careamics 0.0.15__py3-none-any.whl → 0.0.16__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of careamics might be problematic. Click here for more details.

Files changed (59) hide show
  1. careamics/careamist.py +6 -12
  2. careamics/cli/conf.py +18 -3
  3. careamics/config/__init__.py +8 -0
  4. careamics/config/algorithms/__init__.py +4 -0
  5. careamics/config/algorithms/hdn_algorithm_model.py +103 -0
  6. careamics/config/algorithms/microsplit_algorithm_model.py +103 -0
  7. careamics/config/algorithms/n2v_algorithm_model.py +1 -2
  8. careamics/config/algorithms/vae_algorithm_model.py +51 -16
  9. careamics/config/architectures/lvae_model.py +12 -8
  10. careamics/config/callback_model.py +7 -3
  11. careamics/config/configuration.py +9 -8
  12. careamics/config/configuration_factories.py +843 -29
  13. careamics/config/data/data_model.py +1 -2
  14. careamics/config/data/ng_data_model.py +1 -2
  15. careamics/config/inference_model.py +1 -2
  16. careamics/config/likelihood_model.py +2 -2
  17. careamics/config/loss_model.py +6 -2
  18. careamics/config/nm_model.py +26 -1
  19. careamics/config/optimizer_models.py +1 -2
  20. careamics/config/support/supported_algorithms.py +5 -3
  21. careamics/config/support/supported_losses.py +5 -2
  22. careamics/config/training_model.py +6 -36
  23. careamics/config/transformations/normalize_model.py +1 -2
  24. careamics/dataset_ng/patch_extractor/demo_custom_image_stack_loader.py +4 -4
  25. careamics/dataset_ng/patch_extractor/image_stack/in_memory_image_stack.py +1 -2
  26. careamics/dataset_ng/patch_extractor/image_stack/zarr_image_stack.py +33 -7
  27. careamics/dataset_ng/patch_extractor/image_stack_loader.py +2 -2
  28. careamics/file_io/read/__init__.py +0 -1
  29. careamics/lightning/__init__.py +16 -2
  30. careamics/lightning/callbacks/__init__.py +2 -0
  31. careamics/lightning/callbacks/data_stats_callback.py +23 -0
  32. careamics/lightning/lightning_module.py +161 -61
  33. careamics/lightning/microsplit_data_module.py +631 -0
  34. careamics/lightning/predict_data_module.py +8 -1
  35. careamics/lightning/train_data_module.py +19 -8
  36. careamics/losses/__init__.py +7 -1
  37. careamics/losses/loss_factory.py +9 -1
  38. careamics/losses/lvae/losses.py +85 -0
  39. careamics/lvae_training/dataset/__init__.py +8 -8
  40. careamics/lvae_training/dataset/config.py +56 -44
  41. careamics/lvae_training/dataset/lc_dataset.py +18 -12
  42. careamics/lvae_training/dataset/ms_dataset_ref.py +5 -5
  43. careamics/lvae_training/dataset/multich_dataset.py +24 -18
  44. careamics/lvae_training/dataset/multifile_dataset.py +6 -6
  45. careamics/model_io/bmz_io.py +9 -5
  46. careamics/models/lvae/likelihoods.py +30 -14
  47. careamics/models/lvae/lvae.py +2 -2
  48. careamics/models/lvae/noise_models.py +20 -14
  49. careamics/prediction_utils/__init__.py +8 -2
  50. careamics/prediction_utils/prediction_outputs.py +48 -3
  51. careamics/prediction_utils/stitch_prediction.py +71 -0
  52. careamics/transforms/xy_random_rotate90.py +1 -1
  53. {careamics-0.0.15.dist-info → careamics-0.0.16.dist-info}/METADATA +18 -15
  54. {careamics-0.0.15.dist-info → careamics-0.0.16.dist-info}/RECORD +57 -55
  55. careamics/dataset/zarr_dataset.py +0 -151
  56. careamics/file_io/read/zarr.py +0 -60
  57. {careamics-0.0.15.dist-info → careamics-0.0.16.dist-info}/WHEEL +0 -0
  58. {careamics-0.0.15.dist-info → careamics-0.0.16.dist-info}/entry_points.txt +0 -0
  59. {careamics-0.0.15.dist-info → careamics-0.0.16.dist-info}/licenses/LICENSE +0 -0
@@ -1,36 +1,38 @@
1
1
  careamics/__init__.py,sha256=eHsl7oE8HTKmi7yLMj8Yyp0RbdtN3QDmQQb-4Sn9d8M,475
2
- careamics/careamist.py,sha256=DeOt9u_EvRtRkzQ9NzBoyMxSNb8vO1tFHVwopI_37TY,38172
2
+ careamics/careamist.py,sha256=-CSwSAW9Nupd31zXUxaecC99mKGlMSwuLFJZUlNsib8,37780
3
3
  careamics/conftest.py,sha256=Od4WcaaP0UP-XUMrFr_oo4e6c2hi_RvNbuaRTopwlmI,911
4
4
  careamics/py.typed,sha256=esB4cHc6c07uVkGtqf8at7ttEnprwRxwk8obY8Qumq4,187
5
5
  careamics/cli/__init__.py,sha256=LbM9bVtU1dy-khmdiIDXwvKy2v8wPBCEUuWqV_8rosA,106
6
- careamics/cli/conf.py,sha256=ePp0hxcP3vUQWr5m2bgsxNBw7sS6eMu8F6pGhV8TvAU,13049
6
+ careamics/cli/conf.py,sha256=pEVyoU2Yawjplct773xmMtYnIC_5jy4OOh6ok6tmGYo,13577
7
7
  careamics/cli/main.py,sha256=21UcqLOP0tM7x25pslw0zRAfJMMEZEzG1xeJZI-QfN0,6533
8
8
  careamics/cli/utils.py,sha256=DJvHKpZB6LSSnABKxK6i15ITAyIdyaiAnSdpBPZhuuk,626
9
- careamics/config/__init__.py,sha256=K0N1GIqFCYhpPjalZG-Ygap6Ew_dDAC0uw5Npzhg9Lk,1524
10
- careamics/config/callback_model.py,sha256=lxytx4rwqOI-UxW8eHTdfLE3K4eIlg907w4Xk9Nul7Y,4065
11
- careamics/config/configuration.py,sha256=gNBKxeHqAQLa8_btGuQ4-X4987cRPr5L6RI6hOv179Q,13345
12
- careamics/config/configuration_factories.py,sha256=P_VWHOJEjW-s_yAOKul9TV41yufsQLzRyCPSKJrjUjc,45959
9
+ careamics/config/__init__.py,sha256=QRI7byEt82B36foRhHXybWdG7xKAgrUJalIcP4hg_MQ,1752
10
+ careamics/config/callback_model.py,sha256=VT0NyM8R1Mhtsm8SnZqk-0CK1WVaZXbCFJZCRq5DoXI,4108
11
+ careamics/config/configuration.py,sha256=EmamCrBF_4CyA-gJ0VbPVcAvEFArNQkJ_VW5kzUkFt4,13452
12
+ careamics/config/configuration_factories.py,sha256=FFjsht4ZUqrN98CHM_v3zejzUK8IsNZBQlHbHIGysD4,77230
13
13
  careamics/config/configuration_io.py,sha256=P-bP1kzkXxJWOEFP02dEZFNmpuLAPJfJtYhX4bFeaKk,2324
14
- careamics/config/inference_model.py,sha256=OiNLR4srvbaNcsvA5_Zwc3tqr7yQAXXeSxm5aAEpySM,6978
15
- careamics/config/likelihood_model.py,sha256=mxyhEHC6wS02t5lqFE3l-8N1DpzrTqEiQSswEy3DJgs,2246
16
- careamics/config/loss_model.py,sha256=yYcUBS90Qyon1MxeaHiVP3dJHPJFC0GUvWKGcAb3IHk,2036
17
- careamics/config/nm_model.py,sha256=M_YE2fiYgJT1pGF7JpzhDvgTnd8CP6DxZXIjxG9q5Qg,4722
18
- careamics/config/optimizer_models.py,sha256=9qxcLjtDp5LjYX52u21Rom4F3_GZUV2GJimrK3un574,5717
14
+ careamics/config/inference_model.py,sha256=E0s9wjPr3xEOllkf_oyROngq_BBe8Yc3l0Br4ygNFac,6949
15
+ careamics/config/likelihood_model.py,sha256=oXRwY2wGHUNLWqIdYtpo1KfxJxyWvDcRE-6dCVs7DgU,2241
16
+ careamics/config/loss_model.py,sha256=V_JyOCyFAxJIl7RGHqW_7mFBNq5GLOpYwWwU-WsUyKk,2166
17
+ careamics/config/nm_model.py,sha256=HrQJ49PDmi3dhCm7m4sbYiQ5nF54xYZ0KwJ-8uK7zGw,5524
18
+ careamics/config/optimizer_models.py,sha256=8PR9rRwoghGU3-Bz904sFqD1Ee4mTXtMsXOkekxVcIk,5688
19
19
  careamics/config/tile_information.py,sha256=c-_xrVPOgcnjiEzQ-9A_GhNPamObkMANbeHaRP29R-4,2059
20
- careamics/config/training_model.py,sha256=6XvXMIT2H8vxyGfb9L4cSRqpmlurBPeyWYS6RYhDZaA,3095
21
- careamics/config/algorithms/__init__.py,sha256=on5D6zBO9Lu-Tf5To8xpF6owIFqdN7RSmZdpyXDOaNw,404
20
+ careamics/config/training_model.py,sha256=kMKPe5M2KHLNS3FFZczOUydKekNXERXWYnbm31D-8eg,1932
21
+ careamics/config/algorithms/__init__.py,sha256=4DjB62MBYyAhbF9IhQy2z4Z0Oz-3ImJGfUlBYI2GF8o,557
22
22
  careamics/config/algorithms/care_algorithm_model.py,sha256=ncf89BC2aFPFSquJ65-Y7NpwVbvgPE0BKH6Up1OHa1s,3238
23
+ careamics/config/algorithms/hdn_algorithm_model.py,sha256=tbXPv2l4zKNv1Gq6kVXKVCZ8YV13jhr39R77X1hPopQ,2618
24
+ careamics/config/algorithms/microsplit_algorithm_model.py,sha256=iWfjsOADH6kct21aFVDTG8FOwjyymSZUpjCwG278wAY,2705
23
25
  careamics/config/algorithms/n2n_algorithm_model.py,sha256=OZbRis9jhRKWNK1-Z_aw2tfJRuGdlJiYEYlH4Hr1FRs,3066
24
- careamics/config/algorithms/n2v_algorithm_model.py,sha256=IkHsTj-IkWq--mlWjBHfH18CGK_3p2uaC3Zz2tfieaA,9469
26
+ careamics/config/algorithms/n2v_algorithm_model.py,sha256=MSBkeHaIoFQlZhPxSUnZO-pFKeeq-OmVmx8q00pcmv8,9440
25
27
  careamics/config/algorithms/unet_algorithm_model.py,sha256=OaBFVlhsb9YhF3f2x1ImazvfnZ4_DPWvYWihRwurkeg,2587
26
- careamics/config/algorithms/vae_algorithm_model.py,sha256=JFHWtoLEKt0PthJYiDq3TfBl7fJudODUvtCyTeFZvvg,4661
28
+ careamics/config/algorithms/vae_algorithm_model.py,sha256=o7Weqxyk4idZIp3dpDa7f7CqmvrJJ4UD4tsuj-RW73c,6100
27
29
  careamics/config/architectures/__init__.py,sha256=lYUz56R7LDqVQWQDLkLgJL8VtOyxc_ege1r4bXGEBqA,220
28
30
  careamics/config/architectures/architecture_model.py,sha256=gXn4gdLrQP3bmTQxIhzkEHYlodPaIp6LI-kwZl23W-Y,911
29
- careamics/config/architectures/lvae_model.py,sha256=lwOiJYNUqPrZFl9SpPLYon77EiRbe2eI7pmpx45rO78,7606
31
+ careamics/config/architectures/lvae_model.py,sha256=4EScBNA33WZzyuU0vGFlP3UJcX2GmKuKlklH0v9wgTw,7769
30
32
  careamics/config/architectures/unet_model.py,sha256=Aqc_KPf2VKMhNrYwOdmr_ez3iIQz8ZRtsA6t5FFT354,3686
31
33
  careamics/config/data/__init__.py,sha256=YS04_USNswKL7kpSn_6BeTvhobAiUVst46_SlCztCxs,171
32
- careamics/config/data/data_model.py,sha256=4zqLKfH1dhOl7CDHvIANrfSbJnUhnkfrCvAJF5F7MdQ,13374
33
- careamics/config/data/ng_data_model.py,sha256=0RSUvSMoIVcQY4a1drCMHMcOBp15xHchtnEk-nUiTvU,12244
34
+ careamics/config/data/data_model.py,sha256=FOZcO6pemGCus8h27iDDGJ0j1ZiCOewKBDg1mTZLjCA,13345
35
+ careamics/config/data/ng_data_model.py,sha256=2d47_FbNCVYC5VLaq_XqpfS3JqookLUOc1F6rTOkm04,12215
34
36
  careamics/config/data/patching_strategies/__init__.py,sha256=6ZUors-WzBBQCwMyaSojYJzdXeleFRBlrFls1r-Otdo,394
35
37
  careamics/config/data/patching_strategies/_overlapping_patched_model.py,sha256=ysGd8QNNdNzLD6NITmvyjVETG6ohhEFLgWPCS_CYSxE,3030
36
38
  careamics/config/data/patching_strategies/_patched_model.py,sha256=wmhM1Qt5qDuMCs76ab7dPoNTjy_lLVIL8TD5AzaIoak,1429
@@ -40,11 +42,11 @@ careamics/config/data/patching_strategies/tiled_patching_model.py,sha256=5lltbA9
40
42
  careamics/config/data/patching_strategies/whole_patching_model.py,sha256=HCPiWFrYk_ICWvlmddJYW9YjCzZUc7ijGJlLP1WxvjU,272
41
43
  careamics/config/support/__init__.py,sha256=ktWvxbTkRXnQPS_N84l9E2B5kTZVdd64SIjsJIQKB-k,1041
42
44
  careamics/config/support/supported_activations.py,sha256=CqOWoziIK5jZZXJO7G7cGg3TTid1POqv8FXqxjXxyME,535
43
- careamics/config/support/supported_algorithms.py,sha256=w6YzcIqGZ_bS85Tw1s7TEltBDXLt4SzgN3Tc6s19dGU,946
45
+ careamics/config/support/supported_algorithms.py,sha256=FKluIBTLQyFZauhMC-mCN7w6w4FdotvFPd8DOl4umko,1090
44
46
  careamics/config/support/supported_architectures.py,sha256=pOxvHOAIUkc7HCO0IIg4K22h-Ti5ErtcIkGOjN-zh1s,340
45
47
  careamics/config/support/supported_data.py,sha256=rVcBOBUosyvYWZJAofJ66_DucnkkPfPhZMXU6KXugsM,3079
46
48
  careamics/config/support/supported_loggers.py,sha256=ubSOkGoYabGbm_jmyc1R3eFcvcP-sHmuyiBi_d3_wLg,197
47
- careamics/config/support/supported_losses.py,sha256=2x5sZuxRbWJzodoL35I1mMYUUDMzk8UFiFdbyPwbJ4E,583
49
+ careamics/config/support/supported_losses.py,sha256=EQompJiL_F4ZHPVORDZf_dAXHBeVikaxfykT6mOnnwQ,671
48
50
  careamics/config/support/supported_optimizers.py,sha256=_2XmwzYENB6xpTedyWHUdWuGcDzdlfEAJjzm_qI3yRM,1392
49
51
  careamics/config/support/supported_patching_strategies.py,sha256=3Ngth0bna6ibabmg73y-1Hq7MebFNFq2MqE8sUB7UO8,635
50
52
  careamics/config/support/supported_pixel_manipulations.py,sha256=rFiktUlvoFU7s1NAKEMqsXOzLw5eaw9GtCKUznvq6xc,432
@@ -52,7 +54,7 @@ careamics/config/support/supported_struct_axis.py,sha256=alZMA5Y-BpDymLPUEd1zqVY
52
54
  careamics/config/support/supported_transforms.py,sha256=ylTiS8fUFKFwfn85gh7kKF4Trb9Q4ENPKm-XDWCe-SY,311
53
55
  careamics/config/transformations/__init__.py,sha256=6THr9oNI06umw_cchXW9sCeBLpFIcJfGC4hdq3WvUsI,577
54
56
  careamics/config/transformations/n2v_manipulate_model.py,sha256=IJ_MeNbVzwnmvLhBjAVZPj5fxPzUXYGYYRe5PHcWIzQ,2428
55
- careamics/config/transformations/normalize_model.py,sha256=_gQmUTlrPlMx5fptoZbB0Ov7PdJQoeDAw81XMCtQRr4,1920
57
+ careamics/config/transformations/normalize_model.py,sha256=OAQryxDDCm8s_e_XW-McGhnGE0LjEV84CuNiAA48a6E,1891
56
58
  careamics/config/transformations/transform_model.py,sha256=6UVbXnxm-LLZOQQ-ZBwWwgmS_99DiBuERLfMxrta3-8,990
57
59
  careamics/config/transformations/transform_unions.py,sha256=lOwwX2LZPhfb0GR8B1jtJeuoDa9jIbOmh_W0rlebS1g,784
58
60
  careamics/config/transformations/xy_flip_model.py,sha256=2k4tiUZK3GVn9hEjFlWi0ypz-k5C2XKKO6elU7HlKmI,1012
@@ -67,7 +69,6 @@ careamics/dataset/in_memory_tiled_pred_dataset.py,sha256=fKg3_Mmx0hXlOjuWU6lhTVR
67
69
  careamics/dataset/iterable_dataset.py,sha256=xDt2985m-K1P5G2EaNHOHg54-fjRI6MfZTdNB4NdSJI,9752
68
70
  careamics/dataset/iterable_pred_dataset.py,sha256=4OsyDQv9udIh7R8UixTLeB_jVtaG-6z38bMqWRqxMxI,3750
69
71
  careamics/dataset/iterable_tiled_pred_dataset.py,sha256=4553dDF9_yQkb--g2wWD8rempMk_DTLYgRgt5T03mW0,4594
70
- careamics/dataset/zarr_dataset.py,sha256=lojnK5bhiF1vyjuPtWXBrZ9sy5fT_rBvZJbbbnE-H_I,5665
71
72
  careamics/dataset/dataset_utils/__init__.py,sha256=MJ3xriL6R4ZtmzbvLsASUWLb85Hk5AdeRaYnHpNELJQ,507
72
73
  careamics/dataset/dataset_utils/dataset_utils.py,sha256=X83DzaOWmHdl4eOPac2IQJH3bPA43RVq0hPrFrzvIXQ,2630
73
74
  careamics/dataset/dataset_utils/file_utils.py,sha256=ru6AtQ9LCmo6raN1-GnJEN4UyP1PbmSdR9MEys3CuHo,4094
@@ -94,15 +95,15 @@ careamics/dataset_ng/demos/demo_dataset.ipynb,sha256=3mNGotUtQ2XMbw4JE5HkOSZXtqc
94
95
  careamics/dataset_ng/demos/demo_patch_extractor.py,sha256=2guz1iRqBzue4GLAVh9-K8sXCgsygtsJS-wzeHctY34,1419
95
96
  careamics/dataset_ng/demos/mouse_nuclei_demo.ipynb,sha256=Afd-_T848z3ZCDAL8vMfP6CJR8CbUg0xLAurBxg-fuc,8278
96
97
  careamics/dataset_ng/patch_extractor/__init__.py,sha256=U27Gxp6dk6DUc-MiDMPvdh2aoWlM7jU-bjueqa7elPg,207
97
- careamics/dataset_ng/patch_extractor/demo_custom_image_stack_loader.py,sha256=Y6CQyCy-_NcRf9ytOeCsIXjeN8CZBnKpMwcM1H50cNc,2987
98
- careamics/dataset_ng/patch_extractor/image_stack_loader.py,sha256=Gq1KbqZWCX8fR4ZCcFysXPK6LoJJJvb4Cig_KYeGyqs,2490
98
+ careamics/dataset_ng/patch_extractor/demo_custom_image_stack_loader.py,sha256=UnSBiLCeBruHxuJgbEN2o2LaoNouTcbT2EixYepwbwg,3021
99
+ careamics/dataset_ng/patch_extractor/image_stack_loader.py,sha256=fcEmjFCOy6PNuqHBnf357d11EDhxVz6ni6pdUGzyJbI,2498
99
100
  careamics/dataset_ng/patch_extractor/patch_extractor.py,sha256=nGN5TrmmSo5KeQoXJ-wrVQtQlYadaR8onH7TOWXhVy4,824
100
101
  careamics/dataset_ng/patch_extractor/patch_extractor_factory.py,sha256=8B3s5n8nEOQ6JCJIANVdckgJGaYm8Y4v69vYn4Zsmdo,5927
101
102
  careamics/dataset_ng/patch_extractor/image_stack/__init__.py,sha256=0K4swSw3fmVonjavNyxDtXRDJTNq4P7oMBktsoNO2GI,333
102
103
  careamics/dataset_ng/patch_extractor/image_stack/czi_image_stack.py,sha256=5XXbOZoxPY3g8cAcuHgwKFWN5gAC9vAwvuesA2pxF9Q,14420
103
104
  careamics/dataset_ng/patch_extractor/image_stack/image_stack_protocol.py,sha256=NnhqyDmZPuQgU_gjNugNWNX9_NetRguwLg9LfTmd7U8,1649
104
- careamics/dataset_ng/patch_extractor/image_stack/in_memory_image_stack.py,sha256=2eICQjYTzjEaYLh9Wg2IJ6cguo7Ty1p-eXPvTJk0nv0,1941
105
- careamics/dataset_ng/patch_extractor/image_stack/zarr_image_stack.py,sha256=hmNOl6-FMUNQS65YMSa4eAz3Rp_2es98p1_UY6S8B50,6590
105
+ careamics/dataset_ng/patch_extractor/image_stack/in_memory_image_stack.py,sha256=0Iw2TFASM-28qoJeAkvwt1N1t79QMMwCqlSoLZOUt08,1912
106
+ careamics/dataset_ng/patch_extractor/image_stack/zarr_image_stack.py,sha256=yAOpwifNEXViDgkrbXSgNugSLVx-BDtDqBz6g6pFhBc,7400
106
107
  careamics/dataset_ng/patching_strategies/__init__.py,sha256=2KwdY_TeD9WQju150WbV2IF19TincHU3lbcL0fqZF5o,549
107
108
  careamics/dataset_ng/patching_strategies/patching_strategy_protocol.py,sha256=ukw5G9hIOPEJz-DEFDMuJsGYou7wUeRjALNU8qdgn9g,3475
108
109
  careamics/dataset_ng/patching_strategies/random_patching.py,sha256=0qEhUgANJAuhnVYeCiCaiW1gwLWOGAIIFcvriW0_byM,13490
@@ -110,18 +111,19 @@ careamics/dataset_ng/patching_strategies/sequential_patching.py,sha256=Qsqqf8D_2
110
111
  careamics/dataset_ng/patching_strategies/tiling_strategy.py,sha256=jKug3ocARe-pSqSB3g27T7GGmrrQ6eRYbp_m49BJ4-4,6415
111
112
  careamics/dataset_ng/patching_strategies/whole_sample.py,sha256=o1Z4iHKveq9X--LRV-gdUQqB-TPVxr2RvaKHmgDnCx0,1249
112
113
  careamics/file_io/__init__.py,sha256=vgMI77X820VOWywAEW5W20FXfmbqBzx4V63D3V3_HhI,334
113
- careamics/file_io/read/__init__.py,sha256=wf8O_o80ghrlWQ-RGEuSqcc2LU55P1B-oxTacDToygo,259
114
+ careamics/file_io/read/__init__.py,sha256=r8WILkWoBOTLTJiltg1tCozIh-XSq_I33VMIx3ykSKs,231
114
115
  careamics/file_io/read/get_func.py,sha256=1UJMfVb6gUCe_5WBRxCEO2Q7pqdVu8u2Sm0aHxXdiak,1415
115
116
  careamics/file_io/read/tiff.py,sha256=UMofW33rvByK9B1zYGhSrWAiAA3uQUV3OVK7cq9d0gQ,1359
116
- careamics/file_io/read/zarr.py,sha256=2jzREAnJDQSv0qmsL-v00BxmiZ_sp0ijq667LZSQ_hY,1685
117
117
  careamics/file_io/write/__init__.py,sha256=CUt33cRjG9hm18L9a7XqaUKWQ_3xiuQ9ztz4Ab7RYG0,283
118
118
  careamics/file_io/write/get_func.py,sha256=hyGHe1RX-lfa9QFAnwRCz_gS0NRiRnXEtg4Bdeh2Esc,1627
119
119
  careamics/file_io/write/tiff.py,sha256=tBGIgl-I1sMyBivgx-dOTBykXBODkgwPH8MT3_4KAE8,1050
120
- careamics/lightning/__init__.py,sha256=ATCVAGnX08Ik4TxbIv0-cXb52UinR42JgvZh_GIMSpc,588
121
- careamics/lightning/lightning_module.py,sha256=EgRIWOHxZ9FZyS2lGaRSGaVecT8revXjd4mE59se7T0,24311
122
- careamics/lightning/predict_data_module.py,sha256=yahMMPbEIX0AXNgA2PKIABm9cYEXlyhl0SKc1GCDEZU,12741
123
- careamics/lightning/train_data_module.py,sha256=028si-InvNHbr78ne1sEudhwKz-ReZGNIoOtr9hUlvc,26541
124
- careamics/lightning/callbacks/__init__.py,sha256=eA5ltzYNzuO0uMEr1jG4wP01b0s29s5I03WGJ290qkw,312
120
+ careamics/lightning/__init__.py,sha256=NeqZmOgor6EXov6ULmPdGxl5dB39ljibGvjZaA0zkaM,970
121
+ careamics/lightning/lightning_module.py,sha256=isLtzxx60JvaNql6CGuKscaU1MwG-sTRbVl65ik5SpQ,28623
122
+ careamics/lightning/microsplit_data_module.py,sha256=iWDCarLbZQk1RrWlBT6cunaORsWROn_nZGAHxF-hes0,20552
123
+ careamics/lightning/predict_data_module.py,sha256=EQ-X2go-beMIhGD8bbOm3XorTDfMReFUkk9MewmYxuw,13094
124
+ careamics/lightning/train_data_module.py,sha256=wFWO2wC0uXtoBNcNk8xNMCQxsl7eEJ5cXFOl1DXTYNg,27055
125
+ careamics/lightning/callbacks/__init__.py,sha256=sgP-u7FKnrD83cyWidvaIZZHvCIP-3pwrgZsfzPejow,388
126
+ careamics/lightning/callbacks/data_stats_callback.py,sha256=lEsRmsEu3U0QgyAor5r2xTgq1Hit5K-e-hkeMEkrYac,877
125
127
  careamics/lightning/callbacks/hyperparameters_callback.py,sha256=u45knOZHwoVHz6yYfrnERQuozT_SfZ1OrKP0QjeU4EM,1495
126
128
  careamics/lightning/callbacks/progress_bar_callback.py,sha256=w-j_nk2ysyc4THKfwWbpkiKGeqNUpLGtm-8dYBgla2c,2443
127
129
  careamics/lightning/callbacks/prediction_writer_callback/__init__.py,sha256=ZVf3vaSU_NjSjrKbI24H0kK9WAiP9oKXfhP670EaWMo,548
@@ -135,13 +137,13 @@ careamics/lightning/dataset_ng/lightning_modules/__init__.py,sha256=Kx7NkwAS9rqf
135
137
  careamics/lightning/dataset_ng/lightning_modules/care_module.py,sha256=Mc72uucp8DOObIfK05-LvzFVbXcBQ5IZ7vDUeYoMt1Q,3145
136
138
  careamics/lightning/dataset_ng/lightning_modules/n2v_module.py,sha256=DD9JkNDD-nbBNDjmUP-PWTr_sbNaYb8_TKXpUC6FB5Q,3355
137
139
  careamics/lightning/dataset_ng/lightning_modules/unet_module.py,sha256=aGN_xZptJ1fxK3J39YLoF_E4UDYNJGeYJETQKVgxRwU,6868
138
- careamics/losses/__init__.py,sha256=nSWbkBcFhkyUkIT2wVcULqpieyY2Oro39NXZTtfQpXo,351
139
- careamics/losses/loss_factory.py,sha256=IVcvSWLnbMuoLG_4SmZ4s_hfinB-olu44PL9lhDEGEM,1545
140
+ careamics/losses/__init__.py,sha256=ROBvKNkKpo46e3sgWpLeuPNvTBEas8OHl6GIBr9lWxk,398
141
+ careamics/losses/loss_factory.py,sha256=sZo-pxBgnAcgKrRm0us_6S7hDXi4FdNazSHzC2Y277o,1637
140
142
  careamics/losses/fcn/__init__.py,sha256=kf92MKFGHr6upiztZVgWwtGPf734DZyub92Rn8uEq8o,18
141
143
  careamics/losses/fcn/losses.py,sha256=KuoXqL24QbTxDdRmQJbERC95x0f3u4T0S77dqBZRarQ,2513
142
144
  careamics/losses/lvae/__init__.py,sha256=0FNtMLHrOMfagtWkaBdz1NTjyf2y0QLgysxJv5jq5uw,19
143
145
  careamics/losses/lvae/loss_utils.py,sha256=QxzA2N1TglR4H0X0uyTWWytDagE1lA9IB_TK1lms3ao,2720
144
- careamics/losses/lvae/losses.py,sha256=Bx9oNnFGw9YThVSAn7tznS53_aym1_BPABVcDMH5spY,17943
146
+ careamics/losses/lvae/losses.py,sha256=rzeEnPQnyp0Eej2l8XwpSDeiaD_k5qE63LHdSpfR3Ik,20798
145
147
  careamics/lvae_training/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
146
148
  careamics/lvae_training/calibration.py,sha256=xHbiLcY2csYos3s7rRSqp7P7G-9wzULcSo1JfVzfIjE,7239
147
149
  careamics/lvae_training/eval_utils.py,sha256=PWKlG2XrvdfZTG0_brcADaAA0owTeNRT1g673gYtk5k,34410
@@ -150,13 +152,13 @@ careamics/lvae_training/lightning_module.py,sha256=ryr7iHqCMzCl5esi6_gEcnKFDQkMr
150
152
  careamics/lvae_training/metrics.py,sha256=KTDAKhe3vh-YxzGibjtkIG2nnUyujbnwqX4xGwaRXwE,6718
151
153
  careamics/lvae_training/train_lvae.py,sha256=lJEBlBGdISVkZBcEnPNRYgJ7VbapYzZHRaFOrZ0xYGE,11080
152
154
  careamics/lvae_training/train_utils.py,sha256=e-d4QsF-li8MmAPkAmB1daHpkuU16nBTnQFZYqpTjn4,3567
153
- careamics/lvae_training/dataset/__init__.py,sha256=TcsPOoeYXWZh2mTEOodYf4u5dd12TzzkxAaxLzBrMyA,538
154
- careamics/lvae_training/dataset/config.py,sha256=upMx0NvYtKBi0SHH6WHMfVDzwLzgIk3Nw7z5vRoEvj0,4392
155
- careamics/lvae_training/dataset/lc_dataset.py,sha256=r4PffRXzuTJ0tLWei4B3wq6f1Q34raaZQzZ0IQXi8OI,10762
156
- careamics/lvae_training/dataset/ms_dataset_ref.py,sha256=uyyz9RjiV3iszQAmavhLhU6PT2B_n6pch3F22ZS4M0o,40892
157
- careamics/lvae_training/dataset/multich_dataset.py,sha256=kw2gFZPDEp6WdsJwjQ-2EFvxZHe-HI83FhI4C5k39b4,42593
155
+ careamics/lvae_training/dataset/__init__.py,sha256=EM_FjJA1xF74uSo2zZLecRKMWaGLlNoyQGkDItAdnUw,552
156
+ careamics/lvae_training/dataset/config.py,sha256=UoHWg0sQYGI6bPIvUW6SDk18KG7c377r4XSHsvAs3CM,4761
157
+ careamics/lvae_training/dataset/lc_dataset.py,sha256=886JcdPrg1v_3Ks6BP50EdCE118PVCSRAWguxS9PF_0,10991
158
+ careamics/lvae_training/dataset/ms_dataset_ref.py,sha256=Lk-aeyEIYRoM46ZBhQ879W77o_AbRvvZeYtxrhwF9jk,40950
159
+ careamics/lvae_training/dataset/multich_dataset.py,sha256=cLtZ_e-b-qrCaYUkGYp2HdmXwNTv75Fy1Agd2ffRAuA,42814
158
160
  careamics/lvae_training/dataset/multicrop_dset.py,sha256=1h5fREkDNxKGBO1vb4d9W_UVMOA105uBTrN6_J-jUs0,6418
159
- careamics/lvae_training/dataset/multifile_dataset.py,sha256=hJBs6iBrf_FcyUYzg8rDjvKEICHxDYyXVOj-5L0F6FE,10273
161
+ careamics/lvae_training/dataset/multifile_dataset.py,sha256=YEaWVy8X_eGtrz3Q2ixT6olhGG9M56-lDDpdNg4zLQw,10315
160
162
  careamics/lvae_training/dataset/types.py,sha256=7uCrbL_FQeQfAPz-mHnqHKpZC1x4sdvq9wswmBvOPO0,616
161
163
  careamics/lvae_training/dataset/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
162
164
  careamics/lvae_training/dataset/utils/data_utils.py,sha256=8PvRPqSbYHPCl87cycZHxXIFOT_EoBV-8XCt3ZLh36s,3125
@@ -164,7 +166,7 @@ careamics/lvae_training/dataset/utils/empty_patch_fetcher.py,sha256=OFjeqhZ6vFUL
164
166
  careamics/lvae_training/dataset/utils/index_manager.py,sha256=rihMe5zOfXvPFvM_2paP0EzK4WhaG6RhRFLy8TxnNas,21654
165
167
  careamics/lvae_training/dataset/utils/index_switcher.py,sha256=ZoMi8LsaIkm8MFqIFaxN4oQGyzCcwOlCom8SYNus15E,6716
166
168
  careamics/model_io/__init__.py,sha256=khMIkk107LL5JGze0OVfl5Lfi14R3_e4W21tW0iJ1kE,155
167
- careamics/model_io/bmz_io.py,sha256=XMV-a9btKf1bsC7NP7awoN2hrewSQHRbN8K9G4Sfi8E,7788
169
+ careamics/model_io/bmz_io.py,sha256=IlmgOPI-1jPVBgDH1caDf0dTUWyM7uWRt4egm5yhLQU,7964
168
170
  careamics/model_io/model_io_utils.py,sha256=mA8y5ZJ2r5vqA3OCgJqB1wxvCCx37x8Yl7nj1zi3_3U,2750
169
171
  careamics/model_io/bioimage/__init__.py,sha256=dKm-UluVwa_7EHQB0ukx-Qk8JVWtuT-OUinY8hE9EIw,298
170
172
  careamics/model_io/bioimage/_readme_factory.py,sha256=sRfHbuwhfYmpwsG0keXFCSK3qCS4VI4GQhX6OhSKLjY,3440
@@ -178,16 +180,16 @@ careamics/models/model_factory.py,sha256=GWbouERvEfHj_BrpKHYgrPAj8dpdoh1R-X--Jt0
178
180
  careamics/models/unet.py,sha256=f7QT_tHilub9y22RF9rki9ISjS6BYA0fJn5ULwHtVAo,14785
179
181
  careamics/models/lvae/__init__.py,sha256=6dT6uqgT__V08EjoTGxXguTbTkySZmByS9J2Bj6WWLM,53
180
182
  careamics/models/lvae/layers.py,sha256=UPxZiZjgnBnPs_wdSzcP-_s17MEw4P1CoIZzn4OdUA0,57944
181
- careamics/models/lvae/likelihoods.py,sha256=qRYRewQv6PqzJO-7nDnFkK86-R8dI4HSp1_ilRSc2I4,12233
182
- careamics/models/lvae/lvae.py,sha256=Jlw3mxVCxMDtjMvBWI9C9javHHyrngm8RfTYPsYhbI4,34767
183
- careamics/models/lvae/noise_models.py,sha256=lpSygXsJmD_erP0V72u9i5CX51wpopLNCH_YjmEL29s,24095
183
+ careamics/models/lvae/likelihoods.py,sha256=uxALdNy9NBX0Vqy36er3jdFg3bdCC-CBp5TBY-YUbZE,12727
184
+ careamics/models/lvae/lvae.py,sha256=0JIX8ylMDO2fshc0m_0vG8WHRlU30cykp5zpCUQJOSI,34754
185
+ careamics/models/lvae/noise_models.py,sha256=X3FzpNPnHsnadW2C4bXUJwUQLtaNoiWwUhhei7lScZ0,24555
184
186
  careamics/models/lvae/stochastic.py,sha256=wiTrLBSYwOvsF1araKxUHy1CHp1mdH9bazctVo0NchA,16628
185
187
  careamics/models/lvae/utils.py,sha256=EE3paHu3vhCaqfOrGypzUsImZJO94uBhx8q6kZ-R36o,11516
186
- careamics/prediction_utils/__init__.py,sha256=k5hsPGY8FOkwIT0fQgrUz7fVCH2NlwuOdZiISdXjEWg,270
188
+ careamics/prediction_utils/__init__.py,sha256=u18N8a9MSYa1RRIrJOPBgbiaLwFDDjsKEO8B0zDtMao,401
187
189
  careamics/prediction_utils/lvae_prediction.py,sha256=B66w0F5GM95yhD68L9Sg1LqgtxgIgi_a_83WlN4fZu4,6188
188
190
  careamics/prediction_utils/lvae_tiling_manager.py,sha256=SI-JaJvLrKWBSHdm-FjcqWdbhlcflTRiKxYF7CSGzvA,13736
189
- careamics/prediction_utils/prediction_outputs.py,sha256=-rjI6pWEy_29nljG9sLGdI-7VaBH4ZBvJQOxB5UAOi4,4070
190
- careamics/prediction_utils/stitch_prediction.py,sha256=zWpfUPdJWKoJwHDcOjVyDek2YXmfQb3gHDWrkAb5E_I,3907
191
+ careamics/prediction_utils/prediction_outputs.py,sha256=RncK9HOA9eApzhgU5v8LjTKCWaOFreUvJw8C_vLxd_U,5767
192
+ careamics/prediction_utils/stitch_prediction.py,sha256=Dr3AuQN9yRGtzQjjJcOzGH8flo3JuO5xIkX64ouqoMg,6463
191
193
  careamics/transforms/__init__.py,sha256=n7D3SbcVSRaMOl5F5Rozo2_lY8dn0DH28ywYIdbXxBo,561
192
194
  careamics/transforms/compose.py,sha256=8hOfcPDlI9z0kmlsi2QlIyEX3Y7gJxx1typCEdJszq0,5361
193
195
  careamics/transforms/n2v_manipulate.py,sha256=pAwGEZW_SFwbbVQGwpfWl6SVIa7slvfSSfve6sIHq_w,5670
@@ -199,7 +201,7 @@ careamics/transforms/struct_mask_parameters.py,sha256=jE29Li9sx3olaRnqYfJsSlKi2t
199
201
  careamics/transforms/transform.py,sha256=cEqc4ci8na70i-HIGYC7udRfVa8D_8OjdRVrr3txLvQ,464
200
202
  careamics/transforms/tta.py,sha256=78S7Df9rLHmEVSQSI1qDcRrRJGauyG3oaIrXkckCkmw,2335
201
203
  careamics/transforms/xy_flip.py,sha256=PlkwWneq5ypLvIcoevZatHMhPXpE2-sTpytziWC1oaw,3804
202
- careamics/transforms/xy_random_rotate90.py,sha256=o582ktYI2F54OLKZDn4tDMX-aOcD7S955vAHrJvCtNk,3147
204
+ careamics/transforms/xy_random_rotate90.py,sha256=xJJWBxVz227hFM11Dk-ufAsjS7LFsO3AOJoFn2ke8Bk,3152
203
205
  careamics/utils/__init__.py,sha256=mLwBQ7wTL2EwDwL3NcX53EHPNklojU45Jcc728y4EWQ,402
204
206
  careamics/utils/autocorrelation.py,sha256=M_WYzrEOQngc5iSXWar4S3-EOnK6DfYHPC2vVMeu_Bs,945
205
207
  careamics/utils/base_enum.py,sha256=bz1D8mDx5V5hdnJ3WAzJXWHJTbgwAky5FprUt9F5cMA,1387
@@ -214,8 +216,8 @@ careamics/utils/receptive_field.py,sha256=Y2h4c8S6glX3qcx5KHDmO17Kkuyey9voxfoXyq
214
216
  careamics/utils/serializers.py,sha256=mILUhz75IMpGKnEzcYu9hlOPG8YIiIW09fk6eZM7Y8k,1427
215
217
  careamics/utils/torch_utils.py,sha256=IUTxKIqYpUTvN-UDZDGBheF7zgtskH_yDcVvYx0p8zI,3478
216
218
  careamics/utils/version.py,sha256=WKtMlrNmXymJqzMfguBX558D6tb6aoAZfbABRh_ViIs,1142
217
- careamics-0.0.15.dist-info/METADATA,sha256=1lpIRjfRtM_XPs7eZP-JnV9rYZtRer2XrqK1rykEE84,3911
218
- careamics-0.0.15.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
219
- careamics-0.0.15.dist-info/entry_points.txt,sha256=2fSNVXJWDJgFLATVj7MkjFNvpl53amG8tUzC3jf7G1s,53
220
- careamics-0.0.15.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
221
- careamics-0.0.15.dist-info/RECORD,,
219
+ careamics-0.0.16.dist-info/METADATA,sha256=L2pnu0KFm9PP3OA-riakzhIIM_z_P96O_fPCM3ZaZ-U,4055
220
+ careamics-0.0.16.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
221
+ careamics-0.0.16.dist-info/entry_points.txt,sha256=2fSNVXJWDJgFLATVj7MkjFNvpl53amG8tUzC3jf7G1s,53
222
+ careamics-0.0.16.dist-info/licenses/LICENSE,sha256=6zdNW-k_xHRKYWUf9tDI_ZplUciFHyj0g16DYuZ2udw,1509
223
+ careamics-0.0.16.dist-info/RECORD,,
@@ -1,151 +0,0 @@
1
- """Zarr dataset."""
2
-
3
- # from itertools import islice
4
- # from typing import Callable, Dict, List, Optional, Tuple, Union
5
-
6
- # import numpy as np
7
- # import torch
8
- # import zarr
9
-
10
- # from careamics.utils import RunningStats
11
- # from careamics.utils.logging import get_logger
12
-
13
- # from ..utils import normalize
14
- # from .dataset_utils import read_zarr
15
- # from .patching.patching import (
16
- # generate_patches_unsupervised,
17
- # )
18
-
19
- # logger = get_logger(__name__)
20
-
21
-
22
- # class ZarrDataset(torch.utils.data.IterableDataset):
23
- # """Dataset to extract patches from a zarr storage.
24
-
25
- # Parameters
26
- # ----------
27
- # data_source : Union[zarr.Group, zarr.Array]
28
- # Zarr storage.
29
- # axes : str
30
- # Description of axes in format STCZYX.
31
- # patch_extraction_method : Union[ExtractionStrategies, None]
32
- # Patch extraction strategy, as defined in extraction_strategy.
33
- # patch_size : Optional[Union[List[int], Tuple[int]]], optional
34
- # Size of the patches in each dimension, by default None.
35
- # num_patches : Optional[int], optional
36
- # Number of patches to extract, by default None.
37
- # mean : Optional[float], optional
38
- # Expected mean of the dataset, by default None.
39
- # std : Optional[float], optional
40
- # Expected standard deviation of the dataset, by default None.
41
- # patch_transform : Optional[Callable], optional
42
- # Patch transform callable, by default None.
43
- # patch_transform_params : Optional[Dict], optional
44
- # Patch transform parameters, by default None.
45
- # running_stats_window_perc : float, optional
46
- # Percentage of the dataset to use for calculating the initial mean and standard
47
- # deviation, by default 0.01.
48
- # mode : str, optional
49
- # train/predict, controls running stats calculation.
50
- # """
51
-
52
- # def __init__(
53
- # self,
54
- # data_source: Union[zarr.Group, zarr.Array],
55
- # axes: str,
56
- # patch_extraction_method: Union[SupportedExtractionStrategy, None],
57
- # patch_size: Optional[Union[List[int], Tuple[int]]] = None,
58
- # num_patches: Optional[int] = None,
59
- # mean: Optional[float] = None,
60
- # std: Optional[float] = None,
61
- # patch_transform: Optional[Callable] = None,
62
- # patch_transform_params: Optional[Dict] = None,
63
- # running_stats_window_perc: float = 0.01,
64
- # mode: str = "train",
65
- # ) -> None:
66
- # self.data_source = data_source
67
- # self.axes = axes
68
- # self.patch_extraction_method = patch_extraction_method
69
- # self.patch_size = patch_size
70
- # self.num_patches = num_patches
71
- # self.mean = mean
72
- # self.std = std
73
- # self.patch_transform = patch_transform
74
- # self.patch_transform_params = patch_transform_params
75
- # self.sample = read_zarr(self.data_source, self.axes)
76
- # self.running_stats_window = int(
77
- # np.prod(self.sample._cdata_shape) * running_stats_window_perc
78
- # )
79
- # self.mode = mode
80
- # self.running_stats = RunningStats()
81
-
82
- # self._calculate_initial_mean_std()
83
-
84
- # def _calculate_initial_mean_std(self):
85
- # """Calculate initial mean and std of the dataset."""
86
- # if self.mean is None and self.std is None:
87
- # idxs = np.random.randint(
88
- # 0,
89
- # np.prod(self.sample._cdata_shape),
90
- # size=max(1, self.running_stats_window),
91
- # )
92
- # random_chunks = self.sample[idxs]
93
- # self.running_stats.init(random_chunks.mean(), random_chunks.std())
94
-
95
- # def _generate_patches(self):
96
- # """Generate patches from the dataset and calculates running stats.
97
-
98
- # Yields
99
- # ------
100
- # np.ndarray
101
- # Patch.
102
- # """
103
- # patches = generate_patches_unsupervised(
104
- # self.sample,
105
- # self.patch_extraction_method,
106
- # self.patch_size,
107
- # )
108
-
109
- # # num_patches = np.ceil(
110
- # # np.prod(self.sample.chunks)
111
- # # / (np.prod(self.patch_size) * self.running_stats_window)
112
- # # ).astype(int)
113
-
114
- # for idx, patch in enumerate(patches):
115
- # if self.mode != "predict":
116
- # self.running_stats.update(patch.mean())
117
- # if isinstance(patch, tuple):
118
- # normalized_patch = normalize(
119
- # img=patch[0],
120
- # mean=self.running_stats.avg_mean.value,
121
- # std=self.running_stats.avg_std.value,
122
- # )
123
- # patch = (normalized_patch, *patch[1:])
124
- # else:
125
- # patch = normalize(
126
- # img=patch,
127
- # mean=self.running_stats.avg_mean.value,
128
- # std=self.running_stats.avg_std.value,
129
- # )
130
-
131
- # if self.patch_transform is not None:
132
- # assert self.patch_transform_params is not None
133
- # patch = self.patch_transform(patch, **self.patch_transform_params)
134
- # if self.num_patches is not None and idx >= self.num_patches:
135
- # return
136
- # else:
137
- # yield patch
138
- # self.mean = self.running_stats.avg_mean.value
139
- # self.std = self.running_stats.avg_std.value
140
-
141
- # def __iter__(self):
142
- # """
143
- # Iterate over data source and yield single patch.
144
-
145
- # Yields
146
- # ------
147
- # np.ndarray
148
- # """
149
- # worker_info = torch.utils.data.get_worker_info()
150
- # num_workers = worker_info.num_workers if worker_info is not None else 1
151
- # yield from islice(self._generate_patches(), 0, None, num_workers)
@@ -1,60 +0,0 @@
1
- """Function to read zarr images."""
2
-
3
- from typing import Union
4
-
5
- from zarr import Group, core, hierarchy, storage
6
-
7
-
8
- def read_zarr(
9
- zarr_source: Group, axes: str
10
- ) -> Union[core.Array, storage.DirectoryStore, hierarchy.Group]:
11
- """Read a file and returns a pointer.
12
-
13
- Parameters
14
- ----------
15
- zarr_source : Group
16
- Zarr storage.
17
- axes : str
18
- Axes of the data.
19
-
20
- Returns
21
- -------
22
- np.ndarray
23
- Pointer to zarr storage.
24
-
25
- Raises
26
- ------
27
- ValueError, OSError
28
- if a file is not a valid tiff or damaged.
29
- ValueError
30
- if data dimensions are not 2, 3 or 4.
31
- ValueError
32
- if axes parameter from config is not consistent with data dimensions.
33
- """
34
- if isinstance(zarr_source, hierarchy.Group):
35
- array = zarr_source[0]
36
-
37
- elif isinstance(zarr_source, storage.DirectoryStore):
38
- raise NotImplementedError("DirectoryStore not supported yet")
39
-
40
- elif isinstance(zarr_source, core.Array):
41
- # array should be of shape (S, (C), (Z), Y, X), iterating over S ?
42
- if zarr_source.dtype == "O":
43
- raise NotImplementedError("Object type not supported yet")
44
- else:
45
- array = zarr_source
46
- else:
47
- raise ValueError(f"Unsupported zarr object type {type(zarr_source)}")
48
-
49
- # sanity check on dimensions
50
- if len(array.shape) < 2 or len(array.shape) > 4:
51
- raise ValueError(
52
- f"Incorrect data dimensions. Must be 2, 3 or 4 (got {array.shape})."
53
- )
54
-
55
- # sanity check on axes length
56
- if len(axes) != len(array.shape):
57
- raise ValueError(f"Incorrect axes length (got {axes}).")
58
-
59
- # arr = fix_axes(arr, axes)
60
- return array