spot '
35
+ 'networks". In 2020 IEEE 17th International Symposium on Biomedical '
36
+ "Imaging (ISBI) (pp. 159-163).",
37
+ doi="10.1109/isbi45749.2020.9098336",
38
+ )
39
+
40
+ N2V_DESCRIPTION = (
41
+ "Noise2Void is a UNet-based self-supervised algorithm that "
42
+ "uses blind-spot training to denoise images. In short, in every "
43
+ "patches during training, random pixels are selected and their "
44
+ "value replaced by a neighboring pixel value. The network is then "
45
+ "trained to predict the original pixel value. The algorithm "
46
+ "relies on the continuity of the signal (neighboring pixels have "
47
+ "similar values) and the pixel-wise independence of the noise "
48
+ "(the noise in a pixel is not correlated with the noise in "
49
+ "neighboring pixels)."
50
+ )
51
+
52
+ N2V2_DESCRIPTION = (
53
+ "N2V2 is a variant of Noise2Void. "
54
+ + N2V_DESCRIPTION
55
+ + "\nN2V2 introduces blur-pool layers and removed skip "
56
+ "connections in the UNet architecture to remove checkboard "
57
+ "artefacts, a common artefacts ocurring in Noise2Void."
58
+ )
59
+
60
+ STR_N2V_DESCRIPTION = (
61
+ "StructN2V is a variant of Noise2Void. "
62
+ + N2V_DESCRIPTION
63
+ + "\nStructN2V uses a linear mask (horizontal or vertical) to replace "
64
+ "the pixel values of neighbors of the masked pixels by a random "
65
+ "value. Such masking allows removing 1D structured noise from the "
66
+ "the images, the main failure case of the original N2V."
67
+ )
68
+
69
+ STR_N2V2_DESCRIPTION = (
70
+ "StructN2V2 is a a variant of Noise2Void that uses both "
71
+ "structN2V and N2V2. "
72
+ + N2V_DESCRIPTION
73
+ + "\nStructN2V2 uses a linear mask (horizontal or vertical) to replace "
74
+ "the pixel values of neighbors of the masked pixels by a random "
75
+ "value. Such masking allows removing 1D structured noise from the "
76
+ "the images, the main failure case of the original N2V."
77
+ "\nN2V2 introduces blur-pool layers and removed skip connections in "
78
+ "the UNet architecture to remove checkboard artefacts, a common "
79
+ "artefacts ocurring in Noise2Void."
80
+ )
81
+
82
+
83
+ class N2VConfiguration(Configuration):
84
+ """N2V configuration."""
85
+
86
+ algorithm_config: N2VAlgorithm
87
+
88
+ data_config: N2VDataConfig
89
+
90
+ @model_validator(mode="after")
91
+ def validate_n2v2(self) -> Self:
92
+ """Validate that the N2V2 strategy and models are set correctly.
93
+
94
+ Returns
95
+ -------
96
+ Self
97
+ The validateed configuration.
98
+
99
+
100
+ Raises
101
+ ------
102
+ ValueError
103
+ If N2V2 is used with the wrong pixel manipulation strategy.
104
+ """
105
+ if self.algorithm_config.model.n2v2:
106
+ if (
107
+ self.data_config.get_masking_strategy()
108
+ != SupportedPixelManipulation.MEDIAN.value
109
+ ):
110
+ raise ValueError(
111
+ f"N2V2 can only be used with the "
112
+ f"{SupportedPixelManipulation.MEDIAN} pixel manipulation strategy"
113
+ f". Change the N2VManipulate transform strategy."
114
+ )
115
+ else:
116
+ if (
117
+ self.data_config.get_masking_strategy()
118
+ != SupportedPixelManipulation.UNIFORM.value
119
+ ):
120
+ raise ValueError(
121
+ f"N2V can only be used with the "
122
+ f"{SupportedPixelManipulation.UNIFORM} pixel manipulation strategy"
123
+ f". Change the N2VManipulate transform strategy."
124
+ )
125
+ return self
126
+
127
+ def set_n2v2(self, use_n2v2: bool) -> None:
128
+ """
129
+ Set the configuration to use N2V2 or the vanilla Noise2Void.
130
+
131
+ Parameters
132
+ ----------
133
+ use_n2v2 : bool
134
+ Whether to use N2V2.
135
+ """
136
+ self.data_config.set_n2v2(use_n2v2)
137
+ self.algorithm_config.model.n2v2 = use_n2v2
138
+
139
+ def get_algorithm_friendly_name(self) -> str:
140
+ """
141
+ Get the friendly name of the algorithm.
142
+
143
+ Returns
144
+ -------
145
+ str
146
+ Friendly name.
147
+ """
148
+ use_n2v2 = self.algorithm_config.model.n2v2
149
+ use_structN2V = self.data_config.is_using_struct_n2v()
150
+
151
+ if use_n2v2 and use_structN2V:
152
+ return STRUCT_N2V2
153
+ elif use_n2v2:
154
+ return N2V2
155
+ elif use_structN2V:
156
+ return STRUCT_N2V
157
+ else:
158
+ return N2V
159
+
160
+ def get_algorithm_keywords(self) -> list[str]:
161
+ """
162
+ Get algorithm keywords.
163
+
164
+ Returns
165
+ -------
166
+ list[str]
167
+ List of keywords.
168
+ """
169
+ use_n2v2 = self.algorithm_config.model.n2v2
170
+ use_structN2V = self.data_config.is_using_struct_n2v()
171
+
172
+ keywords = [
173
+ "denoising",
174
+ "restoration",
175
+ "UNet",
176
+ "3D" if "Z" in self.data_config.axes else "2D",
177
+ "CAREamics",
178
+ "pytorch",
179
+ N2V,
180
+ ]
181
+
182
+ if use_n2v2:
183
+ keywords.append(N2V2)
184
+ if use_structN2V:
185
+ keywords.append(STRUCT_N2V)
186
+
187
+ return keywords
188
+
189
+ def get_algorithm_references(self) -> str:
190
+ """
191
+ Get the algorithm references.
192
+
193
+ This is used to generate the README of the BioImage Model Zoo export.
194
+
195
+ Returns
196
+ -------
197
+ str
198
+ Algorithm references.
199
+ """
200
+ use_n2v2 = self.algorithm_config.model.n2v2
201
+ use_structN2V = self.data_config.is_using_struct_n2v()
202
+
203
+ references = [
204
+ N2V_REF.text + " doi: " + N2V_REF.doi,
205
+ N2V2_REF.text + " doi: " + N2V2_REF.doi,
206
+ STRUCTN2V_REF.text + " doi: " + STRUCTN2V_REF.doi,
207
+ ]
208
+
209
+ # return the (struct)N2V(2) references
210
+ if use_n2v2 and use_structN2V:
211
+ return "\n".join(references)
212
+ elif use_n2v2:
213
+ references.pop(-1)
214
+ return "\n".join(references)
215
+ elif use_structN2V:
216
+ references.pop(-2)
217
+ return "\n".join(references)
218
+ else:
219
+ return references[0]
220
+
221
+ def get_algorithm_citations(self) -> list[CiteEntry]:
222
+ """
223
+ Return a list of citation entries of the current algorithm.
224
+
225
+ This is used to generate the model description for the BioImage Model Zoo.
226
+
227
+ Returns
228
+ -------
229
+ List[CiteEntry]
230
+ List of citation entries.
231
+ """
232
+ use_n2v2 = self.algorithm_config.model.n2v2
233
+ use_structN2V = self.data_config.is_using_struct_n2v()
234
+
235
+ references = [N2V_REF]
236
+
237
+ if use_n2v2:
238
+ references.append(N2V2_REF)
239
+
240
+ if use_structN2V:
241
+ references.append(STRUCTN2V_REF)
242
+
243
+ return references
244
+
245
+ def get_algorithm_description(self) -> str:
246
+ """
247
+ Return a description of the algorithm.
248
+
249
+ This method is used to generate the README of the BioImage Model Zoo export.
250
+
251
+ Returns
252
+ -------
253
+ str
254
+ Description of the algorithm.
255
+ """
256
+ use_n2v2 = self.algorithm_config.model.n2v2
257
+ use_structN2V = self.data_config.is_using_struct_n2v()
258
+
259
+ if use_n2v2 and use_structN2V:
260
+ return STR_N2V2_DESCRIPTION
261
+ elif use_n2v2:
262
+ return N2V2_DESCRIPTION
263
+ elif use_structN2V:
264
+ return STR_N2V_DESCRIPTION
265
+ else:
266
+ return N2V_DESCRIPTION
@@ -1,7 +1,7 @@
1
1
  """Noise models config."""
2
2
 
3
3
  from pathlib import Path
4
- from typing import Literal, Optional, Union
4
+ from typing import Annotated, Literal, Optional, Union
5
5
 
6
6
  import numpy as np
7
7
  import torch
@@ -12,7 +12,6 @@ from pydantic import (
12
12
  PlainSerializer,
13
13
  PlainValidator,
14
14
  )
15
- from typing_extensions import Annotated
16
15
 
17
16
  from careamics.utils.serializers import _array_to_json, _to_numpy
18
17
 
@@ -5,17 +5,17 @@ corresponding configuration options in the Pydantic models.
5
5
  """
6
6
 
7
7
  __all__ = [
8
- "SupportedArchitecture",
9
8
  "SupportedActivation",
10
- "SupportedOptimizer",
11
- "SupportedScheduler",
12
- "SupportedLoss",
13
9
  "SupportedAlgorithm",
14
- "SupportedPixelManipulation",
15
- "SupportedTransform",
10
+ "SupportedArchitecture",
16
11
  "SupportedData",
17
- "SupportedStructAxis",
18
12
  "SupportedLogger",
13
+ "SupportedLoss",
14
+ "SupportedOptimizer",
15
+ "SupportedPixelManipulation",
16
+ "SupportedScheduler",
17
+ "SupportedStructAxis",
18
+ "SupportedTransform",
19
19
  ]
20
20
 
21
21
 
@@ -6,7 +6,11 @@ from careamics.utils import BaseEnum
6
6
 
7
7
 
8
8
  class SupportedAlgorithm(str, BaseEnum):
9
- """Algorithms available in CAREamics."""
9
+ """Algorithms available in CAREamics.
10
+
11
+ These definitions are the same as the keyword `name` of the algorithm
12
+ configurations.
13
+ """
10
14
 
11
15
  N2V = "n2v"
12
16
  """Noise2Void algorithm, a self-supervised approach based on blind denoising."""
@@ -25,9 +29,6 @@ class SupportedAlgorithm(str, BaseEnum):
25
29
  DENOISPLIT = "denoisplit"
26
30
  """An image splitting and denoising approach based on ladder VAE architectures."""
27
31
 
28
- CUSTOM = "custom"
29
- """Custom algorithm, used for cases where a custom architecture is provided."""
30
-
31
32
  # PN2V = "pn2v"
32
33
  # HDN = "hdn"
33
34
  # SEG = "segmentation"
@@ -11,7 +11,3 @@ class SupportedArchitecture(str, BaseEnum):
11
11
 
12
12
  LVAE = "LVAE"
13
13
  """Ladder Variational Autoencoder used for muSplit and denoiSplit."""
14
-
15
- CUSTOM = "custom"
16
- """Keyword used for custom architectures provided by users and only compatible
17
- with `FCNAlgorithmConfig` configuration."""
@@ -1,18 +1,24 @@
1
1
  """CAREamics transformation Pydantic models."""
2
2
 
3
3
  __all__ = [
4
+ "N2V_TRANSFORMS_UNION",
5
+ "NORM_AND_SPATIAL_UNION",
6
+ "SPATIAL_TRANSFORMS_UNION",
4
7
  "N2VManipulateModel",
5
- "XYFlipModel",
6
8
  "NormalizeModel",
7
- "XYRandomRotate90Model",
8
9
  "TransformModel",
9
- "TRANSFORMS_UNION",
10
+ "XYFlipModel",
11
+ "XYRandomRotate90Model",
10
12
  ]
11
13
 
12
14
 
13
15
  from .n2v_manipulate_model import N2VManipulateModel
14
16
  from .normalize_model import NormalizeModel
15
17
  from .transform_model import TransformModel
16
- from .transform_union import TRANSFORMS_UNION
18
+ from .transform_unions import (
19
+ N2V_TRANSFORMS_UNION,
20
+ NORM_AND_SPATIAL_UNION,
21
+ SPATIAL_TRANSFORMS_UNION,
22
+ )
17
23
  from .xy_flip_model import XYFlipModel
18
24
  from .xy_random_rotate90_model import XYRandomRotate90Model
@@ -1,6 +1,6 @@
1
1
  """Parent model for the transforms."""
2
2
 
3
- from typing import Any, Dict
3
+ from typing import Any
4
4
 
5
5
  from pydantic import BaseModel, ConfigDict
6
6
 
@@ -23,7 +23,7 @@ class TransformModel(BaseModel):
23
23
 
24
24
  name: str
25
25
 
26
- def model_dump(self, **kwargs) -> Dict[str, Any]:
26
+ def model_dump(self, **kwargs) -> dict[str, Any]:
27
27
  """
28
28
  Return the model as a dictionary.
29
29
 
@@ -34,7 +34,7 @@ class TransformModel(BaseModel):
34
34
 
35
35
  Returns
36
36
  -------
37
- Dict[str, Any]
37
+ {str: Any}
38
38
  Dictionary representation of the model.
39
39
  """
40
40
  model_dict = super().model_dump(**kwargs)
@@ -0,0 +1,42 @@
1
+ """Type used to represent all transformations users can create."""
2
+
3
+ from typing import Annotated, Union
4
+
5
+ from pydantic import Discriminator
6
+
7
+ from .n2v_manipulate_model import N2VManipulateModel
8
+ from .normalize_model import NormalizeModel
9
+ from .xy_flip_model import XYFlipModel
10
+ from .xy_random_rotate90_model import XYRandomRotate90Model
11
+
12
+ NORM_AND_SPATIAL_UNION = Annotated[
13
+ Union[
14
+ NormalizeModel,
15
+ XYFlipModel,
16
+ XYRandomRotate90Model,
17
+ N2VManipulateModel,
18
+ ],
19
+ Discriminator("name"), # used to tell the different transform models apart
20
+ ]
21
+ """All transforms including normalization."""
22
+
23
+
24
+ SPATIAL_TRANSFORMS_UNION = Annotated[
25
+ Union[
26
+ XYFlipModel,
27
+ XYRandomRotate90Model,
28
+ ],
29
+ Discriminator("name"), # used to tell the different transform models apart
30
+ ]
31
+ """Available spatial transforms in CAREamics."""
32
+
33
+
34
+ N2V_TRANSFORMS_UNION = Annotated[
35
+ Union[
36
+ XYFlipModel,
37
+ XYRandomRotate90Model,
38
+ N2VManipulateModel,
39
+ ],
40
+ Discriminator("name"), # used to tell the different transform models apart
41
+ ]
42
+ """Available N2V-compatible transforms in CAREamics."""
@@ -1,5 +1,16 @@
1
1
  """Validator utilities."""
2
2
 
3
- __all__ = ["check_axes_validity", "patch_size_ge_than_8_power_of_2"]
3
+ __all__ = [
4
+ "check_axes_validity",
5
+ "model_matching_in_out_channels",
6
+ "model_without_final_activation",
7
+ "model_without_n2v2",
8
+ "patch_size_ge_than_8_power_of_2",
9
+ ]
4
10
 
11
+ from .model_validators import (
12
+ model_matching_in_out_channels,
13
+ model_without_final_activation,
14
+ model_without_n2v2,
15
+ )
5
16
  from .validator_utils import check_axes_validity, patch_size_ge_than_8_power_of_2
@@ -0,0 +1,84 @@
1
+ """Architecture model validators."""
2
+
3
+ from careamics.config.architectures import UNetModel
4
+
5
+
6
+ def model_without_n2v2(model: UNetModel) -> UNetModel:
7
+ """Validate that the Unet model does not have the n2v2 attribute.
8
+
9
+ Parameters
10
+ ----------
11
+ model : UNetModel
12
+ Model to validate.
13
+
14
+ Returns
15
+ -------
16
+ UNetModel
17
+ The validated model.
18
+
19
+ Raises
20
+ ------
21
+ ValueError
22
+ If the model has the `n2v2` attribute set to `True`.
23
+ """
24
+ if model.n2v2:
25
+ raise ValueError(
26
+ "The algorithm does not support the `n2v2` attribute in the model. "
27
+ "Set it to `False`."
28
+ )
29
+
30
+ return model
31
+
32
+
33
+ def model_without_final_activation(model: UNetModel) -> UNetModel:
34
+ """Validate that the UNet model does not have the final_activation.
35
+
36
+ Parameters
37
+ ----------
38
+ model : UNetModel
39
+ Model to validate.
40
+
41
+ Returns
42
+ -------
43
+ UNetModel
44
+ The validated model.
45
+
46
+ Raises
47
+ ------
48
+ ValueError
49
+ If the model has the final_activation attribute set.
50
+ """
51
+ if model.final_activation != "None":
52
+ raise ValueError(
53
+ "The algorithm does not support a `final_activation` in the model. "
54
+ 'Set it to `"None"`.'
55
+ )
56
+
57
+ return model
58
+
59
+
60
+ def model_matching_in_out_channels(model: UNetModel) -> UNetModel:
61
+ """Validate that the UNet model has the same number of channel inputs and outputs.
62
+
63
+ Parameters
64
+ ----------
65
+ model : UNetModel
66
+ Model to validate.
67
+
68
+ Returns
69
+ -------
70
+ UNetModel
71
+ Validated model.
72
+
73
+ Raises
74
+ ------
75
+ ValueError
76
+ If the model has different number of input and output channels.
77
+ """
78
+ if model.num_classes != model.in_channels:
79
+ raise ValueError(
80
+ "The algorithm requires the same number of input and output channels. "
81
+ "Make sure that `in_channels` and `num_classes` are equal."
82
+ )
83
+
84
+ return model
@@ -4,7 +4,7 @@ Validator functions.
4
4
  These functions are used to validate dimensions and axes of inputs.
5
5
  """
6
6
 
7
- from typing import List, Optional, Tuple, Union
7
+ from typing import Optional, Union
8
8
 
9
9
  _AXES = "STCZYX"
10
10
 
@@ -79,14 +79,14 @@ def value_ge_than_8_power_of_2(
79
79
 
80
80
 
81
81
  def patch_size_ge_than_8_power_of_2(
82
- patch_list: Optional[Union[List[int], Union[Tuple[int, ...]]]],
82
+ patch_list: Optional[Union[list[int], Union[tuple[int, ...]]]],
83
83
  ) -> None:
84
84
  """
85
85
  Validate that each entry is greater or equal than 8 and a power of 2.
86
86
 
87
87
  Parameters
88
88
  ----------
89
- patch_list : Optional[Union[List[int]]]
89
+ patch_list : list or typle of int, or None
90
90
  Patch size.
91
91
 
92
92
  Raises
@@ -4,9 +4,9 @@ __all__ = [
4
4
  "InMemoryDataset",
5
5
  "InMemoryPredDataset",
6
6
  "InMemoryTiledPredDataset",
7
- "PathIterableDataset",
8
- "IterableTiledPredDataset",
9
7
  "IterablePredDataset",
8
+ "IterableTiledPredDataset",
9
+ "PathIterableDataset",
10
10
  ]
11
11
 
12
12
  from .in_memory_dataset import InMemoryDataset
@@ -1,13 +1,13 @@
1
1
  """Files and arrays utils used in the datasets."""
2
2
 
3
3
  __all__ = [
4
- "reshape_array",
4
+ "WelfordStatistics",
5
5
  "compute_normalization_stats",
6
6
  "get_files_size",
7
+ "iterate_over_files",
7
8
  "list_files",
9
+ "reshape_array",
8
10
  "validate_source_target_files",
9
- "iterate_over_files",
10
- "WelfordStatistics",
11
11
  ]
12
12
 
13
13
 
@@ -1,7 +1,5 @@
1
1
  """Dataset utilities."""
2
2
 
3
- from typing import List, Tuple
4
-
5
3
  import numpy as np
6
4
 
7
5
  from careamics.utils.logging import get_logger
@@ -10,14 +8,14 @@ logger = get_logger(__name__)
10
8
 
11
9
 
12
10
  def _get_shape_order(
13
- shape_in: Tuple[int, ...], axes_in: str, ref_axes: str = "STCZYX"
14
- ) -> Tuple[Tuple[int, ...], str, List[int]]:
11
+ shape_in: tuple[int, ...], axes_in: str, ref_axes: str = "STCZYX"
12
+ ) -> tuple[tuple[int, ...], str, list[int]]:
15
13
  """
16
14
  Compute a new shape for the array based on the reference axes.
17
15
 
18
16
  Parameters
19
17
  ----------
20
- shape_in : Tuple[int, ...]
18
+ shape_in : tuple[int, ...]
21
19
  Input shape.
22
20
  axes_in : str
23
21
  Input axes.
@@ -26,7 +24,7 @@ def _get_shape_order(
26
24
 
27
25
  Returns
28
26
  -------
29
- Tuple[Tuple[int, ...], str, List[int]]
27
+ tuple[tuple[int, ...], str, list[int]]
30
28
  New shape, new axes, indices of axes in the new axes order.
31
29
  """
32
30
  indices = [axes_in.find(k) for k in ref_axes]