careamics 0.0.15__py3-none-any.whl → 0.0.17__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of careamics might be problematic. Click here for more details.

Files changed (79) hide show
  1. careamics/careamist.py +11 -14
  2. careamics/cli/conf.py +18 -3
  3. careamics/config/__init__.py +8 -0
  4. careamics/config/algorithms/__init__.py +4 -0
  5. careamics/config/algorithms/hdn_algorithm_model.py +103 -0
  6. careamics/config/algorithms/microsplit_algorithm_model.py +103 -0
  7. careamics/config/algorithms/n2v_algorithm_model.py +1 -2
  8. careamics/config/algorithms/vae_algorithm_model.py +51 -16
  9. careamics/config/architectures/lvae_model.py +12 -8
  10. careamics/config/callback_model.py +7 -3
  11. careamics/config/configuration.py +15 -63
  12. careamics/config/configuration_factories.py +853 -29
  13. careamics/config/data/data_model.py +50 -11
  14. careamics/config/data/ng_data_model.py +168 -4
  15. careamics/config/data/patch_filter/__init__.py +15 -0
  16. careamics/config/data/patch_filter/filter_model.py +16 -0
  17. careamics/config/data/patch_filter/mask_filter_model.py +17 -0
  18. careamics/config/data/patch_filter/max_filter_model.py +15 -0
  19. careamics/config/data/patch_filter/meanstd_filter_model.py +18 -0
  20. careamics/config/data/patch_filter/shannon_filter_model.py +15 -0
  21. careamics/config/inference_model.py +1 -2
  22. careamics/config/likelihood_model.py +2 -2
  23. careamics/config/loss_model.py +6 -2
  24. careamics/config/nm_model.py +26 -1
  25. careamics/config/optimizer_models.py +1 -2
  26. careamics/config/support/supported_algorithms.py +5 -3
  27. careamics/config/support/supported_filters.py +17 -0
  28. careamics/config/support/supported_losses.py +5 -2
  29. careamics/config/training_model.py +6 -36
  30. careamics/config/transformations/normalize_model.py +1 -2
  31. careamics/dataset_ng/dataset.py +57 -5
  32. careamics/dataset_ng/factory.py +101 -18
  33. careamics/dataset_ng/patch_extractor/demo_custom_image_stack_loader.py +4 -4
  34. careamics/dataset_ng/patch_extractor/image_stack/in_memory_image_stack.py +1 -2
  35. careamics/dataset_ng/patch_extractor/image_stack/zarr_image_stack.py +33 -7
  36. careamics/dataset_ng/patch_extractor/image_stack_loader.py +2 -2
  37. careamics/dataset_ng/patch_filter/__init__.py +20 -0
  38. careamics/dataset_ng/patch_filter/coordinate_filter_protocol.py +27 -0
  39. careamics/dataset_ng/patch_filter/filter_factory.py +94 -0
  40. careamics/dataset_ng/patch_filter/mask_filter.py +95 -0
  41. careamics/dataset_ng/patch_filter/max_filter.py +188 -0
  42. careamics/dataset_ng/patch_filter/mean_std_filter.py +218 -0
  43. careamics/dataset_ng/patch_filter/patch_filter_protocol.py +50 -0
  44. careamics/dataset_ng/patch_filter/shannon_filter.py +188 -0
  45. careamics/file_io/read/__init__.py +0 -1
  46. careamics/lightning/__init__.py +16 -2
  47. careamics/lightning/callbacks/__init__.py +2 -0
  48. careamics/lightning/callbacks/data_stats_callback.py +33 -0
  49. careamics/lightning/dataset_ng/data_module.py +79 -2
  50. careamics/lightning/lightning_module.py +162 -61
  51. careamics/lightning/microsplit_data_module.py +636 -0
  52. careamics/lightning/predict_data_module.py +8 -1
  53. careamics/lightning/train_data_module.py +19 -8
  54. careamics/losses/__init__.py +7 -1
  55. careamics/losses/loss_factory.py +9 -1
  56. careamics/losses/lvae/losses.py +85 -0
  57. careamics/lvae_training/dataset/__init__.py +8 -8
  58. careamics/lvae_training/dataset/config.py +56 -44
  59. careamics/lvae_training/dataset/lc_dataset.py +18 -12
  60. careamics/lvae_training/dataset/ms_dataset_ref.py +5 -5
  61. careamics/lvae_training/dataset/multich_dataset.py +24 -18
  62. careamics/lvae_training/dataset/multifile_dataset.py +6 -6
  63. careamics/lvae_training/eval_utils.py +46 -24
  64. careamics/model_io/bmz_io.py +9 -5
  65. careamics/models/lvae/likelihoods.py +31 -14
  66. careamics/models/lvae/lvae.py +2 -2
  67. careamics/models/lvae/noise_models.py +20 -14
  68. careamics/prediction_utils/__init__.py +8 -2
  69. careamics/prediction_utils/prediction_outputs.py +49 -3
  70. careamics/prediction_utils/stitch_prediction.py +83 -1
  71. careamics/transforms/xy_random_rotate90.py +1 -1
  72. careamics/utils/version.py +4 -4
  73. {careamics-0.0.15.dist-info → careamics-0.0.17.dist-info}/METADATA +19 -22
  74. {careamics-0.0.15.dist-info → careamics-0.0.17.dist-info}/RECORD +77 -60
  75. careamics/dataset/zarr_dataset.py +0 -151
  76. careamics/file_io/read/zarr.py +0 -60
  77. {careamics-0.0.15.dist-info → careamics-0.0.17.dist-info}/WHEEL +0 -0
  78. {careamics-0.0.15.dist-info → careamics-0.0.17.dist-info}/entry_points.txt +0 -0
  79. {careamics-0.0.15.dist-info → careamics-0.0.17.dist-info}/licenses/LICENSE +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: careamics
3
- Version: 0.0.15
3
+ Version: 0.0.17
4
4
  Summary: Toolbox for running N2V and friends.
5
5
  Project-URL: homepage, https://careamics.github.io/
6
6
  Project-URL: repository, https://github.com/CAREamics/careamics
@@ -10,33 +10,30 @@ License-File: LICENSE
10
10
  Classifier: Development Status :: 3 - Alpha
11
11
  Classifier: License :: OSI Approved :: BSD License
12
12
  Classifier: Programming Language :: Python :: 3
13
- Classifier: Programming Language :: Python :: 3.10
14
13
  Classifier: Programming Language :: Python :: 3.11
15
14
  Classifier: Programming Language :: Python :: 3.12
15
+ Classifier: Programming Language :: Python :: 3.13
16
16
  Classifier: Typing :: Typed
17
- Requires-Python: >=3.10
18
- Requires-Dist: bioimageio-core==0.9.0
19
- Requires-Dist: matplotlib<=3.10.3
20
- Requires-Dist: numpy<2.0.0
21
- Requires-Dist: pillow<=11.2.1
22
- Requires-Dist: psutil<=7.0.0
23
- Requires-Dist: pydantic<=2.12,>=2.11
24
- Requires-Dist: pytorch-lightning<=2.5.2,>=2.2
25
- Requires-Dist: pyyaml!=6.0.0,<=6.0.2
17
+ Requires-Python: >=3.11
18
+ Requires-Dist: bioimageio-core>=0.9.0
19
+ Requires-Dist: matplotlib<=3.10.7
20
+ Requires-Dist: numpy>=1.21
21
+ Requires-Dist: numpy>=2.1.0; python_version >= '3.13'
22
+ Requires-Dist: pillow<=11.3.0
23
+ Requires-Dist: psutil<=7.1.0
24
+ Requires-Dist: pydantic<=2.12.2,>=2.11
25
+ Requires-Dist: pytorch-lightning<=2.5.5,>=2.2
26
+ Requires-Dist: pyyaml!=6.0.0,<=6.0.3
26
27
  Requires-Dist: scikit-image<=0.25.2
27
- Requires-Dist: tifffile<=2025.5.10
28
- Requires-Dist: torch<=2.7.1,>=2.0
29
- Requires-Dist: torchvision<=0.22.1
30
- Requires-Dist: typer<=0.16.0,>=0.12.3
31
- Requires-Dist: zarr<3.0.0
28
+ Requires-Dist: tifffile<=2025.10.4
29
+ Requires-Dist: torch<=2.8.0,>=2.0
30
+ Requires-Dist: torchmetrics<1.5.0,>=0.11.0
31
+ Requires-Dist: torchvision<=0.23.0
32
+ Requires-Dist: typer<=0.19.2,>=0.12.3
33
+ Requires-Dist: validators<=0.35.0
34
+ Requires-Dist: zarr<4.0.0,>=3.0.0
32
35
  Provides-Extra: czi
33
36
  Requires-Dist: pylibczirw<6.0.0,>=4.1.2; extra == 'czi'
34
- Provides-Extra: dev
35
- Requires-Dist: onnx; extra == 'dev'
36
- Requires-Dist: pre-commit; extra == 'dev'
37
- Requires-Dist: pytest; extra == 'dev'
38
- Requires-Dist: pytest-cov; extra == 'dev'
39
- Requires-Dist: sybil; extra == 'dev'
40
37
  Provides-Extra: examples
41
38
  Requires-Dist: careamics-portfolio; extra == 'examples'
42
39
  Requires-Dist: jupyter; extra == 'examples'
@@ -1,36 +1,44 @@
1
1
  careamics/__init__.py,sha256=eHsl7oE8HTKmi7yLMj8Yyp0RbdtN3QDmQQb-4Sn9d8M,475
2
- careamics/careamist.py,sha256=DeOt9u_EvRtRkzQ9NzBoyMxSNb8vO1tFHVwopI_37TY,38172
2
+ careamics/careamist.py,sha256=e9kXTVF9ECdSDI9QVVNjk1DbuJHvq7uJIdTevIffETU,37939
3
3
  careamics/conftest.py,sha256=Od4WcaaP0UP-XUMrFr_oo4e6c2hi_RvNbuaRTopwlmI,911
4
4
  careamics/py.typed,sha256=esB4cHc6c07uVkGtqf8at7ttEnprwRxwk8obY8Qumq4,187
5
5
  careamics/cli/__init__.py,sha256=LbM9bVtU1dy-khmdiIDXwvKy2v8wPBCEUuWqV_8rosA,106
6
- careamics/cli/conf.py,sha256=ePp0hxcP3vUQWr5m2bgsxNBw7sS6eMu8F6pGhV8TvAU,13049
6
+ careamics/cli/conf.py,sha256=pEVyoU2Yawjplct773xmMtYnIC_5jy4OOh6ok6tmGYo,13577
7
7
  careamics/cli/main.py,sha256=21UcqLOP0tM7x25pslw0zRAfJMMEZEzG1xeJZI-QfN0,6533
8
8
  careamics/cli/utils.py,sha256=DJvHKpZB6LSSnABKxK6i15ITAyIdyaiAnSdpBPZhuuk,626
9
- careamics/config/__init__.py,sha256=K0N1GIqFCYhpPjalZG-Ygap6Ew_dDAC0uw5Npzhg9Lk,1524
10
- careamics/config/callback_model.py,sha256=lxytx4rwqOI-UxW8eHTdfLE3K4eIlg907w4Xk9Nul7Y,4065
11
- careamics/config/configuration.py,sha256=gNBKxeHqAQLa8_btGuQ4-X4987cRPr5L6RI6hOv179Q,13345
12
- careamics/config/configuration_factories.py,sha256=P_VWHOJEjW-s_yAOKul9TV41yufsQLzRyCPSKJrjUjc,45959
9
+ careamics/config/__init__.py,sha256=QRI7byEt82B36foRhHXybWdG7xKAgrUJalIcP4hg_MQ,1752
10
+ careamics/config/callback_model.py,sha256=VT0NyM8R1Mhtsm8SnZqk-0CK1WVaZXbCFJZCRq5DoXI,4108
11
+ careamics/config/configuration.py,sha256=6By2zlql29r8ka6EZFfND-8BlPpcQmnf3hMr4metyic,11352
12
+ careamics/config/configuration_factories.py,sha256=UjjCsYPs30j5mG3FqaLSWW-3i9C8eEh9GDoQsl7N-Zc,77597
13
13
  careamics/config/configuration_io.py,sha256=P-bP1kzkXxJWOEFP02dEZFNmpuLAPJfJtYhX4bFeaKk,2324
14
- careamics/config/inference_model.py,sha256=OiNLR4srvbaNcsvA5_Zwc3tqr7yQAXXeSxm5aAEpySM,6978
15
- careamics/config/likelihood_model.py,sha256=mxyhEHC6wS02t5lqFE3l-8N1DpzrTqEiQSswEy3DJgs,2246
16
- careamics/config/loss_model.py,sha256=yYcUBS90Qyon1MxeaHiVP3dJHPJFC0GUvWKGcAb3IHk,2036
17
- careamics/config/nm_model.py,sha256=M_YE2fiYgJT1pGF7JpzhDvgTnd8CP6DxZXIjxG9q5Qg,4722
18
- careamics/config/optimizer_models.py,sha256=9qxcLjtDp5LjYX52u21Rom4F3_GZUV2GJimrK3un574,5717
14
+ careamics/config/inference_model.py,sha256=E0s9wjPr3xEOllkf_oyROngq_BBe8Yc3l0Br4ygNFac,6949
15
+ careamics/config/likelihood_model.py,sha256=oXRwY2wGHUNLWqIdYtpo1KfxJxyWvDcRE-6dCVs7DgU,2241
16
+ careamics/config/loss_model.py,sha256=V_JyOCyFAxJIl7RGHqW_7mFBNq5GLOpYwWwU-WsUyKk,2166
17
+ careamics/config/nm_model.py,sha256=HrQJ49PDmi3dhCm7m4sbYiQ5nF54xYZ0KwJ-8uK7zGw,5524
18
+ careamics/config/optimizer_models.py,sha256=8PR9rRwoghGU3-Bz904sFqD1Ee4mTXtMsXOkekxVcIk,5688
19
19
  careamics/config/tile_information.py,sha256=c-_xrVPOgcnjiEzQ-9A_GhNPamObkMANbeHaRP29R-4,2059
20
- careamics/config/training_model.py,sha256=6XvXMIT2H8vxyGfb9L4cSRqpmlurBPeyWYS6RYhDZaA,3095
21
- careamics/config/algorithms/__init__.py,sha256=on5D6zBO9Lu-Tf5To8xpF6owIFqdN7RSmZdpyXDOaNw,404
20
+ careamics/config/training_model.py,sha256=kMKPe5M2KHLNS3FFZczOUydKekNXERXWYnbm31D-8eg,1932
21
+ careamics/config/algorithms/__init__.py,sha256=4DjB62MBYyAhbF9IhQy2z4Z0Oz-3ImJGfUlBYI2GF8o,557
22
22
  careamics/config/algorithms/care_algorithm_model.py,sha256=ncf89BC2aFPFSquJ65-Y7NpwVbvgPE0BKH6Up1OHa1s,3238
23
+ careamics/config/algorithms/hdn_algorithm_model.py,sha256=tbXPv2l4zKNv1Gq6kVXKVCZ8YV13jhr39R77X1hPopQ,2618
24
+ careamics/config/algorithms/microsplit_algorithm_model.py,sha256=iWfjsOADH6kct21aFVDTG8FOwjyymSZUpjCwG278wAY,2705
23
25
  careamics/config/algorithms/n2n_algorithm_model.py,sha256=OZbRis9jhRKWNK1-Z_aw2tfJRuGdlJiYEYlH4Hr1FRs,3066
24
- careamics/config/algorithms/n2v_algorithm_model.py,sha256=IkHsTj-IkWq--mlWjBHfH18CGK_3p2uaC3Zz2tfieaA,9469
26
+ careamics/config/algorithms/n2v_algorithm_model.py,sha256=MSBkeHaIoFQlZhPxSUnZO-pFKeeq-OmVmx8q00pcmv8,9440
25
27
  careamics/config/algorithms/unet_algorithm_model.py,sha256=OaBFVlhsb9YhF3f2x1ImazvfnZ4_DPWvYWihRwurkeg,2587
26
- careamics/config/algorithms/vae_algorithm_model.py,sha256=JFHWtoLEKt0PthJYiDq3TfBl7fJudODUvtCyTeFZvvg,4661
28
+ careamics/config/algorithms/vae_algorithm_model.py,sha256=o7Weqxyk4idZIp3dpDa7f7CqmvrJJ4UD4tsuj-RW73c,6100
27
29
  careamics/config/architectures/__init__.py,sha256=lYUz56R7LDqVQWQDLkLgJL8VtOyxc_ege1r4bXGEBqA,220
28
30
  careamics/config/architectures/architecture_model.py,sha256=gXn4gdLrQP3bmTQxIhzkEHYlodPaIp6LI-kwZl23W-Y,911
29
- careamics/config/architectures/lvae_model.py,sha256=lwOiJYNUqPrZFl9SpPLYon77EiRbe2eI7pmpx45rO78,7606
31
+ careamics/config/architectures/lvae_model.py,sha256=4EScBNA33WZzyuU0vGFlP3UJcX2GmKuKlklH0v9wgTw,7769
30
32
  careamics/config/architectures/unet_model.py,sha256=Aqc_KPf2VKMhNrYwOdmr_ez3iIQz8ZRtsA6t5FFT354,3686
31
33
  careamics/config/data/__init__.py,sha256=YS04_USNswKL7kpSn_6BeTvhobAiUVst46_SlCztCxs,171
32
- careamics/config/data/data_model.py,sha256=4zqLKfH1dhOl7CDHvIANrfSbJnUhnkfrCvAJF5F7MdQ,13374
33
- careamics/config/data/ng_data_model.py,sha256=0RSUvSMoIVcQY4a1drCMHMcOBp15xHchtnEk-nUiTvU,12244
34
+ careamics/config/data/data_model.py,sha256=FQqSFkqeBHyIHqmMPCh27rTgiSVW40BlIlUCuewxUbg,14616
35
+ careamics/config/data/ng_data_model.py,sha256=Zi8RO1AymoPXjLzU0VSxV-o2at_7W9qKruKVtwzb-v8,17480
36
+ careamics/config/data/patch_filter/__init__.py,sha256=TXTGxvAKsEeB-IYTaIFaI-zWFix5McNLxBD7TQ7inL0,433
37
+ careamics/config/data/patch_filter/filter_model.py,sha256=feNi7fXSC9GS8UZqXxf3f-c405KUmF4k-2aA4yqd_FI,472
38
+ careamics/config/data/patch_filter/mask_filter_model.py,sha256=yGRv6j0Dg_CQ1FzI4m-WXiSwS14s3HjzWIchQaNtaE4,423
39
+ careamics/config/data/patch_filter/max_filter_model.py,sha256=fpLhtDAiVTFPDMHtDom5JLv86SNCZ9hlinIz6v59bYA,351
40
+ careamics/config/data/patch_filter/meanstd_filter_model.py,sha256=mblErVTYX9xbF0TVzaRCDTMNoNK8f4zVJmYiX__0uyQ,479
41
+ careamics/config/data/patch_filter/shannon_filter_model.py,sha256=JDfcmw-O1hC6rtB8jWNCbv4EwPFFncG-dq_QoG9wvJ4,384
34
42
  careamics/config/data/patching_strategies/__init__.py,sha256=6ZUors-WzBBQCwMyaSojYJzdXeleFRBlrFls1r-Otdo,394
35
43
  careamics/config/data/patching_strategies/_overlapping_patched_model.py,sha256=ysGd8QNNdNzLD6NITmvyjVETG6ohhEFLgWPCS_CYSxE,3030
36
44
  careamics/config/data/patching_strategies/_patched_model.py,sha256=wmhM1Qt5qDuMCs76ab7dPoNTjy_lLVIL8TD5AzaIoak,1429
@@ -40,11 +48,12 @@ careamics/config/data/patching_strategies/tiled_patching_model.py,sha256=5lltbA9
40
48
  careamics/config/data/patching_strategies/whole_patching_model.py,sha256=HCPiWFrYk_ICWvlmddJYW9YjCzZUc7ijGJlLP1WxvjU,272
41
49
  careamics/config/support/__init__.py,sha256=ktWvxbTkRXnQPS_N84l9E2B5kTZVdd64SIjsJIQKB-k,1041
42
50
  careamics/config/support/supported_activations.py,sha256=CqOWoziIK5jZZXJO7G7cGg3TTid1POqv8FXqxjXxyME,535
43
- careamics/config/support/supported_algorithms.py,sha256=w6YzcIqGZ_bS85Tw1s7TEltBDXLt4SzgN3Tc6s19dGU,946
51
+ careamics/config/support/supported_algorithms.py,sha256=FKluIBTLQyFZauhMC-mCN7w6w4FdotvFPd8DOl4umko,1090
44
52
  careamics/config/support/supported_architectures.py,sha256=pOxvHOAIUkc7HCO0IIg4K22h-Ti5ErtcIkGOjN-zh1s,340
45
53
  careamics/config/support/supported_data.py,sha256=rVcBOBUosyvYWZJAofJ66_DucnkkPfPhZMXU6KXugsM,3079
54
+ careamics/config/support/supported_filters.py,sha256=fl2LXGaB0EMXpFurTKskPi28kZOBHtmka_7BqHffjvI,354
46
55
  careamics/config/support/supported_loggers.py,sha256=ubSOkGoYabGbm_jmyc1R3eFcvcP-sHmuyiBi_d3_wLg,197
47
- careamics/config/support/supported_losses.py,sha256=2x5sZuxRbWJzodoL35I1mMYUUDMzk8UFiFdbyPwbJ4E,583
56
+ careamics/config/support/supported_losses.py,sha256=EQompJiL_F4ZHPVORDZf_dAXHBeVikaxfykT6mOnnwQ,671
48
57
  careamics/config/support/supported_optimizers.py,sha256=_2XmwzYENB6xpTedyWHUdWuGcDzdlfEAJjzm_qI3yRM,1392
49
58
  careamics/config/support/supported_patching_strategies.py,sha256=3Ngth0bna6ibabmg73y-1Hq7MebFNFq2MqE8sUB7UO8,635
50
59
  careamics/config/support/supported_pixel_manipulations.py,sha256=rFiktUlvoFU7s1NAKEMqsXOzLw5eaw9GtCKUznvq6xc,432
@@ -52,7 +61,7 @@ careamics/config/support/supported_struct_axis.py,sha256=alZMA5Y-BpDymLPUEd1zqVY
52
61
  careamics/config/support/supported_transforms.py,sha256=ylTiS8fUFKFwfn85gh7kKF4Trb9Q4ENPKm-XDWCe-SY,311
53
62
  careamics/config/transformations/__init__.py,sha256=6THr9oNI06umw_cchXW9sCeBLpFIcJfGC4hdq3WvUsI,577
54
63
  careamics/config/transformations/n2v_manipulate_model.py,sha256=IJ_MeNbVzwnmvLhBjAVZPj5fxPzUXYGYYRe5PHcWIzQ,2428
55
- careamics/config/transformations/normalize_model.py,sha256=_gQmUTlrPlMx5fptoZbB0Ov7PdJQoeDAw81XMCtQRr4,1920
64
+ careamics/config/transformations/normalize_model.py,sha256=OAQryxDDCm8s_e_XW-McGhnGE0LjEV84CuNiAA48a6E,1891
56
65
  careamics/config/transformations/transform_model.py,sha256=6UVbXnxm-LLZOQQ-ZBwWwgmS_99DiBuERLfMxrta3-8,990
57
66
  careamics/config/transformations/transform_unions.py,sha256=lOwwX2LZPhfb0GR8B1jtJeuoDa9jIbOmh_W0rlebS1g,784
58
67
  careamics/config/transformations/xy_flip_model.py,sha256=2k4tiUZK3GVn9hEjFlWi0ypz-k5C2XKKO6elU7HlKmI,1012
@@ -67,7 +76,6 @@ careamics/dataset/in_memory_tiled_pred_dataset.py,sha256=fKg3_Mmx0hXlOjuWU6lhTVR
67
76
  careamics/dataset/iterable_dataset.py,sha256=xDt2985m-K1P5G2EaNHOHg54-fjRI6MfZTdNB4NdSJI,9752
68
77
  careamics/dataset/iterable_pred_dataset.py,sha256=4OsyDQv9udIh7R8UixTLeB_jVtaG-6z38bMqWRqxMxI,3750
69
78
  careamics/dataset/iterable_tiled_pred_dataset.py,sha256=4553dDF9_yQkb--g2wWD8rempMk_DTLYgRgt5T03mW0,4594
70
- careamics/dataset/zarr_dataset.py,sha256=lojnK5bhiF1vyjuPtWXBrZ9sy5fT_rBvZJbbbnE-H_I,5665
71
79
  careamics/dataset/dataset_utils/__init__.py,sha256=MJ3xriL6R4ZtmzbvLsASUWLb85Hk5AdeRaYnHpNELJQ,507
72
80
  careamics/dataset/dataset_utils/dataset_utils.py,sha256=X83DzaOWmHdl4eOPac2IQJH3bPA43RVq0hPrFrzvIXQ,2630
73
81
  careamics/dataset/dataset_utils/file_utils.py,sha256=ru6AtQ9LCmo6raN1-GnJEN4UyP1PbmSdR9MEys3CuHo,4094
@@ -83,8 +91,8 @@ careamics/dataset/tiling/collate_tiles.py,sha256=XK0BsDQE7XwIwmOoCHJIpVC3kqjSN6n
83
91
  careamics/dataset/tiling/lvae_tiled_patching.py,sha256=2oOXnVsZ_L2jtA02Jw7bLfkugZ2ZO8lF105cjxGADoY,13210
84
92
  careamics/dataset/tiling/tiled_patching.py,sha256=985vlz9hJdBNKP6z9hL0hU6lXSUPmGpXutdcbyBtv_o,6000
85
93
  careamics/dataset_ng/README.md,sha256=489sMnra-cVotBBWNL-jhb9H4eLO1FFa3b5zhfkK34g,9856
86
- careamics/dataset_ng/dataset.py,sha256=2R7jMUJFBECI-MBROg4QhGM3vJ8EEIpwOMDoBYEQhN8,8810
87
- careamics/dataset_ng/factory.py,sha256=bjzolF1k9iTj6cY75licyGYielZZvpp3xJwLbw8t5uU,14723
94
+ careamics/dataset_ng/dataset.py,sha256=wpOSTqAWPfl6oB-M9NTGsjZId7BZgSp6kjzptjJSUvw,11007
95
+ careamics/dataset_ng/factory.py,sha256=SKEhEuy0Stdj13815C8La2OSip-71RkkWlPgymGF6F4,17198
88
96
  careamics/dataset_ng/legacy_interoperability.py,sha256=K8u7MZRUkrG-gTX-COIykEejTHDxPET4H2oxKhQ_UTw,5559
89
97
  careamics/dataset_ng/demos/bsd68_demo.ipynb,sha256=UdpxKq198IV_xqJLcGR_C5rnX95G_zktnfmbltfEw60,10628
90
98
  careamics/dataset_ng/demos/care_U2OS_demo.ipynb,sha256=fxuiJ0g65Ts7jFUxHgCGbf30Xoz8kIB4dfh9qfpW1D8,9501
@@ -94,15 +102,23 @@ careamics/dataset_ng/demos/demo_dataset.ipynb,sha256=3mNGotUtQ2XMbw4JE5HkOSZXtqc
94
102
  careamics/dataset_ng/demos/demo_patch_extractor.py,sha256=2guz1iRqBzue4GLAVh9-K8sXCgsygtsJS-wzeHctY34,1419
95
103
  careamics/dataset_ng/demos/mouse_nuclei_demo.ipynb,sha256=Afd-_T848z3ZCDAL8vMfP6CJR8CbUg0xLAurBxg-fuc,8278
96
104
  careamics/dataset_ng/patch_extractor/__init__.py,sha256=U27Gxp6dk6DUc-MiDMPvdh2aoWlM7jU-bjueqa7elPg,207
97
- careamics/dataset_ng/patch_extractor/demo_custom_image_stack_loader.py,sha256=Y6CQyCy-_NcRf9ytOeCsIXjeN8CZBnKpMwcM1H50cNc,2987
98
- careamics/dataset_ng/patch_extractor/image_stack_loader.py,sha256=Gq1KbqZWCX8fR4ZCcFysXPK6LoJJJvb4Cig_KYeGyqs,2490
105
+ careamics/dataset_ng/patch_extractor/demo_custom_image_stack_loader.py,sha256=UnSBiLCeBruHxuJgbEN2o2LaoNouTcbT2EixYepwbwg,3021
106
+ careamics/dataset_ng/patch_extractor/image_stack_loader.py,sha256=fcEmjFCOy6PNuqHBnf357d11EDhxVz6ni6pdUGzyJbI,2498
99
107
  careamics/dataset_ng/patch_extractor/patch_extractor.py,sha256=nGN5TrmmSo5KeQoXJ-wrVQtQlYadaR8onH7TOWXhVy4,824
100
108
  careamics/dataset_ng/patch_extractor/patch_extractor_factory.py,sha256=8B3s5n8nEOQ6JCJIANVdckgJGaYm8Y4v69vYn4Zsmdo,5927
101
109
  careamics/dataset_ng/patch_extractor/image_stack/__init__.py,sha256=0K4swSw3fmVonjavNyxDtXRDJTNq4P7oMBktsoNO2GI,333
102
110
  careamics/dataset_ng/patch_extractor/image_stack/czi_image_stack.py,sha256=5XXbOZoxPY3g8cAcuHgwKFWN5gAC9vAwvuesA2pxF9Q,14420
103
111
  careamics/dataset_ng/patch_extractor/image_stack/image_stack_protocol.py,sha256=NnhqyDmZPuQgU_gjNugNWNX9_NetRguwLg9LfTmd7U8,1649
104
- careamics/dataset_ng/patch_extractor/image_stack/in_memory_image_stack.py,sha256=2eICQjYTzjEaYLh9Wg2IJ6cguo7Ty1p-eXPvTJk0nv0,1941
105
- careamics/dataset_ng/patch_extractor/image_stack/zarr_image_stack.py,sha256=hmNOl6-FMUNQS65YMSa4eAz3Rp_2es98p1_UY6S8B50,6590
112
+ careamics/dataset_ng/patch_extractor/image_stack/in_memory_image_stack.py,sha256=0Iw2TFASM-28qoJeAkvwt1N1t79QMMwCqlSoLZOUt08,1912
113
+ careamics/dataset_ng/patch_extractor/image_stack/zarr_image_stack.py,sha256=yAOpwifNEXViDgkrbXSgNugSLVx-BDtDqBz6g6pFhBc,7400
114
+ careamics/dataset_ng/patch_filter/__init__.py,sha256=llqhrtVAGyAMutG5dri9tpZvXaNBJrsk4FKTzt3i6rc,624
115
+ careamics/dataset_ng/patch_filter/coordinate_filter_protocol.py,sha256=kGYapdjVdz1yRMMz6kbzVvZEuzhMbdV1pGh_2o2xawU,670
116
+ careamics/dataset_ng/patch_filter/filter_factory.py,sha256=aIvAq0TDXYpZ9C2-udpjgRNgeDo19YTrhmKnGg4ny-U,2902
117
+ careamics/dataset_ng/patch_filter/mask_filter.py,sha256=Ky27Jw7EQbHdq1gwe7P3DBL7-YCvcXRnMYIYetVMPJ4,3068
118
+ careamics/dataset_ng/patch_filter/max_filter.py,sha256=-qHN67RDwcP57ISVXpe-wzxAUVeLqVHmEhNJ0h8dzCk,6425
119
+ careamics/dataset_ng/patch_filter/mean_std_filter.py,sha256=xc_E7FpDzYvQKYiicROyx8LdVvpFsBSBQghKxTDetBk,7498
120
+ careamics/dataset_ng/patch_filter/patch_filter_protocol.py,sha256=wJaHFjEwsuHSOy7hUXmCUxTNg9KBl4_h2DCxuri48Go,1165
121
+ careamics/dataset_ng/patch_filter/shannon_filter.py,sha256=A8AYDe4dD7PMJj4EEPc5xNA1ZijGKR7Yb3Hxiaht8B0,6261
106
122
  careamics/dataset_ng/patching_strategies/__init__.py,sha256=2KwdY_TeD9WQju150WbV2IF19TincHU3lbcL0fqZF5o,549
107
123
  careamics/dataset_ng/patching_strategies/patching_strategy_protocol.py,sha256=ukw5G9hIOPEJz-DEFDMuJsGYou7wUeRjALNU8qdgn9g,3475
108
124
  careamics/dataset_ng/patching_strategies/random_patching.py,sha256=0qEhUgANJAuhnVYeCiCaiW1gwLWOGAIIFcvriW0_byM,13490
@@ -110,18 +126,19 @@ careamics/dataset_ng/patching_strategies/sequential_patching.py,sha256=Qsqqf8D_2
110
126
  careamics/dataset_ng/patching_strategies/tiling_strategy.py,sha256=jKug3ocARe-pSqSB3g27T7GGmrrQ6eRYbp_m49BJ4-4,6415
111
127
  careamics/dataset_ng/patching_strategies/whole_sample.py,sha256=o1Z4iHKveq9X--LRV-gdUQqB-TPVxr2RvaKHmgDnCx0,1249
112
128
  careamics/file_io/__init__.py,sha256=vgMI77X820VOWywAEW5W20FXfmbqBzx4V63D3V3_HhI,334
113
- careamics/file_io/read/__init__.py,sha256=wf8O_o80ghrlWQ-RGEuSqcc2LU55P1B-oxTacDToygo,259
129
+ careamics/file_io/read/__init__.py,sha256=r8WILkWoBOTLTJiltg1tCozIh-XSq_I33VMIx3ykSKs,231
114
130
  careamics/file_io/read/get_func.py,sha256=1UJMfVb6gUCe_5WBRxCEO2Q7pqdVu8u2Sm0aHxXdiak,1415
115
131
  careamics/file_io/read/tiff.py,sha256=UMofW33rvByK9B1zYGhSrWAiAA3uQUV3OVK7cq9d0gQ,1359
116
- careamics/file_io/read/zarr.py,sha256=2jzREAnJDQSv0qmsL-v00BxmiZ_sp0ijq667LZSQ_hY,1685
117
132
  careamics/file_io/write/__init__.py,sha256=CUt33cRjG9hm18L9a7XqaUKWQ_3xiuQ9ztz4Ab7RYG0,283
118
133
  careamics/file_io/write/get_func.py,sha256=hyGHe1RX-lfa9QFAnwRCz_gS0NRiRnXEtg4Bdeh2Esc,1627
119
134
  careamics/file_io/write/tiff.py,sha256=tBGIgl-I1sMyBivgx-dOTBykXBODkgwPH8MT3_4KAE8,1050
120
- careamics/lightning/__init__.py,sha256=ATCVAGnX08Ik4TxbIv0-cXb52UinR42JgvZh_GIMSpc,588
121
- careamics/lightning/lightning_module.py,sha256=EgRIWOHxZ9FZyS2lGaRSGaVecT8revXjd4mE59se7T0,24311
122
- careamics/lightning/predict_data_module.py,sha256=yahMMPbEIX0AXNgA2PKIABm9cYEXlyhl0SKc1GCDEZU,12741
123
- careamics/lightning/train_data_module.py,sha256=028si-InvNHbr78ne1sEudhwKz-ReZGNIoOtr9hUlvc,26541
124
- careamics/lightning/callbacks/__init__.py,sha256=eA5ltzYNzuO0uMEr1jG4wP01b0s29s5I03WGJ290qkw,312
135
+ careamics/lightning/__init__.py,sha256=NeqZmOgor6EXov6ULmPdGxl5dB39ljibGvjZaA0zkaM,970
136
+ careamics/lightning/lightning_module.py,sha256=5TJyphmITh00SOcrl3-hLx7tr7sHUaXQgmLFCbYAivE,28647
137
+ careamics/lightning/microsplit_data_module.py,sha256=8BSAiuTmsl2p96Drv6Wnz8LBtMg4Qj1SCS-8Jn50Rss,20597
138
+ careamics/lightning/predict_data_module.py,sha256=EQ-X2go-beMIhGD8bbOm3XorTDfMReFUkk9MewmYxuw,13094
139
+ careamics/lightning/train_data_module.py,sha256=wFWO2wC0uXtoBNcNk8xNMCQxsl7eEJ5cXFOl1DXTYNg,27055
140
+ careamics/lightning/callbacks/__init__.py,sha256=sgP-u7FKnrD83cyWidvaIZZHvCIP-3pwrgZsfzPejow,388
141
+ careamics/lightning/callbacks/data_stats_callback.py,sha256=Z4BPbicdwPLLePdXjRPGKC831zgO-YQxCqONAmYFIz4,1183
125
142
  careamics/lightning/callbacks/hyperparameters_callback.py,sha256=u45knOZHwoVHz6yYfrnERQuozT_SfZ1OrKP0QjeU4EM,1495
126
143
  careamics/lightning/callbacks/progress_bar_callback.py,sha256=w-j_nk2ysyc4THKfwWbpkiKGeqNUpLGtm-8dYBgla2c,2443
127
144
  careamics/lightning/callbacks/prediction_writer_callback/__init__.py,sha256=ZVf3vaSU_NjSjrKbI24H0kK9WAiP9oKXfhP670EaWMo,548
@@ -130,33 +147,33 @@ careamics/lightning/callbacks/prediction_writer_callback/prediction_writer_callb
130
147
  careamics/lightning/callbacks/prediction_writer_callback/write_strategy.py,sha256=BulDaQdXoLYoU39sfKrtdnHjY_TIQ8qOvfDjkSWi13s,12572
131
148
  careamics/lightning/callbacks/prediction_writer_callback/write_strategy_factory.py,sha256=WLPWuZbLZ1pJWwAssqK9ObLZsljMhu-lxN0xe7_yCKc,7083
132
149
  careamics/lightning/dataset_ng/__init__.py,sha256=5913hBQ5FRn4K-zzPtrqh-2zN4iie9bD-KXm0-_FNXY,49
133
- careamics/lightning/dataset_ng/data_module.py,sha256=PyU7igSn22vnrPJLyVn2UYo9szS3NXayRZY5wqo8iu8,26229
150
+ careamics/lightning/dataset_ng/data_module.py,sha256=4BHMwcvji0taqA6ga8n-uc0oLjsuEMMD7Y33aO9wC4k,29160
134
151
  careamics/lightning/dataset_ng/lightning_modules/__init__.py,sha256=Kx7NkwAS9rqfozxamMWcJa3U8zw47HT5T8R1E0Uk8Rc,164
135
152
  careamics/lightning/dataset_ng/lightning_modules/care_module.py,sha256=Mc72uucp8DOObIfK05-LvzFVbXcBQ5IZ7vDUeYoMt1Q,3145
136
153
  careamics/lightning/dataset_ng/lightning_modules/n2v_module.py,sha256=DD9JkNDD-nbBNDjmUP-PWTr_sbNaYb8_TKXpUC6FB5Q,3355
137
154
  careamics/lightning/dataset_ng/lightning_modules/unet_module.py,sha256=aGN_xZptJ1fxK3J39YLoF_E4UDYNJGeYJETQKVgxRwU,6868
138
- careamics/losses/__init__.py,sha256=nSWbkBcFhkyUkIT2wVcULqpieyY2Oro39NXZTtfQpXo,351
139
- careamics/losses/loss_factory.py,sha256=IVcvSWLnbMuoLG_4SmZ4s_hfinB-olu44PL9lhDEGEM,1545
155
+ careamics/losses/__init__.py,sha256=ROBvKNkKpo46e3sgWpLeuPNvTBEas8OHl6GIBr9lWxk,398
156
+ careamics/losses/loss_factory.py,sha256=sZo-pxBgnAcgKrRm0us_6S7hDXi4FdNazSHzC2Y277o,1637
140
157
  careamics/losses/fcn/__init__.py,sha256=kf92MKFGHr6upiztZVgWwtGPf734DZyub92Rn8uEq8o,18
141
158
  careamics/losses/fcn/losses.py,sha256=KuoXqL24QbTxDdRmQJbERC95x0f3u4T0S77dqBZRarQ,2513
142
159
  careamics/losses/lvae/__init__.py,sha256=0FNtMLHrOMfagtWkaBdz1NTjyf2y0QLgysxJv5jq5uw,19
143
160
  careamics/losses/lvae/loss_utils.py,sha256=QxzA2N1TglR4H0X0uyTWWytDagE1lA9IB_TK1lms3ao,2720
144
- careamics/losses/lvae/losses.py,sha256=Bx9oNnFGw9YThVSAn7tznS53_aym1_BPABVcDMH5spY,17943
161
+ careamics/losses/lvae/losses.py,sha256=rzeEnPQnyp0Eej2l8XwpSDeiaD_k5qE63LHdSpfR3Ik,20798
145
162
  careamics/lvae_training/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
146
163
  careamics/lvae_training/calibration.py,sha256=xHbiLcY2csYos3s7rRSqp7P7G-9wzULcSo1JfVzfIjE,7239
147
- careamics/lvae_training/eval_utils.py,sha256=PWKlG2XrvdfZTG0_brcADaAA0owTeNRT1g673gYtk5k,34410
164
+ careamics/lvae_training/eval_utils.py,sha256=D_RmDMVOu-6XAMBogOG6zCL2m7bU0YOXr8p2lLEzm4s,34573
148
165
  careamics/lvae_training/get_config.py,sha256=dwVfaQS7nzjQss0E1gGLUpQpjPcOWwLgIhbu3Z0I1rg,3068
149
166
  careamics/lvae_training/lightning_module.py,sha256=ryr7iHqCMzCl5esi6_gEcnKFDQkMrw0EXK9Zfgv1Nek,27186
150
167
  careamics/lvae_training/metrics.py,sha256=KTDAKhe3vh-YxzGibjtkIG2nnUyujbnwqX4xGwaRXwE,6718
151
168
  careamics/lvae_training/train_lvae.py,sha256=lJEBlBGdISVkZBcEnPNRYgJ7VbapYzZHRaFOrZ0xYGE,11080
152
169
  careamics/lvae_training/train_utils.py,sha256=e-d4QsF-li8MmAPkAmB1daHpkuU16nBTnQFZYqpTjn4,3567
153
- careamics/lvae_training/dataset/__init__.py,sha256=TcsPOoeYXWZh2mTEOodYf4u5dd12TzzkxAaxLzBrMyA,538
154
- careamics/lvae_training/dataset/config.py,sha256=upMx0NvYtKBi0SHH6WHMfVDzwLzgIk3Nw7z5vRoEvj0,4392
155
- careamics/lvae_training/dataset/lc_dataset.py,sha256=r4PffRXzuTJ0tLWei4B3wq6f1Q34raaZQzZ0IQXi8OI,10762
156
- careamics/lvae_training/dataset/ms_dataset_ref.py,sha256=uyyz9RjiV3iszQAmavhLhU6PT2B_n6pch3F22ZS4M0o,40892
157
- careamics/lvae_training/dataset/multich_dataset.py,sha256=kw2gFZPDEp6WdsJwjQ-2EFvxZHe-HI83FhI4C5k39b4,42593
170
+ careamics/lvae_training/dataset/__init__.py,sha256=EM_FjJA1xF74uSo2zZLecRKMWaGLlNoyQGkDItAdnUw,552
171
+ careamics/lvae_training/dataset/config.py,sha256=UoHWg0sQYGI6bPIvUW6SDk18KG7c377r4XSHsvAs3CM,4761
172
+ careamics/lvae_training/dataset/lc_dataset.py,sha256=886JcdPrg1v_3Ks6BP50EdCE118PVCSRAWguxS9PF_0,10991
173
+ careamics/lvae_training/dataset/ms_dataset_ref.py,sha256=Lk-aeyEIYRoM46ZBhQ879W77o_AbRvvZeYtxrhwF9jk,40950
174
+ careamics/lvae_training/dataset/multich_dataset.py,sha256=cLtZ_e-b-qrCaYUkGYp2HdmXwNTv75Fy1Agd2ffRAuA,42814
158
175
  careamics/lvae_training/dataset/multicrop_dset.py,sha256=1h5fREkDNxKGBO1vb4d9W_UVMOA105uBTrN6_J-jUs0,6418
159
- careamics/lvae_training/dataset/multifile_dataset.py,sha256=hJBs6iBrf_FcyUYzg8rDjvKEICHxDYyXVOj-5L0F6FE,10273
176
+ careamics/lvae_training/dataset/multifile_dataset.py,sha256=YEaWVy8X_eGtrz3Q2ixT6olhGG9M56-lDDpdNg4zLQw,10315
160
177
  careamics/lvae_training/dataset/types.py,sha256=7uCrbL_FQeQfAPz-mHnqHKpZC1x4sdvq9wswmBvOPO0,616
161
178
  careamics/lvae_training/dataset/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
162
179
  careamics/lvae_training/dataset/utils/data_utils.py,sha256=8PvRPqSbYHPCl87cycZHxXIFOT_EoBV-8XCt3ZLh36s,3125
@@ -164,7 +181,7 @@ careamics/lvae_training/dataset/utils/empty_patch_fetcher.py,sha256=OFjeqhZ6vFUL
164
181
  careamics/lvae_training/dataset/utils/index_manager.py,sha256=rihMe5zOfXvPFvM_2paP0EzK4WhaG6RhRFLy8TxnNas,21654
165
182
  careamics/lvae_training/dataset/utils/index_switcher.py,sha256=ZoMi8LsaIkm8MFqIFaxN4oQGyzCcwOlCom8SYNus15E,6716
166
183
  careamics/model_io/__init__.py,sha256=khMIkk107LL5JGze0OVfl5Lfi14R3_e4W21tW0iJ1kE,155
167
- careamics/model_io/bmz_io.py,sha256=XMV-a9btKf1bsC7NP7awoN2hrewSQHRbN8K9G4Sfi8E,7788
184
+ careamics/model_io/bmz_io.py,sha256=IlmgOPI-1jPVBgDH1caDf0dTUWyM7uWRt4egm5yhLQU,7964
168
185
  careamics/model_io/model_io_utils.py,sha256=mA8y5ZJ2r5vqA3OCgJqB1wxvCCx37x8Yl7nj1zi3_3U,2750
169
186
  careamics/model_io/bioimage/__init__.py,sha256=dKm-UluVwa_7EHQB0ukx-Qk8JVWtuT-OUinY8hE9EIw,298
170
187
  careamics/model_io/bioimage/_readme_factory.py,sha256=sRfHbuwhfYmpwsG0keXFCSK3qCS4VI4GQhX6OhSKLjY,3440
@@ -178,16 +195,16 @@ careamics/models/model_factory.py,sha256=GWbouERvEfHj_BrpKHYgrPAj8dpdoh1R-X--Jt0
178
195
  careamics/models/unet.py,sha256=f7QT_tHilub9y22RF9rki9ISjS6BYA0fJn5ULwHtVAo,14785
179
196
  careamics/models/lvae/__init__.py,sha256=6dT6uqgT__V08EjoTGxXguTbTkySZmByS9J2Bj6WWLM,53
180
197
  careamics/models/lvae/layers.py,sha256=UPxZiZjgnBnPs_wdSzcP-_s17MEw4P1CoIZzn4OdUA0,57944
181
- careamics/models/lvae/likelihoods.py,sha256=qRYRewQv6PqzJO-7nDnFkK86-R8dI4HSp1_ilRSc2I4,12233
182
- careamics/models/lvae/lvae.py,sha256=Jlw3mxVCxMDtjMvBWI9C9javHHyrngm8RfTYPsYhbI4,34767
183
- careamics/models/lvae/noise_models.py,sha256=lpSygXsJmD_erP0V72u9i5CX51wpopLNCH_YjmEL29s,24095
198
+ careamics/models/lvae/likelihoods.py,sha256=-FtUnqUPNkkNYTQdTSpYMUcxc_QJ_9MJgsndav026lg,12744
199
+ careamics/models/lvae/lvae.py,sha256=0JIX8ylMDO2fshc0m_0vG8WHRlU30cykp5zpCUQJOSI,34754
200
+ careamics/models/lvae/noise_models.py,sha256=X3FzpNPnHsnadW2C4bXUJwUQLtaNoiWwUhhei7lScZ0,24555
184
201
  careamics/models/lvae/stochastic.py,sha256=wiTrLBSYwOvsF1araKxUHy1CHp1mdH9bazctVo0NchA,16628
185
202
  careamics/models/lvae/utils.py,sha256=EE3paHu3vhCaqfOrGypzUsImZJO94uBhx8q6kZ-R36o,11516
186
- careamics/prediction_utils/__init__.py,sha256=k5hsPGY8FOkwIT0fQgrUz7fVCH2NlwuOdZiISdXjEWg,270
203
+ careamics/prediction_utils/__init__.py,sha256=u18N8a9MSYa1RRIrJOPBgbiaLwFDDjsKEO8B0zDtMao,401
187
204
  careamics/prediction_utils/lvae_prediction.py,sha256=B66w0F5GM95yhD68L9Sg1LqgtxgIgi_a_83WlN4fZu4,6188
188
205
  careamics/prediction_utils/lvae_tiling_manager.py,sha256=SI-JaJvLrKWBSHdm-FjcqWdbhlcflTRiKxYF7CSGzvA,13736
189
- careamics/prediction_utils/prediction_outputs.py,sha256=-rjI6pWEy_29nljG9sLGdI-7VaBH4ZBvJQOxB5UAOi4,4070
190
- careamics/prediction_utils/stitch_prediction.py,sha256=zWpfUPdJWKoJwHDcOjVyDek2YXmfQb3gHDWrkAb5E_I,3907
206
+ careamics/prediction_utils/prediction_outputs.py,sha256=HH4W9EoAoPX2My5H8tli8uEuLgDpSoaksX2grAtrR5E,5771
207
+ careamics/prediction_utils/stitch_prediction.py,sha256=Y0QQFJdoVSwly-zu2H86qXGqblTArcxkDuVc18VQyes,6723
191
208
  careamics/transforms/__init__.py,sha256=n7D3SbcVSRaMOl5F5Rozo2_lY8dn0DH28ywYIdbXxBo,561
192
209
  careamics/transforms/compose.py,sha256=8hOfcPDlI9z0kmlsi2QlIyEX3Y7gJxx1typCEdJszq0,5361
193
210
  careamics/transforms/n2v_manipulate.py,sha256=pAwGEZW_SFwbbVQGwpfWl6SVIa7slvfSSfve6sIHq_w,5670
@@ -199,7 +216,7 @@ careamics/transforms/struct_mask_parameters.py,sha256=jE29Li9sx3olaRnqYfJsSlKi2t
199
216
  careamics/transforms/transform.py,sha256=cEqc4ci8na70i-HIGYC7udRfVa8D_8OjdRVrr3txLvQ,464
200
217
  careamics/transforms/tta.py,sha256=78S7Df9rLHmEVSQSI1qDcRrRJGauyG3oaIrXkckCkmw,2335
201
218
  careamics/transforms/xy_flip.py,sha256=PlkwWneq5ypLvIcoevZatHMhPXpE2-sTpytziWC1oaw,3804
202
- careamics/transforms/xy_random_rotate90.py,sha256=o582ktYI2F54OLKZDn4tDMX-aOcD7S955vAHrJvCtNk,3147
219
+ careamics/transforms/xy_random_rotate90.py,sha256=xJJWBxVz227hFM11Dk-ufAsjS7LFsO3AOJoFn2ke8Bk,3152
203
220
  careamics/utils/__init__.py,sha256=mLwBQ7wTL2EwDwL3NcX53EHPNklojU45Jcc728y4EWQ,402
204
221
  careamics/utils/autocorrelation.py,sha256=M_WYzrEOQngc5iSXWar4S3-EOnK6DfYHPC2vVMeu_Bs,945
205
222
  careamics/utils/base_enum.py,sha256=bz1D8mDx5V5hdnJ3WAzJXWHJTbgwAky5FprUt9F5cMA,1387
@@ -213,9 +230,9 @@ careamics/utils/ram.py,sha256=tksyn8dVX_iJXmrDZDGub32hFZWIaNxnMheO5G1p43I,244
213
230
  careamics/utils/receptive_field.py,sha256=Y2h4c8S6glX3qcx5KHDmO17Kkuyey9voxfoXyqcAfiM,3296
214
231
  careamics/utils/serializers.py,sha256=mILUhz75IMpGKnEzcYu9hlOPG8YIiIW09fk6eZM7Y8k,1427
215
232
  careamics/utils/torch_utils.py,sha256=IUTxKIqYpUTvN-UDZDGBheF7zgtskH_yDcVvYx0p8zI,3478
216
- careamics/utils/version.py,sha256=WKtMlrNmXymJqzMfguBX558D6tb6aoAZfbABRh_ViIs,1142
217
- careamics-0.0.15.dist-info/METADATA,sha256=1lpIRjfRtM_XPs7eZP-JnV9rYZtRer2XrqK1rykEE84,3911
218
- careamics-0.0.15.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
219
- careamics-0.0.15.dist-info/entry_points.txt,sha256=2fSNVXJWDJgFLATVj7MkjFNvpl53amG8tUzC3jf7G1s,53
220
- careamics-0.0.15.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
221
- careamics-0.0.15.dist-info/RECORD,,
233
+ careamics/utils/version.py,sha256=i2d02OGg2dmdVrxk6auomCGDzLxCd8q4540hB7SzXYQ,1152
234
+ careamics-0.0.17.dist-info/METADATA,sha256=AuSVi9CrMMspo0kJ3dne8MSvdEsC7VNJZhzR2PFEjBk,3837
235
+ careamics-0.0.17.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
236
+ careamics-0.0.17.dist-info/entry_points.txt,sha256=2fSNVXJWDJgFLATVj7MkjFNvpl53amG8tUzC3jf7G1s,53
237
+ careamics-0.0.17.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
238
+ careamics-0.0.17.dist-info/RECORD,,
@@ -1,151 +0,0 @@
1
- """Zarr dataset."""
2
-
3
- # from itertools import islice
4
- # from typing import Callable, Dict, List, Optional, Tuple, Union
5
-
6
- # import numpy as np
7
- # import torch
8
- # import zarr
9
-
10
- # from careamics.utils import RunningStats
11
- # from careamics.utils.logging import get_logger
12
-
13
- # from ..utils import normalize
14
- # from .dataset_utils import read_zarr
15
- # from .patching.patching import (
16
- # generate_patches_unsupervised,
17
- # )
18
-
19
- # logger = get_logger(__name__)
20
-
21
-
22
- # class ZarrDataset(torch.utils.data.IterableDataset):
23
- # """Dataset to extract patches from a zarr storage.
24
-
25
- # Parameters
26
- # ----------
27
- # data_source : Union[zarr.Group, zarr.Array]
28
- # Zarr storage.
29
- # axes : str
30
- # Description of axes in format STCZYX.
31
- # patch_extraction_method : Union[ExtractionStrategies, None]
32
- # Patch extraction strategy, as defined in extraction_strategy.
33
- # patch_size : Optional[Union[List[int], Tuple[int]]], optional
34
- # Size of the patches in each dimension, by default None.
35
- # num_patches : Optional[int], optional
36
- # Number of patches to extract, by default None.
37
- # mean : Optional[float], optional
38
- # Expected mean of the dataset, by default None.
39
- # std : Optional[float], optional
40
- # Expected standard deviation of the dataset, by default None.
41
- # patch_transform : Optional[Callable], optional
42
- # Patch transform callable, by default None.
43
- # patch_transform_params : Optional[Dict], optional
44
- # Patch transform parameters, by default None.
45
- # running_stats_window_perc : float, optional
46
- # Percentage of the dataset to use for calculating the initial mean and standard
47
- # deviation, by default 0.01.
48
- # mode : str, optional
49
- # train/predict, controls running stats calculation.
50
- # """
51
-
52
- # def __init__(
53
- # self,
54
- # data_source: Union[zarr.Group, zarr.Array],
55
- # axes: str,
56
- # patch_extraction_method: Union[SupportedExtractionStrategy, None],
57
- # patch_size: Optional[Union[List[int], Tuple[int]]] = None,
58
- # num_patches: Optional[int] = None,
59
- # mean: Optional[float] = None,
60
- # std: Optional[float] = None,
61
- # patch_transform: Optional[Callable] = None,
62
- # patch_transform_params: Optional[Dict] = None,
63
- # running_stats_window_perc: float = 0.01,
64
- # mode: str = "train",
65
- # ) -> None:
66
- # self.data_source = data_source
67
- # self.axes = axes
68
- # self.patch_extraction_method = patch_extraction_method
69
- # self.patch_size = patch_size
70
- # self.num_patches = num_patches
71
- # self.mean = mean
72
- # self.std = std
73
- # self.patch_transform = patch_transform
74
- # self.patch_transform_params = patch_transform_params
75
- # self.sample = read_zarr(self.data_source, self.axes)
76
- # self.running_stats_window = int(
77
- # np.prod(self.sample._cdata_shape) * running_stats_window_perc
78
- # )
79
- # self.mode = mode
80
- # self.running_stats = RunningStats()
81
-
82
- # self._calculate_initial_mean_std()
83
-
84
- # def _calculate_initial_mean_std(self):
85
- # """Calculate initial mean and std of the dataset."""
86
- # if self.mean is None and self.std is None:
87
- # idxs = np.random.randint(
88
- # 0,
89
- # np.prod(self.sample._cdata_shape),
90
- # size=max(1, self.running_stats_window),
91
- # )
92
- # random_chunks = self.sample[idxs]
93
- # self.running_stats.init(random_chunks.mean(), random_chunks.std())
94
-
95
- # def _generate_patches(self):
96
- # """Generate patches from the dataset and calculates running stats.
97
-
98
- # Yields
99
- # ------
100
- # np.ndarray
101
- # Patch.
102
- # """
103
- # patches = generate_patches_unsupervised(
104
- # self.sample,
105
- # self.patch_extraction_method,
106
- # self.patch_size,
107
- # )
108
-
109
- # # num_patches = np.ceil(
110
- # # np.prod(self.sample.chunks)
111
- # # / (np.prod(self.patch_size) * self.running_stats_window)
112
- # # ).astype(int)
113
-
114
- # for idx, patch in enumerate(patches):
115
- # if self.mode != "predict":
116
- # self.running_stats.update(patch.mean())
117
- # if isinstance(patch, tuple):
118
- # normalized_patch = normalize(
119
- # img=patch[0],
120
- # mean=self.running_stats.avg_mean.value,
121
- # std=self.running_stats.avg_std.value,
122
- # )
123
- # patch = (normalized_patch, *patch[1:])
124
- # else:
125
- # patch = normalize(
126
- # img=patch,
127
- # mean=self.running_stats.avg_mean.value,
128
- # std=self.running_stats.avg_std.value,
129
- # )
130
-
131
- # if self.patch_transform is not None:
132
- # assert self.patch_transform_params is not None
133
- # patch = self.patch_transform(patch, **self.patch_transform_params)
134
- # if self.num_patches is not None and idx >= self.num_patches:
135
- # return
136
- # else:
137
- # yield patch
138
- # self.mean = self.running_stats.avg_mean.value
139
- # self.std = self.running_stats.avg_std.value
140
-
141
- # def __iter__(self):
142
- # """
143
- # Iterate over data source and yield single patch.
144
-
145
- # Yields
146
- # ------
147
- # np.ndarray
148
- # """
149
- # worker_info = torch.utils.data.get_worker_info()
150
- # num_workers = worker_info.num_workers if worker_info is not None else 1
151
- # yield from islice(self._generate_patches(), 0, None, num_workers)
@@ -1,60 +0,0 @@
1
- """Function to read zarr images."""
2
-
3
- from typing import Union
4
-
5
- from zarr import Group, core, hierarchy, storage
6
-
7
-
8
- def read_zarr(
9
- zarr_source: Group, axes: str
10
- ) -> Union[core.Array, storage.DirectoryStore, hierarchy.Group]:
11
- """Read a file and returns a pointer.
12
-
13
- Parameters
14
- ----------
15
- zarr_source : Group
16
- Zarr storage.
17
- axes : str
18
- Axes of the data.
19
-
20
- Returns
21
- -------
22
- np.ndarray
23
- Pointer to zarr storage.
24
-
25
- Raises
26
- ------
27
- ValueError, OSError
28
- if a file is not a valid tiff or damaged.
29
- ValueError
30
- if data dimensions are not 2, 3 or 4.
31
- ValueError
32
- if axes parameter from config is not consistent with data dimensions.
33
- """
34
- if isinstance(zarr_source, hierarchy.Group):
35
- array = zarr_source[0]
36
-
37
- elif isinstance(zarr_source, storage.DirectoryStore):
38
- raise NotImplementedError("DirectoryStore not supported yet")
39
-
40
- elif isinstance(zarr_source, core.Array):
41
- # array should be of shape (S, (C), (Z), Y, X), iterating over S ?
42
- if zarr_source.dtype == "O":
43
- raise NotImplementedError("Object type not supported yet")
44
- else:
45
- array = zarr_source
46
- else:
47
- raise ValueError(f"Unsupported zarr object type {type(zarr_source)}")
48
-
49
- # sanity check on dimensions
50
- if len(array.shape) < 2 or len(array.shape) > 4:
51
- raise ValueError(
52
- f"Incorrect data dimensions. Must be 2, 3 or 4 (got {array.shape})."
53
- )
54
-
55
- # sanity check on axes length
56
- if len(axes) != len(array.shape):
57
- raise ValueError(f"Incorrect axes length (got {axes}).")
58
-
59
- # arr = fix_axes(arr, axes)
60
- return array