careamics 0.0.2__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of careamics might be problematic. Click here for more details.

Files changed (64) hide show
  1. careamics/careamist.py +14 -11
  2. careamics/config/__init__.py +7 -3
  3. careamics/config/architectures/__init__.py +2 -2
  4. careamics/config/architectures/architecture_model.py +1 -1
  5. careamics/config/architectures/custom_model.py +11 -8
  6. careamics/config/architectures/lvae_model.py +174 -0
  7. careamics/config/configuration_factory.py +11 -3
  8. careamics/config/configuration_model.py +7 -3
  9. careamics/config/data_model.py +33 -8
  10. careamics/config/{algorithm_model.py → fcn_algorithm_model.py} +28 -43
  11. careamics/config/likelihood_model.py +43 -0
  12. careamics/config/nm_model.py +101 -0
  13. careamics/config/support/supported_activations.py +1 -0
  14. careamics/config/support/supported_algorithms.py +17 -4
  15. careamics/config/support/supported_architectures.py +8 -11
  16. careamics/config/support/supported_losses.py +3 -1
  17. careamics/config/transformations/n2v_manipulate_model.py +1 -1
  18. careamics/config/vae_algorithm_model.py +171 -0
  19. careamics/dataset/tiling/lvae_tiled_patching.py +282 -0
  20. careamics/file_io/read/tiff.py +1 -1
  21. careamics/lightning/__init__.py +3 -2
  22. careamics/lightning/callbacks/hyperparameters_callback.py +1 -1
  23. careamics/lightning/callbacks/prediction_writer_callback/write_strategy_factory.py +1 -1
  24. careamics/lightning/lightning_module.py +365 -9
  25. careamics/lightning/predict_data_module.py +2 -2
  26. careamics/lightning/train_data_module.py +2 -2
  27. careamics/losses/__init__.py +11 -1
  28. careamics/losses/fcn/__init__.py +1 -0
  29. careamics/losses/{losses.py → fcn/losses.py} +1 -1
  30. careamics/losses/loss_factory.py +112 -6
  31. careamics/losses/lvae/__init__.py +1 -0
  32. careamics/losses/lvae/loss_utils.py +83 -0
  33. careamics/losses/lvae/losses.py +445 -0
  34. careamics/lvae_training/dataset/__init__.py +0 -0
  35. careamics/lvae_training/{data_utils.py → dataset/data_utils.py} +277 -194
  36. careamics/lvae_training/dataset/lc_dataset.py +259 -0
  37. careamics/lvae_training/dataset/lc_dataset_config.py +13 -0
  38. careamics/lvae_training/dataset/vae_data_config.py +179 -0
  39. careamics/lvae_training/{data_modules.py → dataset/vae_dataset.py} +306 -472
  40. careamics/lvae_training/get_config.py +1 -1
  41. careamics/lvae_training/train_lvae.py +6 -3
  42. careamics/model_io/bioimage/bioimage_utils.py +1 -1
  43. careamics/model_io/bioimage/model_description.py +2 -2
  44. careamics/model_io/bmz_io.py +19 -6
  45. careamics/model_io/model_io_utils.py +16 -4
  46. careamics/models/__init__.py +1 -3
  47. careamics/models/activation.py +2 -0
  48. careamics/models/lvae/__init__.py +3 -0
  49. careamics/models/lvae/layers.py +21 -21
  50. careamics/models/lvae/likelihoods.py +180 -128
  51. careamics/models/lvae/lvae.py +52 -136
  52. careamics/models/lvae/noise_models.py +318 -186
  53. careamics/models/lvae/utils.py +2 -2
  54. careamics/models/model_factory.py +22 -7
  55. careamics/prediction_utils/lvae_prediction.py +158 -0
  56. careamics/prediction_utils/lvae_tiling_manager.py +362 -0
  57. careamics/prediction_utils/stitch_prediction.py +16 -2
  58. careamics/transforms/pixel_manipulation.py +1 -1
  59. careamics/utils/metrics.py +74 -1
  60. {careamics-0.0.2.dist-info → careamics-0.0.3.dist-info}/METADATA +2 -2
  61. {careamics-0.0.2.dist-info → careamics-0.0.3.dist-info}/RECORD +63 -49
  62. careamics/config/architectures/vae_model.py +0 -42
  63. {careamics-0.0.2.dist-info → careamics-0.0.3.dist-info}/WHEEL +0 -0
  64. {careamics-0.0.2.dist-info → careamics-0.0.3.dist-info}/licenses/LICENSE +0 -0
@@ -4,7 +4,7 @@ Metrics submodule.
4
4
  This module contains various metrics and a metrics tracking class.
5
5
  """
6
6
 
7
- from typing import Union
7
+ from typing import Optional, Union
8
8
 
9
9
  import numpy as np
10
10
  import torch
@@ -113,3 +113,76 @@ def scale_invariant_psnr(
113
113
  range_parameter = (np.max(gt) - np.min(gt)) / np.std(gt)
114
114
  gt_ = _zero_mean(gt) / np.std(gt)
115
115
  return psnr(_zero_mean(gt_), _fix(gt_, pred), range_parameter)
116
+
117
+
118
+ class RunningPSNR:
119
+ """Compute the running PSNR during validation step in training.
120
+
121
+ This class allows to compute the PSNR on the entire validation set
122
+ one batch at the time.
123
+
124
+ Attributes
125
+ ----------
126
+ N : int
127
+ Number of elements seen so far during the epoch.
128
+ mse_sum : float
129
+ Running sum of the MSE over the N elements seen so far.
130
+ max : float
131
+ Running max value of the N target images seen so far.
132
+ min : float
133
+ Running min value of the N target images seen so far.
134
+ """
135
+
136
+ def __init__(self):
137
+ """Constructor."""
138
+ self.N = None
139
+ self.mse_sum = None
140
+ self.max = self.min = None
141
+ self.reset()
142
+
143
+ def reset(self):
144
+ """Reset the running PSNR computation.
145
+
146
+ Usually called at the end of each epoch.
147
+ """
148
+ self.mse_sum = 0
149
+ self.N = 0
150
+ self.max = self.min = None
151
+
152
+ def update(self, rec: torch.Tensor, tar: torch.Tensor) -> None:
153
+ """Update the running PSNR statistics given a new batch.
154
+
155
+ Parameters
156
+ ----------
157
+ rec : torch.Tensor
158
+ Reconstructed batch.
159
+ tar : torch.Tensor
160
+ Target batch.
161
+ """
162
+ ins_max = torch.max(tar).item()
163
+ ins_min = torch.min(tar).item()
164
+ if self.max is None:
165
+ assert self.min is None
166
+ self.max = ins_max
167
+ self.min = ins_min
168
+ else:
169
+ self.max = max(self.max, ins_max)
170
+ self.min = min(self.min, ins_min)
171
+
172
+ mse = (rec - tar) ** 2
173
+ elementwise_mse = torch.mean(mse.view(len(mse), -1), dim=1)
174
+ self.mse_sum += torch.nansum(elementwise_mse)
175
+ self.N += len(elementwise_mse) - torch.sum(torch.isnan(elementwise_mse))
176
+
177
+ def get(self) -> Optional[torch.Tensor]:
178
+ """Get the actual PSNR value given the running statistics.
179
+
180
+ Returns
181
+ -------
182
+ Optional[torch.Tensor]
183
+ PSNR value.
184
+ """
185
+ if self.N == 0 or self.N is None:
186
+ return None
187
+ rmse = torch.sqrt(self.mse_sum / self.N)
188
+ return 20 * torch.log10((self.max - self.min) / rmse)
@@ -1,10 +1,10 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: careamics
3
- Version: 0.0.2
3
+ Version: 0.0.3
4
4
  Summary: Toolbox for running N2V and friends.
5
5
  Project-URL: homepage, https://careamics.github.io/
6
6
  Project-URL: repository, https://github.com/CAREamics/careamics
7
- Author-email: Melisande Croft <melisande.croft@fht.org>, Joran Deschamps <joran.deschamps@fht.org>, Igor Zubarev <igor.zubarev@fht.org>
7
+ Author-email: CAREamics team <rse@fht.org>, Ashesh <ashesh.ashesh@fht.org>, Federico Carrara <federico.carrara@fht.org>, Melisande Croft <melisande.croft@fht.org>, Joran Deschamps <joran.deschamps@fht.org>, Vera Galinova <vera.galinova@fht.org>, Igor Zubarev <igor.zubarev@fht.org>
8
8
  License: BSD-3-Clause
9
9
  License-File: LICENSE
10
10
  Classifier: Development Status :: 3 - Alpha
@@ -1,39 +1,42 @@
1
1
  careamics/__init__.py,sha256=xBCerWN66hv3T7dRGiUYLflmbJtJt1HqbSg9JCWp8pY,391
2
- careamics/careamist.py,sha256=Mi6a4aUAUPH0YCQm2kObQepG5OFpjlHT0qm6GxAiq58,27496
2
+ careamics/careamist.py,sha256=wZxIf5E2Sebbcsd1IbTi6-VrPkI71M-kI9-bFHGmh-M,27867
3
3
  careamics/conftest.py,sha256=Od4WcaaP0UP-XUMrFr_oo4e6c2hi_RvNbuaRTopwlmI,911
4
4
  careamics/py.typed,sha256=esB4cHc6c07uVkGtqf8at7ttEnprwRxwk8obY8Qumq4,187
5
- careamics/config/__init__.py,sha256=qaR98bVRFnEHYGG5EgGBIa9P9AtMRmKzpXuc1exdteo,913
6
- careamics/config/algorithm_model.py,sha256=-Nx4E6M2EyBDozSTkXeYaj9b0KcIli0Gy6DE3P1WVfE,5443
5
+ careamics/config/__init__.py,sha256=M_Y0sGIVr1lQF4IpDeVkWkspbUNlbdH-iDjapMSGOoc,1127
7
6
  careamics/config/callback_model.py,sha256=EeYHqpMIPQwyNxLRzzX32Uncl5mZuB1bJO76RHpNymg,4555
8
- careamics/config/configuration_factory.py,sha256=Ckkv4ber2WSaa-BaoDNuyvpVMd02Q-9T27yziXJ-1Ak,18538
9
- careamics/config/configuration_model.py,sha256=4LbAt3zUtx05mfTRrXBqD57iQn2s0Y93f81M8Gce4zo,18698
10
- careamics/config/data_model.py,sha256=dpRthXU8lINT3laJygqka-fmUDT7U34QUHZYBX95oY8,15070
7
+ careamics/config/configuration_factory.py,sha256=TcB15HD81P-e-A2w8EfCdJLoYw3537tQ6NAAwKrSU6g,18799
8
+ careamics/config/configuration_model.py,sha256=efUHSlYonO_m6eUPQLRb4NlsTADCL5lGCrwXlOGIHFU,18893
9
+ careamics/config/data_model.py,sha256=zcVx8wN8IW-hMLXZ2jB7AWSQ1C2gSt87UtkoEtsClJA,15776
10
+ careamics/config/fcn_algorithm_model.py,sha256=rwABUX1XwMMenv5Ff4z-ZTneFIhW_qIjMAbb57RV150,5082
11
11
  careamics/config/inference_model.py,sha256=UE_-ZmCX6LFCbDBOwyGnvuAboF_JNX2m2LcF0WiwgCI,6961
12
+ careamics/config/likelihood_model.py,sha256=f8EmLi5MtOWXO_ZBrjSa27b7vThy579pY-cecstJQEw,1413
13
+ careamics/config/nm_model.py,sha256=g1WR7uBtOcZuhfTWaO1Ma0-5Pu4YmRLchVj9eU1_GoY,3897
12
14
  careamics/config/optimizer_models.py,sha256=p6gDYtO-jFtL7zVX0-Id-rGJWkkyhbU3EBrWD_4TxZE,5726
13
15
  careamics/config/tile_information.py,sha256=c-_xrVPOgcnjiEzQ-9A_GhNPamObkMANbeHaRP29R-4,2059
14
16
  careamics/config/training_model.py,sha256=9dfCcEcdPsGDW1Q0OIR_PmKjkWbZjeOmGIKuIyRd-0E,1875
15
- careamics/config/architectures/__init__.py,sha256=CdnViydyTdQixus3uWHBIgbgxmu9t1_ADehqpjN_57U,444
16
- careamics/config/architectures/architecture_model.py,sha256=4WvQQJGz5DLFjOUryZx0fqPuEMlF2RhtlV5XudJTIbc,922
17
- careamics/config/architectures/custom_model.py,sha256=IRaequRi5BXMPL14gLr1B_27_XWPeWxQwgHF9_EJMaU,4664
17
+ careamics/config/vae_algorithm_model.py,sha256=TkGyOPf_-vwfEFVRmst0q9Cnyz_Xa_U68Sy7VVKw4zE,6123
18
+ careamics/config/architectures/__init__.py,sha256=VyuBIopbqpR0KPq6cAeX3qPCrlbY8ZB_rGXwa2ApNvc,447
19
+ careamics/config/architectures/architecture_model.py,sha256=qqPpmkNLwTBC3nwOmXpl33UAvpDFsAxFRBw9MIsQgws,921
20
+ careamics/config/architectures/custom_model.py,sha256=-ROcKn_Ai7SZqzQLoEUc2BLAalgjyvoOnyDKUiY_cp0,4876
21
+ careamics/config/architectures/lvae_model.py,sha256=JqcRYH6809GsiGb1Mta_rx-Uc9MmWjnS7IIeplg_UFk,4710
18
22
  careamics/config/architectures/register_model.py,sha256=lHH0aUPmXtI3Bq_76zkhg07_Yb_nOJZkZJLCC_G-rZM,2434
19
23
  careamics/config/architectures/unet_model.py,sha256=8F2KosNkrXUP2bxlm-D1mowS9x3GOjyXjsEo1Kf-05k,3497
20
- careamics/config/architectures/vae_model.py,sha256=iLPwjI4B_Ivv_qQNUJc4-Gwm4z8UA3P5BsKQucRFEMI,962
21
24
  careamics/config/references/__init__.py,sha256=rZAQzmrciX5cNICcXaBH6sbE6N6L7_qYQUkasNy9y-c,763
22
25
  careamics/config/references/algorithm_descriptions.py,sha256=wR3hIoeg5eiUEPbwTxMpQYLTKQyRl_5naSDbBZOZESU,3541
23
26
  careamics/config/references/references.py,sha256=AXx08FJQxHb7SYOluCr_eQn_mbOris5dXqhKrCnhBTE,1573
24
27
  careamics/config/support/__init__.py,sha256=pKqk76kyBraiSC1SQos-cyiQwsfOLLkLuWj6Hw60LZ4,1041
25
- careamics/config/support/supported_activations.py,sha256=O27_dGDgw2P-DslKJsXGVAyS2NUQM6Ta4jeo2uTQlW0,519
26
- careamics/config/support/supported_algorithms.py,sha256=GCkauFDlmb2hJwFSdoIpGmpLjPeYFHOGy2NweKdw8T4,358
27
- careamics/config/support/supported_architectures.py,sha256=LLD6hyje9Q0BcvA7p2E8WW_cY5yEgMI_NAP4HBi27UU,540
28
+ careamics/config/support/supported_activations.py,sha256=CqOWoziIK5jZZXJO7G7cGg3TTid1POqv8FXqxjXxyME,535
29
+ careamics/config/support/supported_algorithms.py,sha256=Tt5PaV1mwSZdrc4XpW9M4-ofExoHnMgfebCSN6ns0AQ,953
30
+ careamics/config/support/supported_architectures.py,sha256=f93cRyeBOu5rYzvYrvWPVpjyK54GhyVTzCT1GNSdhI8,494
28
31
  careamics/config/support/supported_data.py,sha256=T_mDiWLFMVji_EpjBABUObAJcnv-XBnqp9XUZP37Tdk,2902
29
32
  careamics/config/support/supported_loggers.py,sha256=ubSOkGoYabGbm_jmyc1R3eFcvcP-sHmuyiBi_d3_wLg,197
30
- careamics/config/support/supported_losses.py,sha256=TPsMCuDdgb64TRyDwonnwHb1R-rkn3OzhtHimyVtrOY,540
33
+ careamics/config/support/supported_losses.py,sha256=2x5sZuxRbWJzodoL35I1mMYUUDMzk8UFiFdbyPwbJ4E,583
31
34
  careamics/config/support/supported_optimizers.py,sha256=xxbJsyohJTlHeUz2I4eRwcE3BeACs-6PH8cpX6w2wX8,1394
32
35
  careamics/config/support/supported_pixel_manipulations.py,sha256=rFiktUlvoFU7s1NAKEMqsXOzLw5eaw9GtCKUznvq6xc,432
33
36
  careamics/config/support/supported_struct_axis.py,sha256=alZMA5Y-BpDymLPUEd1zqVY0xMkgl9Rv1d4ujED6sco,424
34
37
  careamics/config/support/supported_transforms.py,sha256=4uob-bnZ5aqpN5aEI67-aa7bsmVCrKxEknzf2BAZ3W4,283
35
38
  careamics/config/transformations/__init__.py,sha256=oqwBAL2XXbPRZZ5iOzNqalX6SyJ1M-S0lkfbDGZOzyE,378
36
- careamics/config/transformations/n2v_manipulate_model.py,sha256=UTyfpm1mmMvYg_HoMzXilZhJGx_muiV-lLQ4UThCFJ0,1854
39
+ careamics/config/transformations/n2v_manipulate_model.py,sha256=Mdxc4J3vxe_dM2CIhmTwwGOIirQvrQXLoa2vRsTzoYI,1855
37
40
  careamics/config/transformations/normalize_model.py,sha256=1Rkk6IkF-7ytGU6HSzP-TpOi4RRWiQJ6fOd8zammXcg,1936
38
41
  careamics/config/transformations/transform_model.py,sha256=i7KAtSv4nah2H7uyJFKqg7RdKF68OHIPMNNvDo0HxGY,1000
39
42
  careamics/config/transformations/xy_flip_model.py,sha256=zU-uZ1b1zNZWckbho3onN-B7BHKhN7jbgbNZyRQhv2s,1025
@@ -60,65 +63,76 @@ careamics/dataset/patching/sequential_patching.py,sha256=_l3Q2uYIhjMJMaxDdSbHC9_
60
63
  careamics/dataset/patching/validate_patch_dimension.py,sha256=sQQ0-4b4uu60MNKkoWv95KxQ80J7Ku0CEk0-kAXlKeI,2134
61
64
  careamics/dataset/tiling/__init__.py,sha256=XynyAz85hVfkLtrG0lrMr_aBQm_YEwfu5uFcXMGHlOA,190
62
65
  careamics/dataset/tiling/collate_tiles.py,sha256=OrPZ-n-V3uGOc_7CcPnyEJqdbEVDlTfJfWmZnyBZ-HA,978
66
+ careamics/dataset/tiling/lvae_tiled_patching.py,sha256=MIdwy_tNOlkErHbiykHJNLTdDEc3sdjKX5DnMvgDILo,10157
63
67
  careamics/dataset/tiling/tiled_patching.py,sha256=ouxUWvttzmTY310CuiR25IGNVWgksVQAXoN4IXSi_G0,5942
64
68
  careamics/file_io/__init__.py,sha256=vdIx5JV3JwoyOeWnY_0tY6aekwPFy_8hBqe0Yj-aOH8,334
65
69
  careamics/file_io/read/__init__.py,sha256=I2Ios3fOoe_7f1nYT88qt2hcl0107aJCvA8yPfdpVIA,259
66
70
  careamics/file_io/read/get_func.py,sha256=yGXD0rTFD7u70FR0axrQtWies0aYW3iQ6f0Wfcd8z-8,1394
67
- careamics/file_io/read/tiff.py,sha256=_WVqUycI4NMk2GzDBEOWcGuSr1293673A1vs7WvZbS4,1358
71
+ careamics/file_io/read/tiff.py,sha256=UMofW33rvByK9B1zYGhSrWAiAA3uQUV3OVK7cq9d0gQ,1359
68
72
  careamics/file_io/read/zarr.py,sha256=2jzREAnJDQSv0qmsL-v00BxmiZ_sp0ijq667LZSQ_hY,1685
69
73
  careamics/file_io/write/__init__.py,sha256=syy-e55OKPqa2Fn7G6szJrAmmJ4JUJyr4Y4ZSnKK0zg,283
70
74
  careamics/file_io/write/get_func.py,sha256=hyGHe1RX-lfa9QFAnwRCz_gS0NRiRnXEtg4Bdeh2Esc,1627
71
75
  careamics/file_io/write/tiff.py,sha256=tBGIgl-I1sMyBivgx-dOTBykXBODkgwPH8MT3_4KAE8,1050
72
- careamics/lightning/__init__.py,sha256=IAhfuveylgTdwIqynRqmGNOGrBlNmsXNgK3TuPDqU-o,572
73
- careamics/lightning/lightning_module.py,sha256=n8aQmHmjnztUTm5eob_MwcDw4W6pHMiUra1WNsvcVug,8951
74
- careamics/lightning/predict_data_module.py,sha256=rgHhS5fKoa5wscWyvmPP_FHHdVnDnLbF4sG7y_C7ZOM,12747
75
- careamics/lightning/train_data_module.py,sha256=XVLeFTfB5IQFdh9LnuvDNOMqqloRMH-miQxk8cVybjU,27897
76
+ careamics/lightning/__init__.py,sha256=iS9dYpYrkjyeZfodcohc25rBTPzxj9l50iTb5Jv0j0o,588
77
+ careamics/lightning/lightning_module.py,sha256=daUVIJei8bICfmZvshFBz0-6gS4m4MA2Xx9vVTbj0xI,21522
78
+ careamics/lightning/predict_data_module.py,sha256=JNwujK6QwObSx6P25ghpGl2f2gGT3KVgYMTlonZzH20,12745
79
+ careamics/lightning/train_data_module.py,sha256=rwhui0Oh2EyBMQsXADOrI-IXPTG_YePpM0KcDw15H8s,27895
76
80
  careamics/lightning/callbacks/__init__.py,sha256=neTWqF6EbBRVf0FqtBkPHeGIR3j1yTk0OASraEVN0Pg,312
77
- careamics/lightning/callbacks/hyperparameters_callback.py,sha256=ODJpwwdgc1-Py8yEUpXLar8_IOAcfR7lF3--6LfSiGc,1496
81
+ careamics/lightning/callbacks/hyperparameters_callback.py,sha256=u45knOZHwoVHz6yYfrnERQuozT_SfZ1OrKP0QjeU4EM,1495
78
82
  careamics/lightning/callbacks/progress_bar_callback.py,sha256=8HvNSWZldixd6pjz0dLDo0apIbzTovv5smKmZ6tZQ8U,2444
79
83
  careamics/lightning/callbacks/prediction_writer_callback/__init__.py,sha256=tATV4kFZ8h4ZpN866URsf2vbEfY9HlHN4VALJcDySCY,548
80
84
  careamics/lightning/callbacks/prediction_writer_callback/file_path_utils.py,sha256=i4vGGiVLslafi-5iuvkAKzBgZ0BpwTTxSTo31oViFz4,1480
81
85
  careamics/lightning/callbacks/prediction_writer_callback/prediction_writer_callback.py,sha256=HGDyYLSak9puGEs42cI_08peAuOMaFyZaRkcpv_n0iY,8183
82
86
  careamics/lightning/callbacks/prediction_writer_callback/write_strategy.py,sha256=aqc6DDewD4n3tbLfqS4y-FfNKV9zy3-CZ0K2Mu16Mms,12567
83
- careamics/lightning/callbacks/prediction_writer_callback/write_strategy_factory.py,sha256=yki7H3_11nGOpCmjVqI5KY_kItHkQj3JQhLsnledT2A,7115
84
- careamics/losses/__init__.py,sha256=kVEwfZ2xXfd8x0n-VHGKm6qvzbto5pIIJYP_jN-bCtw,89
85
- careamics/losses/loss_factory.py,sha256=vaMlxH5oescWTKlK1adWwbeD9tW4Ti-p7qKmc1iHCi0,1005
86
- careamics/losses/losses.py,sha256=DKwHZ9ifVe6wMd3tBOiswLC-saU1bj1RCcXGOkREmKU,2328
87
+ careamics/lightning/callbacks/prediction_writer_callback/write_strategy_factory.py,sha256=F1IpbNNgkv5eK8Xpqp7wqv2lsqEdP1wMRlBL7RBn93U,7114
88
+ careamics/losses/__init__.py,sha256=4s73OlMCGJdNCVfOteJPyaPwflgIiu_fj3zpKLx7j6o,351
89
+ careamics/losses/loss_factory.py,sha256=L68kC1Q13Yacr1PJ9IL6dhGjAsZSfhpfKeaptwLUpgE,4379
90
+ careamics/losses/fcn/__init__.py,sha256=kf92MKFGHr6upiztZVgWwtGPf734DZyub92Rn8uEq8o,18
91
+ careamics/losses/fcn/losses.py,sha256=NdOz29hzJ7D26p13q-g0NWoYwNauIWrP2xWww6YPbB8,2360
92
+ careamics/losses/lvae/__init__.py,sha256=0FNtMLHrOMfagtWkaBdz1NTjyf2y0QLgysxJv5jq5uw,19
93
+ careamics/losses/lvae/loss_utils.py,sha256=QxzA2N1TglR4H0X0uyTWWytDagE1lA9IB_TK1lms3ao,2720
94
+ careamics/losses/lvae/losses.py,sha256=CotmiPlBBxWZwZ4reLG4SZBUKGu_jRfPukA4u1sn5Xw,16100
87
95
  careamics/lvae_training/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
88
- careamics/lvae_training/data_modules.py,sha256=A5Uoo4qtPdX99QSi-Zl22LzO0I1DszJbQuXMGUXGQEE,46665
89
- careamics/lvae_training/data_utils.py,sha256=tRk0k0TkBLPocqlUlkwQN_dm5jzw5z74YNs2DsCuy9Y,21670
90
96
  careamics/lvae_training/eval_utils.py,sha256=_AlXNXk4uGS2AGsF4PHJZpJoWBgq32kvQLEh7awOIvc,32405
91
- careamics/lvae_training/get_config.py,sha256=-CWVxlPo71_huUSmXnmYvOmgvcvrZiv0wIpXnR32l6E,3054
97
+ careamics/lvae_training/get_config.py,sha256=1PeqVo0iMDeKfGftUEypEBKGed9iepxgQmLkZQrWpyg,3062
92
98
  careamics/lvae_training/lightning_module.py,sha256=ryr7iHqCMzCl5esi6_gEcnKFDQkMrw0EXK9Zfgv1Nek,27186
93
99
  careamics/lvae_training/metrics.py,sha256=KTDAKhe3vh-YxzGibjtkIG2nnUyujbnwqX4xGwaRXwE,6718
94
- careamics/lvae_training/train_lvae.py,sha256=Eu--3-RHSfhQVsJ-CTDXhUeoM1fzf_H9IGtBaNPOsHI,11044
100
+ careamics/lvae_training/train_lvae.py,sha256=uuLhBSbekLClg-I5hp7XTTlQhXO_j8hliIlpRvzKOI0,11074
95
101
  careamics/lvae_training/train_utils.py,sha256=e-d4QsF-li8MmAPkAmB1daHpkuU16nBTnQFZYqpTjn4,3567
102
+ careamics/lvae_training/dataset/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
103
+ careamics/lvae_training/dataset/data_utils.py,sha256=LNKpPEnk97oELj1F9Yo8fO4zXGrJXBRkENYL50kAB8M,27117
104
+ careamics/lvae_training/dataset/lc_dataset.py,sha256=EvCM2YeiXeSn5GXvqTvZPRriYzKf5Hz3JVmy5a6w44k,10460
105
+ careamics/lvae_training/dataset/lc_dataset_config.py,sha256=vgsjNZaotH0MqrauIUZcwPQd9Fpfj4ZVASnhTTB2OKE,398
106
+ careamics/lvae_training/dataset/vae_data_config.py,sha256=EzGrjqGNGrlBbYWEoIwgdoL7MNguLGVKn89yp1WIfv8,5981
107
+ careamics/lvae_training/dataset/vae_dataset.py,sha256=wYT0s0LuECDQCXCrN91p2vUyo-tzagIFJyRD8FPTXa0,39947
96
108
  careamics/model_io/__init__.py,sha256=HITzjiuZQwo-rQ2_Ma3bz9l7PDANv1_S489E-tffV9s,155
97
- careamics/model_io/bmz_io.py,sha256=eKyqt-z6Y3Fv0F4EZGzeE1hUzxh9rQNcqkYmYopDoF4,7128
98
- careamics/model_io/model_io_utils.py,sha256=EebZL3t6oIHY0kuTKacmAEriTQ4B77KuAQ84UHG7XW4,2357
109
+ careamics/model_io/bmz_io.py,sha256=YugFDqEHXqGnXrOkEBp_6utWUkTxJSNXUce7B5iCKOo,7575
110
+ careamics/model_io/model_io_utils.py,sha256=Dc_0YmcUfS3HuEVgN7KFfbDH8SGywT_eUCIJDVpEUHc,2755
99
111
  careamics/model_io/bioimage/__init__.py,sha256=r94nu8WDAvj0Fbu4C-iJXdOhfSQXeZBvN3UKsLG0RNI,298
100
112
  careamics/model_io/bioimage/_readme_factory.py,sha256=LZAuEiWNBTPaD8KrLPMq16yJuOPKDZiGQuTMHKLvoT4,3514
101
- careamics/model_io/bioimage/bioimage_utils.py,sha256=xsrzTy40LVkMmLh2qbjvz7rcs6GnQWMMlCYgwcIlb1E,1157
102
- careamics/model_io/bioimage/model_description.py,sha256=3jw4wkJDefLEW-2BbEfAml3AwyteZszL-v8JYpJRcOo,9635
103
- careamics/models/__init__.py,sha256=Wty5hwQb_As33pQOZqY5j-DpDOdh5ArBH4BhQDSuXTQ,133
104
- careamics/models/activation.py,sha256=xdqz4-yKV7oElG_dDrYuibS8HOiYvKdV_r9FwWPvaDE,977
113
+ careamics/model_io/bioimage/bioimage_utils.py,sha256=Md6y0-85q772A_G_lyhR8WKk17QTl1-0fqsEh5tAGyk,1157
114
+ careamics/model_io/bioimage/model_description.py,sha256=au8NtLwYVtjRI0BW2hEAlDen5ZGt25KAcy7_ZnAoQO4,9640
115
+ careamics/models/__init__.py,sha256=Xui2BLJd1I2r_E3Sj24fJALFTi2FGtfNscUWj_0c9Hk,93
116
+ careamics/models/activation.py,sha256=nu3sDgd7Lsyw8rvmUwxNN-7SM09cEMfxZ9DRDzdSKns,1049
105
117
  careamics/models/layers.py,sha256=oWzpq8OdHFEJqPWC9X8IRPNe0XqAnesSqwoT6V3t1Mw,13712
106
- careamics/models/model_factory.py,sha256=5YRwRRUemxb-pTRL3VWn8N61tCGyhrurqPgcFaNETb0,1360
118
+ careamics/models/model_factory.py,sha256=hqhV8sDq1JBLKt_7Vrw4wJSugKmBt2FIWyO7ePnJSTo,1759
107
119
  careamics/models/unet.py,sha256=3pXpiCIw7WUaDV0Jmczkxi99C5-Zu3NpQpWxgRkeGL8,14321
108
- careamics/models/lvae/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
109
- careamics/models/lvae/layers.py,sha256=wFuQgmtJtB7YNuNi2dVoOEWq1ndR6ku4iGvC2u0TJlM,84991
110
- careamics/models/lvae/likelihoods.py,sha256=FRFTh34FaBLGxn9OXFzqFyHhhJMSKYhgqxwG65VbGh8,10489
111
- careamics/models/lvae/lvae.py,sha256=5RlK4-h55dGz9UMCh8JCbLsaaIQ5S2IKGeI9d4nD5dA,40167
112
- careamics/models/lvae/noise_models.py,sha256=yotY5gkPAowbI7esOmHlzBWcSsZlH2G3U7uYIWghGwY,15703
113
- careamics/models/lvae/utils.py,sha256=muy4nLHmnB3BPAI0tQbJK_vVtBZOLBvhrJigHIOx5V4,11542
120
+ careamics/models/lvae/__init__.py,sha256=6dT6uqgT__V08EjoTGxXguTbTkySZmByS9J2Bj6WWLM,53
121
+ careamics/models/lvae/layers.py,sha256=zRHlIHaFp4nMZwTKdzhKNKGPdarefaITTqNWO8YrkMM,85022
122
+ careamics/models/lvae/likelihoods.py,sha256=aMzmofJCzrRPGKNhIxO_mZQGoSuXxeu3OKt-BKTWfdo,11625
123
+ careamics/models/lvae/lvae.py,sha256=MVj8rMFMuY896H0UYR4f85qcmdI5sU01fmilGbazBP8,36391
124
+ careamics/models/lvae/noise_models.py,sha256=ITapvSDjqfO91uZxrDDfnrbKpgS0yAk_Yo2ESoZDvb0,19707
125
+ careamics/models/lvae/utils.py,sha256=4b6VKB8brg3yjv2mMb6I2KnT6HxnD5ZrfGcxGYKauHQ,11542
114
126
  careamics/prediction_utils/__init__.py,sha256=uYKzirlF-unFL9GbDPxFnYgOwSjGAtik9fonU7DfuEY,270
127
+ careamics/prediction_utils/lvae_prediction.py,sha256=ZwPFCSeUGsULIMoMQWRYKHfLFaDm7UKyGaUMVfSUqfs,6210
128
+ careamics/prediction_utils/lvae_tiling_manager.py,sha256=SI-JaJvLrKWBSHdm-FjcqWdbhlcflTRiKxYF7CSGzvA,13736
115
129
  careamics/prediction_utils/prediction_outputs.py,sha256=p3Nbw9wRLU_M5uixPbzj_DmfxcSL7Y8rAQ_aTx70KQI,4082
116
- careamics/prediction_utils/stitch_prediction.py,sha256=aA4rktZBgk776Iw10ABXmusuvm2vqvMwoeEPCCC0nw4,3150
130
+ careamics/prediction_utils/stitch_prediction.py,sha256=HlfkJDirzbmil6Db-kFzlmhUREmGEZ2Ag8g-URbdIb0,3899
117
131
  careamics/transforms/__init__.py,sha256=VIHIsC8sMAh1TCm67ifB816Zp-LRo6rAONPuT2Qs3bs,483
118
132
  careamics/transforms/compose.py,sha256=dUHH-_ryZtnHuDZrbypf9B1oFsQv0_nYwS2ZbpGiaXw,2959
119
133
  careamics/transforms/n2v_manipulate.py,sha256=Gty7Jtu-RiFb1EnlrOi652qAOGKU5ZHvidRvykWqJxg,5438
120
134
  careamics/transforms/normalize.py,sha256=dfGWCGPyNwyEqg5wUCAA8cGdT1MvNkpKUEpw8Cw8DfA,7274
121
- careamics/transforms/pixel_manipulation.py,sha256=lNA19Vlo_3GHzRnT_4AFuv6eWQaxbie2PTYGalCY4YQ,13346
135
+ careamics/transforms/pixel_manipulation.py,sha256=sMR3A1GrgL5AactzZYzvvtz7L13sA34ckVEoNTBmDqM,13362
122
136
  careamics/transforms/struct_mask_parameters.py,sha256=jE29Li9sx3olaRnqYfJsSlKi2t0WQzJmCm9aCbIQEsA,421
123
137
  careamics/transforms/transform.py,sha256=cEqc4ci8na70i-HIGYC7udRfVa8D_8OjdRVrr3txLvQ,464
124
138
  careamics/transforms/tta.py,sha256=78S7Df9rLHmEVSQSI1qDcRrRJGauyG3oaIrXkckCkmw,2335
@@ -129,12 +143,12 @@ careamics/utils/autocorrelation.py,sha256=M_WYzrEOQngc5iSXWar4S3-EOnK6DfYHPC2vVM
129
143
  careamics/utils/base_enum.py,sha256=bz1D8mDx5V5hdnJ3WAzJXWHJTbgwAky5FprUt9F5cMA,1387
130
144
  careamics/utils/context.py,sha256=Ljf70OR1FcYpsVpxb5Sr2fzmPVIZgDS1uZob_3BcELg,1409
131
145
  careamics/utils/logging.py,sha256=coIscjkDYpqcsGnsONuYOdIYd6_gHxdnYIZ-e9Y2Ybg,10322
132
- careamics/utils/metrics.py,sha256=9YQe5Aj2Pv2h9jnRFeRbDQ_3qXAW0QHpucSqiUtwDcA,2382
146
+ careamics/utils/metrics.py,sha256=qx4QhOW9ACOgCjTUpYv631RrZ5YsdR0QQA1BY0YoRM8,4532
133
147
  careamics/utils/path_utils.py,sha256=8AugiG5DOmzgSnTCJI8vypXaPE0XhnR-9pzeiFUZ-0I,554
134
148
  careamics/utils/ram.py,sha256=tksyn8dVX_iJXmrDZDGub32hFZWIaNxnMheO5G1p43I,244
135
149
  careamics/utils/receptive_field.py,sha256=Y2h4c8S6glX3qcx5KHDmO17Kkuyey9voxfoXyqcAfiM,3296
136
150
  careamics/utils/torch_utils.py,sha256=g1zxdlM7_BA7mMLcCzmrxZX4LmH__KXlJibC95muVaA,3014
137
- careamics-0.0.2.dist-info/METADATA,sha256=Ss5EYkycsQMCKUrO2DxtmKWaCzsCU2RdSTWHZPOvAZg,3480
138
- careamics-0.0.2.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
139
- careamics-0.0.2.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
140
- careamics-0.0.2.dist-info/RECORD,,
151
+ careamics-0.0.3.dist-info/METADATA,sha256=MjZrNQfB-fS45U5SMjx2S6jOaFIbKPYSOBI30ZtqPmw,3626
152
+ careamics-0.0.3.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
153
+ careamics-0.0.3.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
154
+ careamics-0.0.3.dist-info/RECORD,,
@@ -1,42 +0,0 @@
1
- """VAE Pydantic model."""
2
-
3
- from typing import Literal
4
-
5
- from pydantic import (
6
- ConfigDict,
7
- )
8
-
9
- from .architecture_model import ArchitectureModel
10
-
11
-
12
- class VAEModel(ArchitectureModel):
13
- """VAE model placeholder."""
14
-
15
- model_config = ConfigDict(
16
- use_enum_values=True, protected_namespaces=(), validate_assignment=True
17
- )
18
-
19
- architecture: Literal["VAE"]
20
- """Name of the architecture."""
21
-
22
- def set_3D(self, is_3D: bool) -> None:
23
- """
24
- Set 3D model by setting the `conv_dims` parameters.
25
-
26
- Parameters
27
- ----------
28
- is_3D : bool
29
- Whether the algorithm is 3D or not.
30
- """
31
- raise NotImplementedError("VAE is not implemented yet.")
32
-
33
- def is_3D(self) -> bool:
34
- """
35
- Return whether the model is 3D or not.
36
-
37
- Returns
38
- -------
39
- bool
40
- Whether the model is 3D or not.
41
- """
42
- raise NotImplementedError("VAE is not implemented yet.")