careamics 0.0.11__py3-none-any.whl → 0.0.12__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of careamics might be problematic. Click here for more details.
- careamics/careamist.py +20 -4
- careamics/config/configuration.py +10 -5
- careamics/config/data/data_model.py +38 -1
- careamics/config/optimizer_models.py +1 -3
- careamics/config/training_model.py +0 -2
- careamics/dataset_ng/README.md +212 -0
- careamics/dataset_ng/dataset.py +233 -0
- careamics/dataset_ng/demos/bsd68_demo.ipynb +356 -0
- careamics/dataset_ng/demos/care_U2OS_demo.ipynb +330 -0
- careamics/dataset_ng/demos/demo_custom_image_stack.ipynb +734 -0
- careamics/dataset_ng/demos/demo_datamodule.ipynb +443 -0
- careamics/dataset_ng/{demo_dataset.ipynb → demos/demo_dataset.ipynb} +39 -15
- careamics/dataset_ng/{demo_patch_extractor.py → demos/demo_patch_extractor.py} +7 -9
- careamics/dataset_ng/demos/mouse_nuclei_demo.ipynb +292 -0
- careamics/dataset_ng/factory.py +408 -0
- careamics/dataset_ng/legacy_interoperability.py +168 -0
- careamics/dataset_ng/patch_extractor/__init__.py +3 -8
- careamics/dataset_ng/patch_extractor/demo_custom_image_stack_loader.py +6 -4
- careamics/dataset_ng/patch_extractor/image_stack/__init__.py +2 -1
- careamics/dataset_ng/patch_extractor/image_stack/image_stack_protocol.py +5 -1
- careamics/dataset_ng/patch_extractor/image_stack_loader.py +5 -75
- careamics/dataset_ng/patch_extractor/patch_extractor.py +5 -4
- careamics/dataset_ng/patch_extractor/patch_extractor_factory.py +73 -106
- careamics/dataset_ng/patching_strategies/__init__.py +6 -1
- careamics/dataset_ng/patching_strategies/patching_strategy_protocol.py +31 -0
- careamics/dataset_ng/patching_strategies/random_patching.py +3 -1
- careamics/dataset_ng/patching_strategies/tiling_strategy.py +171 -0
- careamics/dataset_ng/patching_strategies/whole_sample.py +36 -0
- careamics/lightning/dataset_ng/data_module.py +488 -0
- careamics/lightning/dataset_ng/lightning_modules/__init__.py +9 -0
- careamics/lightning/dataset_ng/lightning_modules/care_module.py +58 -0
- careamics/lightning/dataset_ng/lightning_modules/n2v_module.py +67 -0
- careamics/lightning/dataset_ng/lightning_modules/unet_module.py +143 -0
- careamics/lightning/lightning_module.py +3 -0
- careamics/lvae_training/dataset/__init__.py +8 -3
- careamics/lvae_training/dataset/config.py +3 -3
- careamics/lvae_training/dataset/ms_dataset_ref.py +1067 -0
- careamics/lvae_training/dataset/multich_dataset.py +46 -17
- careamics/lvae_training/dataset/multicrop_dset.py +196 -0
- careamics/lvae_training/dataset/types.py +3 -3
- careamics/lvae_training/dataset/utils/index_manager.py +259 -0
- careamics/lvae_training/eval_utils.py +93 -3
- careamics/transforms/compose.py +1 -0
- careamics/transforms/normalize.py +18 -7
- careamics/utils/lightning_utils.py +25 -11
- {careamics-0.0.11.dist-info → careamics-0.0.12.dist-info}/METADATA +3 -3
- {careamics-0.0.11.dist-info → careamics-0.0.12.dist-info}/RECORD +50 -35
- careamics/dataset_ng/dataset/__init__.py +0 -3
- careamics/dataset_ng/dataset/dataset.py +0 -184
- careamics/dataset_ng/demo_patch_extractor_factory.py +0 -37
- {careamics-0.0.11.dist-info → careamics-0.0.12.dist-info}/WHEEL +0 -0
- {careamics-0.0.11.dist-info → careamics-0.0.12.dist-info}/entry_points.txt +0 -0
- {careamics-0.0.11.dist-info → careamics-0.0.12.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,443 @@
|
|
|
1
|
+
{
|
|
2
|
+
"cells": [
|
|
3
|
+
{
|
|
4
|
+
"cell_type": "code",
|
|
5
|
+
"execution_count": null,
|
|
6
|
+
"metadata": {},
|
|
7
|
+
"outputs": [],
|
|
8
|
+
"source": [
|
|
9
|
+
"from careamics.config.configuration_factories import create_n2v_configuration\n",
|
|
10
|
+
"from careamics.lightning.dataset_ng.data_module import CareamicsDataModule"
|
|
11
|
+
]
|
|
12
|
+
},
|
|
13
|
+
{
|
|
14
|
+
"cell_type": "code",
|
|
15
|
+
"execution_count": null,
|
|
16
|
+
"metadata": {},
|
|
17
|
+
"outputs": [],
|
|
18
|
+
"source": [
|
|
19
|
+
"%load_ext autoreload\n",
|
|
20
|
+
"%autoreload 2\n"
|
|
21
|
+
]
|
|
22
|
+
},
|
|
23
|
+
{
|
|
24
|
+
"cell_type": "code",
|
|
25
|
+
"execution_count": null,
|
|
26
|
+
"metadata": {},
|
|
27
|
+
"outputs": [],
|
|
28
|
+
"source": [
|
|
29
|
+
"from pathlib import Path\n",
|
|
30
|
+
"\n",
|
|
31
|
+
"import matplotlib.pyplot as plt\n",
|
|
32
|
+
"import numpy as np\n",
|
|
33
|
+
"import tifffile\n",
|
|
34
|
+
"from careamics_portfolio import PortfolioManager\n",
|
|
35
|
+
"\n",
|
|
36
|
+
"# instantiate data portfolio manage\n",
|
|
37
|
+
"portfolio = PortfolioManager()\n",
|
|
38
|
+
"\n",
|
|
39
|
+
"# and download the data\n",
|
|
40
|
+
"root_path = Path(\"./data\")\n",
|
|
41
|
+
"files = portfolio.denoising.N2V_BSD68.download(root_path)\n",
|
|
42
|
+
"\n",
|
|
43
|
+
"# create paths for the data\n",
|
|
44
|
+
"data_path = Path(root_path / \"denoising-N2V_BSD68.unzip/BSD68_reproducibility_data\")\n",
|
|
45
|
+
"train_path = data_path / \"train\"\n",
|
|
46
|
+
"val_path = data_path / \"val\"\n",
|
|
47
|
+
"test_path = data_path / \"test\" / \"images\"\n",
|
|
48
|
+
"gt_path = data_path / \"test\" / \"gt\""
|
|
49
|
+
]
|
|
50
|
+
},
|
|
51
|
+
{
|
|
52
|
+
"cell_type": "code",
|
|
53
|
+
"execution_count": null,
|
|
54
|
+
"metadata": {},
|
|
55
|
+
"outputs": [],
|
|
56
|
+
"source": [
|
|
57
|
+
"image_std, image_mean = [], []\n",
|
|
58
|
+
"for file in train_path.glob(\"*.tiff\"):\n",
|
|
59
|
+
" image = tifffile.imread(file)\n",
|
|
60
|
+
" image_std.append(image.std())\n",
|
|
61
|
+
" image_mean.append(image.mean())\n",
|
|
62
|
+
"image_std, image_mean = np.mean(image_std), np.mean(image_mean)"
|
|
63
|
+
]
|
|
64
|
+
},
|
|
65
|
+
{
|
|
66
|
+
"cell_type": "code",
|
|
67
|
+
"execution_count": null,
|
|
68
|
+
"metadata": {},
|
|
69
|
+
"outputs": [],
|
|
70
|
+
"source": [
|
|
71
|
+
"# from path, train and val, no target\n",
|
|
72
|
+
"\n",
|
|
73
|
+
"config = create_n2v_configuration(\n",
|
|
74
|
+
" experiment_name=\"bsd68_n2v\",\n",
|
|
75
|
+
" data_type=\"tiff\",\n",
|
|
76
|
+
" axes=\"SYX\",\n",
|
|
77
|
+
" patch_size=(64, 64),\n",
|
|
78
|
+
" batch_size=64,\n",
|
|
79
|
+
" num_epochs=100\n",
|
|
80
|
+
")\n",
|
|
81
|
+
"\n",
|
|
82
|
+
"config.data_config.set_means_and_stds([image_mean], [image_std])\n",
|
|
83
|
+
"config.data_config.val_dataloader_params = {\"shuffle\": False}\n",
|
|
84
|
+
"\n",
|
|
85
|
+
"data_module = CareamicsDataModule(\n",
|
|
86
|
+
" data_config=config.data_config,\n",
|
|
87
|
+
" train_data=train_path,\n",
|
|
88
|
+
" val_data=val_path,\n",
|
|
89
|
+
")\n",
|
|
90
|
+
"data_module.setup('fit')\n",
|
|
91
|
+
"data_module.setup('validate')\n",
|
|
92
|
+
"\n",
|
|
93
|
+
"train_batch = next(iter(data_module.train_dataloader()))\n",
|
|
94
|
+
"val_batch = next(iter(data_module.val_dataloader()))\n",
|
|
95
|
+
"\n",
|
|
96
|
+
"fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
|
|
97
|
+
"\n",
|
|
98
|
+
"for i in range(8):\n",
|
|
99
|
+
" ax[i].imshow(train_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
|
|
100
|
+
"\n",
|
|
101
|
+
"\n",
|
|
102
|
+
"fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
|
|
103
|
+
"for i in range(8):\n",
|
|
104
|
+
" ax[i].imshow(val_batch[0].data[i][0].numpy(), cmap=\"gray\")"
|
|
105
|
+
]
|
|
106
|
+
},
|
|
107
|
+
{
|
|
108
|
+
"cell_type": "code",
|
|
109
|
+
"execution_count": null,
|
|
110
|
+
"metadata": {},
|
|
111
|
+
"outputs": [],
|
|
112
|
+
"source": [
|
|
113
|
+
"# from path, only predict\n",
|
|
114
|
+
"\n",
|
|
115
|
+
"from careamics.config.inference_model import InferenceConfig\n",
|
|
116
|
+
"\n",
|
|
117
|
+
"config = InferenceConfig(\n",
|
|
118
|
+
" model_config=config,\n",
|
|
119
|
+
" data_type=\"tiff\",\n",
|
|
120
|
+
" tile_size=(128, 128),\n",
|
|
121
|
+
" tile_overlap=(32, 32),\n",
|
|
122
|
+
" axes=\"YX\",\n",
|
|
123
|
+
" batch_size=8,\n",
|
|
124
|
+
" image_means=[image_mean],\n",
|
|
125
|
+
" image_stds=[image_std]\n",
|
|
126
|
+
")\n",
|
|
127
|
+
"\n",
|
|
128
|
+
"data_module = CareamicsDataModule(\n",
|
|
129
|
+
" data_config=config,\n",
|
|
130
|
+
" pred_data=test_path\n",
|
|
131
|
+
")\n",
|
|
132
|
+
"data_module.setup('predict')\n",
|
|
133
|
+
"\n",
|
|
134
|
+
"pred_batch = next(iter(data_module.predict_dataloader()))\n",
|
|
135
|
+
"\n",
|
|
136
|
+
"fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
|
|
137
|
+
"\n",
|
|
138
|
+
"for i in range(8):\n",
|
|
139
|
+
" ax[i].imshow(pred_batch[0].data[i][0].numpy(), cmap=\"gray\")"
|
|
140
|
+
]
|
|
141
|
+
},
|
|
142
|
+
{
|
|
143
|
+
"cell_type": "code",
|
|
144
|
+
"execution_count": null,
|
|
145
|
+
"metadata": {},
|
|
146
|
+
"outputs": [],
|
|
147
|
+
"source": [
|
|
148
|
+
"# test from array"
|
|
149
|
+
]
|
|
150
|
+
},
|
|
151
|
+
{
|
|
152
|
+
"cell_type": "code",
|
|
153
|
+
"execution_count": null,
|
|
154
|
+
"metadata": {},
|
|
155
|
+
"outputs": [],
|
|
156
|
+
"source": [
|
|
157
|
+
"train_array = tifffile.imread(sorted(train_path.rglob('*'))[0])\n",
|
|
158
|
+
"val_array = tifffile.imread(sorted(val_path.rglob('*'))[0])\n",
|
|
159
|
+
"test_array = tifffile.imread(sorted(test_path.rglob('*'))[0])"
|
|
160
|
+
]
|
|
161
|
+
},
|
|
162
|
+
{
|
|
163
|
+
"cell_type": "code",
|
|
164
|
+
"execution_count": null,
|
|
165
|
+
"metadata": {},
|
|
166
|
+
"outputs": [],
|
|
167
|
+
"source": [
|
|
168
|
+
"# from array, train and val, no target\n",
|
|
169
|
+
"\n",
|
|
170
|
+
"config = create_n2v_configuration(\n",
|
|
171
|
+
" experiment_name=\"bsd68_n2v\",\n",
|
|
172
|
+
" data_type=\"array\",\n",
|
|
173
|
+
" axes=\"SYX\",\n",
|
|
174
|
+
" patch_size=(64, 64),\n",
|
|
175
|
+
" batch_size=64,\n",
|
|
176
|
+
" num_epochs=100\n",
|
|
177
|
+
")\n",
|
|
178
|
+
"\n",
|
|
179
|
+
"config.data_config.set_means_and_stds([image_mean], [image_std])\n",
|
|
180
|
+
"config.data_config.val_dataloader_params = {\"shuffle\": False}\n",
|
|
181
|
+
"\n",
|
|
182
|
+
"data_module = CareamicsDataModule(\n",
|
|
183
|
+
" data_config=config.data_config,\n",
|
|
184
|
+
" train_data=train_array,\n",
|
|
185
|
+
" val_data=val_array,\n",
|
|
186
|
+
")\n",
|
|
187
|
+
"data_module.setup('fit')\n",
|
|
188
|
+
"data_module.setup('validate')\n",
|
|
189
|
+
"\n",
|
|
190
|
+
"train_batch = next(iter(data_module.train_dataloader()))\n",
|
|
191
|
+
"val_batch = next(iter(data_module.val_dataloader()))\n",
|
|
192
|
+
"\n",
|
|
193
|
+
"fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
|
|
194
|
+
"\n",
|
|
195
|
+
"for i in range(8):\n",
|
|
196
|
+
" ax[i].imshow(train_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
|
|
197
|
+
"\n",
|
|
198
|
+
"\n",
|
|
199
|
+
"fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
|
|
200
|
+
"for i in range(8):\n",
|
|
201
|
+
" ax[i].imshow(val_batch[0].data[i][0].numpy(), cmap=\"gray\")"
|
|
202
|
+
]
|
|
203
|
+
},
|
|
204
|
+
{
|
|
205
|
+
"cell_type": "code",
|
|
206
|
+
"execution_count": null,
|
|
207
|
+
"metadata": {},
|
|
208
|
+
"outputs": [],
|
|
209
|
+
"source": [
|
|
210
|
+
"# test with target"
|
|
211
|
+
]
|
|
212
|
+
},
|
|
213
|
+
{
|
|
214
|
+
"cell_type": "code",
|
|
215
|
+
"execution_count": null,
|
|
216
|
+
"metadata": {},
|
|
217
|
+
"outputs": [],
|
|
218
|
+
"source": [
|
|
219
|
+
"import skimage\n",
|
|
220
|
+
"\n",
|
|
221
|
+
"example_data = skimage.data.human_mitosis()\n",
|
|
222
|
+
"\n",
|
|
223
|
+
"markers = np.zeros_like(example_data)\n",
|
|
224
|
+
"markers[example_data < 25] = 1\n",
|
|
225
|
+
"markers[example_data > 50] = 2\n",
|
|
226
|
+
"\n",
|
|
227
|
+
"elevation_map = skimage.filters.sobel(example_data)\n",
|
|
228
|
+
"segmentation = skimage.segmentation.watershed(elevation_map, markers)\n",
|
|
229
|
+
"\n",
|
|
230
|
+
"fig, ax = plt.subplots(1, 2)\n",
|
|
231
|
+
"ax[0].imshow(example_data)\n",
|
|
232
|
+
"ax[1].imshow(segmentation)\n",
|
|
233
|
+
"plt.show()"
|
|
234
|
+
]
|
|
235
|
+
},
|
|
236
|
+
{
|
|
237
|
+
"cell_type": "code",
|
|
238
|
+
"execution_count": null,
|
|
239
|
+
"metadata": {},
|
|
240
|
+
"outputs": [],
|
|
241
|
+
"source": [
|
|
242
|
+
"config = create_n2v_configuration(\n",
|
|
243
|
+
" experiment_name=\"mitosis\",\n",
|
|
244
|
+
" data_type=\"array\",\n",
|
|
245
|
+
" axes=\"YX\",\n",
|
|
246
|
+
" patch_size=(64, 64),\n",
|
|
247
|
+
" batch_size=64,\n",
|
|
248
|
+
" num_epochs=100\n",
|
|
249
|
+
")\n",
|
|
250
|
+
"config.data_config.set_means_and_stds(\n",
|
|
251
|
+
" [example_data.mean()],\n",
|
|
252
|
+
" [example_data.std()],\n",
|
|
253
|
+
" [segmentation.mean()],\n",
|
|
254
|
+
" [segmentation.std()]\n",
|
|
255
|
+
")\n",
|
|
256
|
+
"\n",
|
|
257
|
+
"data_module = CareamicsDataModule(\n",
|
|
258
|
+
" data_config=config.data_config,\n",
|
|
259
|
+
" train_data=[example_data],\n",
|
|
260
|
+
" train_data_target=[segmentation],\n",
|
|
261
|
+
" val_data=[example_data],\n",
|
|
262
|
+
" val_data_target=[segmentation]\n",
|
|
263
|
+
")\n",
|
|
264
|
+
"data_module.setup('fit')\n",
|
|
265
|
+
"data_module.setup('validate')\n",
|
|
266
|
+
"\n",
|
|
267
|
+
"train_batch = next(iter(data_module.train_dataloader()))\n",
|
|
268
|
+
"val_batch = next(iter(data_module.val_dataloader()))\n",
|
|
269
|
+
"\n",
|
|
270
|
+
"fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
|
|
271
|
+
"\n",
|
|
272
|
+
"for i in range(8):\n",
|
|
273
|
+
" ax[i].imshow(train_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
|
|
274
|
+
"\n",
|
|
275
|
+
"\n",
|
|
276
|
+
"fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
|
|
277
|
+
"for i in range(8):\n",
|
|
278
|
+
" ax[i].imshow(val_batch[0].data[i][0].numpy(), cmap=\"gray\")"
|
|
279
|
+
]
|
|
280
|
+
},
|
|
281
|
+
{
|
|
282
|
+
"cell_type": "code",
|
|
283
|
+
"execution_count": null,
|
|
284
|
+
"metadata": {},
|
|
285
|
+
"outputs": [],
|
|
286
|
+
"source": [
|
|
287
|
+
"# from array, only predict, with target\n",
|
|
288
|
+
"\n",
|
|
289
|
+
"from careamics.config.inference_model import InferenceConfig\n",
|
|
290
|
+
"\n",
|
|
291
|
+
"config = InferenceConfig(\n",
|
|
292
|
+
" model_config=config,\n",
|
|
293
|
+
" data_type=\"array\",\n",
|
|
294
|
+
" tile_size=(128, 128),\n",
|
|
295
|
+
" tile_overlap=(32, 32),\n",
|
|
296
|
+
" axes=\"YX\",\n",
|
|
297
|
+
" batch_size=8,\n",
|
|
298
|
+
" image_means=[image_mean],\n",
|
|
299
|
+
" image_stds=[image_std]\n",
|
|
300
|
+
")\n",
|
|
301
|
+
"\n",
|
|
302
|
+
"data_module = CareamicsDataModule(\n",
|
|
303
|
+
" data_config=config,\n",
|
|
304
|
+
" pred_data=example_data,\n",
|
|
305
|
+
" pred_data_target=segmentation\n",
|
|
306
|
+
")\n",
|
|
307
|
+
"data_module.setup('predict')\n",
|
|
308
|
+
"\n",
|
|
309
|
+
"pred_batch = next(iter(data_module.predict_dataloader()))\n",
|
|
310
|
+
"\n",
|
|
311
|
+
"fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
|
|
312
|
+
"\n",
|
|
313
|
+
"for i in range(8):\n",
|
|
314
|
+
" ax[i].imshow(pred_batch[0].data[i][0].numpy(), cmap=\"gray\")"
|
|
315
|
+
]
|
|
316
|
+
},
|
|
317
|
+
{
|
|
318
|
+
"cell_type": "code",
|
|
319
|
+
"execution_count": null,
|
|
320
|
+
"metadata": {},
|
|
321
|
+
"outputs": [],
|
|
322
|
+
"source": [
|
|
323
|
+
"# from list of paths"
|
|
324
|
+
]
|
|
325
|
+
},
|
|
326
|
+
{
|
|
327
|
+
"cell_type": "code",
|
|
328
|
+
"execution_count": null,
|
|
329
|
+
"metadata": {},
|
|
330
|
+
"outputs": [],
|
|
331
|
+
"source": [
|
|
332
|
+
"config = create_n2v_configuration(\n",
|
|
333
|
+
" experiment_name=\"bsd68_n2v\",\n",
|
|
334
|
+
" data_type=\"tiff\",\n",
|
|
335
|
+
" axes=\"SYX\",\n",
|
|
336
|
+
" patch_size=(64, 64),\n",
|
|
337
|
+
" batch_size=64,\n",
|
|
338
|
+
" num_epochs=100\n",
|
|
339
|
+
")\n",
|
|
340
|
+
"\n",
|
|
341
|
+
"config.data_config.set_means_and_stds([image_mean], [image_std])\n",
|
|
342
|
+
"config.data_config.val_dataloader_params = {\"shuffle\": False}\n",
|
|
343
|
+
"\n",
|
|
344
|
+
"data_module = CareamicsDataModule(\n",
|
|
345
|
+
" data_config=config.data_config,\n",
|
|
346
|
+
" train_data=sorted(train_path.glob(\"*.tiff\")),\n",
|
|
347
|
+
" val_data=sorted(val_path.glob(\"*.tiff\")),\n",
|
|
348
|
+
")\n",
|
|
349
|
+
"data_module.setup('fit')\n",
|
|
350
|
+
"data_module.setup('validate')\n",
|
|
351
|
+
"\n",
|
|
352
|
+
"train_batch = next(iter(data_module.train_dataloader()))\n",
|
|
353
|
+
"val_batch = next(iter(data_module.val_dataloader()))\n",
|
|
354
|
+
"\n",
|
|
355
|
+
"fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
|
|
356
|
+
"\n",
|
|
357
|
+
"for i in range(8):\n",
|
|
358
|
+
" ax[i].imshow(train_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
|
|
359
|
+
"\n",
|
|
360
|
+
"\n",
|
|
361
|
+
"fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
|
|
362
|
+
"for i in range(8):\n",
|
|
363
|
+
" ax[i].imshow(val_batch[0].data[i][0].numpy(), cmap=\"gray\")"
|
|
364
|
+
]
|
|
365
|
+
},
|
|
366
|
+
{
|
|
367
|
+
"cell_type": "code",
|
|
368
|
+
"execution_count": null,
|
|
369
|
+
"metadata": {},
|
|
370
|
+
"outputs": [],
|
|
371
|
+
"source": [
|
|
372
|
+
"# from custom"
|
|
373
|
+
]
|
|
374
|
+
},
|
|
375
|
+
{
|
|
376
|
+
"cell_type": "code",
|
|
377
|
+
"execution_count": null,
|
|
378
|
+
"metadata": {},
|
|
379
|
+
"outputs": [],
|
|
380
|
+
"source": [
|
|
381
|
+
"config = create_n2v_configuration(\n",
|
|
382
|
+
" experiment_name=\"bsd68_n2v\",\n",
|
|
383
|
+
" data_type=\"custom\",\n",
|
|
384
|
+
" axes=\"SYX\",\n",
|
|
385
|
+
" patch_size=(64, 64),\n",
|
|
386
|
+
" batch_size=64,\n",
|
|
387
|
+
" num_epochs=100\n",
|
|
388
|
+
")\n",
|
|
389
|
+
"\n",
|
|
390
|
+
"config.data_config.set_means_and_stds([image_mean], [image_std])\n",
|
|
391
|
+
"config.data_config.val_dataloader_params = {\"shuffle\": False}\n",
|
|
392
|
+
"\n",
|
|
393
|
+
"def read_source_func(path):\n",
|
|
394
|
+
" image = tifffile.imread(path)\n",
|
|
395
|
+
" image = 255 - image\n",
|
|
396
|
+
" return image\n",
|
|
397
|
+
"\n",
|
|
398
|
+
"data_module = CareamicsDataModule(\n",
|
|
399
|
+
" data_config=config.data_config,\n",
|
|
400
|
+
" train_data=sorted(train_path.glob(\"*.tiff\")),\n",
|
|
401
|
+
" val_data=sorted(val_path.glob(\"*.tiff\")),\n",
|
|
402
|
+
" read_source_func=read_source_func\n",
|
|
403
|
+
")\n",
|
|
404
|
+
"data_module.setup('fit')\n",
|
|
405
|
+
"data_module.setup('validate')\n",
|
|
406
|
+
"\n",
|
|
407
|
+
"train_batch = next(iter(data_module.train_dataloader()))\n",
|
|
408
|
+
"val_batch = next(iter(data_module.val_dataloader()))\n",
|
|
409
|
+
"\n",
|
|
410
|
+
"fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
|
|
411
|
+
"\n",
|
|
412
|
+
"for i in range(8):\n",
|
|
413
|
+
" ax[i].imshow(train_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
|
|
414
|
+
"\n",
|
|
415
|
+
"\n",
|
|
416
|
+
"fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
|
|
417
|
+
"for i in range(8):\n",
|
|
418
|
+
" ax[i].imshow(val_batch[0].data[i][0].numpy(), cmap=\"gray\")"
|
|
419
|
+
]
|
|
420
|
+
}
|
|
421
|
+
],
|
|
422
|
+
"metadata": {
|
|
423
|
+
"kernelspec": {
|
|
424
|
+
"display_name": "Python 3",
|
|
425
|
+
"language": "python",
|
|
426
|
+
"name": "python3"
|
|
427
|
+
},
|
|
428
|
+
"language_info": {
|
|
429
|
+
"codemirror_mode": {
|
|
430
|
+
"name": "ipython",
|
|
431
|
+
"version": 3
|
|
432
|
+
},
|
|
433
|
+
"file_extension": ".py",
|
|
434
|
+
"mimetype": "text/x-python",
|
|
435
|
+
"name": "python",
|
|
436
|
+
"nbconvert_exporter": "python",
|
|
437
|
+
"pygments_lexer": "ipython3",
|
|
438
|
+
"version": "3.9.20"
|
|
439
|
+
}
|
|
440
|
+
},
|
|
441
|
+
"nbformat": 4,
|
|
442
|
+
"nbformat_minor": 2
|
|
443
|
+
}
|
|
@@ -15,7 +15,8 @@
|
|
|
15
15
|
"import tifffile\n",
|
|
16
16
|
"\n",
|
|
17
17
|
"from careamics.config import create_n2n_configuration\n",
|
|
18
|
-
"from careamics.dataset_ng.dataset.dataset import
|
|
18
|
+
"from careamics.dataset_ng.dataset.dataset import Mode\n",
|
|
19
|
+
"from careamics.dataset_ng.dataset.factory import create_dataset"
|
|
19
20
|
]
|
|
20
21
|
},
|
|
21
22
|
{
|
|
@@ -77,17 +78,19 @@
|
|
|
77
78
|
").data_config\n",
|
|
78
79
|
"\n",
|
|
79
80
|
"\n",
|
|
80
|
-
"train_dataset =
|
|
81
|
-
"
|
|
81
|
+
"train_dataset = create_dataset(\n",
|
|
82
|
+
" config=train_data_config,\n",
|
|
82
83
|
" mode=Mode.TRAINING,\n",
|
|
83
84
|
" inputs=[example_data],\n",
|
|
84
85
|
" targets=[segmentation],\n",
|
|
86
|
+
" in_memory=True,\n",
|
|
85
87
|
")\n",
|
|
86
|
-
"val_dataset =
|
|
87
|
-
"
|
|
88
|
+
"val_dataset = create_dataset(\n",
|
|
89
|
+
" config=val_data_config,\n",
|
|
88
90
|
" mode=Mode.VALIDATING,\n",
|
|
89
91
|
" inputs=[example_data],\n",
|
|
90
92
|
" targets=[segmentation],\n",
|
|
93
|
+
" in_memory=True,\n",
|
|
91
94
|
")\n",
|
|
92
95
|
"\n",
|
|
93
96
|
"fig, ax = plt.subplots(2, 5, figsize=(10, 5))\n",
|
|
@@ -140,11 +143,19 @@
|
|
|
140
143
|
"\n",
|
|
141
144
|
"data = sorted(Path(\"./\").glob(\"example_data*.tiff\"))\n",
|
|
142
145
|
"targets = sorted(Path(\"./\").glob(\"example_target*.tiff\"))\n",
|
|
143
|
-
"train_dataset =
|
|
144
|
-
"
|
|
146
|
+
"train_dataset = create_dataset(\n",
|
|
147
|
+
" config=train_data_config,\n",
|
|
148
|
+
" mode=Mode.TRAINING,\n",
|
|
149
|
+
" inputs=data,\n",
|
|
150
|
+
" targets=targets,\n",
|
|
151
|
+
" in_memory=True,\n",
|
|
145
152
|
")\n",
|
|
146
|
-
"val_dataset =
|
|
147
|
-
"
|
|
153
|
+
"val_dataset = create_dataset(\n",
|
|
154
|
+
" config=val_data_config,\n",
|
|
155
|
+
" mode=Mode.VALIDATING,\n",
|
|
156
|
+
" inputs=data,\n",
|
|
157
|
+
" targets=targets,\n",
|
|
158
|
+
" in_memory=True,\n",
|
|
148
159
|
")\n",
|
|
149
160
|
"\n",
|
|
150
161
|
"fig, ax = plt.subplots(2, 5, figsize=(10, 5))\n",
|
|
@@ -183,8 +194,12 @@
|
|
|
183
194
|
" tta_transforms=False,\n",
|
|
184
195
|
" batch_size=1,\n",
|
|
185
196
|
")\n",
|
|
186
|
-
"prediction_dataset =
|
|
187
|
-
"
|
|
197
|
+
"prediction_dataset = create_dataset(\n",
|
|
198
|
+
" config=prediction_config,\n",
|
|
199
|
+
" mode=Mode.PREDICTING,\n",
|
|
200
|
+
" inputs=[example_data],\n",
|
|
201
|
+
" targets=None,\n",
|
|
202
|
+
" in_memory=True,\n",
|
|
188
203
|
")\n",
|
|
189
204
|
"\n",
|
|
190
205
|
"fig, ax = plt.subplots(1, 5, figsize=(10, 5))\n",
|
|
@@ -219,16 +234,17 @@
|
|
|
219
234
|
").data_config\n",
|
|
220
235
|
"\n",
|
|
221
236
|
"\n",
|
|
222
|
-
"def read_data_func_test(
|
|
237
|
+
"def read_data_func_test(example_data):\n",
|
|
223
238
|
" return 255 - example_data\n",
|
|
224
239
|
"\n",
|
|
225
240
|
"\n",
|
|
226
241
|
"fig, ax = plt.subplots(1, 5, figsize=(10, 5))\n",
|
|
227
|
-
"train_dataset =
|
|
228
|
-
"
|
|
242
|
+
"train_dataset = create_dataset(\n",
|
|
243
|
+
" config=train_data_config,\n",
|
|
229
244
|
" mode=Mode.TRAINING,\n",
|
|
230
245
|
" inputs=[example_data],\n",
|
|
231
246
|
" targets=[segmentation],\n",
|
|
247
|
+
" in_memory=True,\n",
|
|
232
248
|
" read_func=read_data_func_test,\n",
|
|
233
249
|
" read_kwargs={}\n",
|
|
234
250
|
")\n",
|
|
@@ -245,6 +261,14 @@
|
|
|
245
261
|
"metadata": {},
|
|
246
262
|
"outputs": [],
|
|
247
263
|
"source": []
|
|
264
|
+
},
|
|
265
|
+
{
|
|
266
|
+
"cell_type": "code",
|
|
267
|
+
"execution_count": null,
|
|
268
|
+
"id": "11",
|
|
269
|
+
"metadata": {},
|
|
270
|
+
"outputs": [],
|
|
271
|
+
"source": []
|
|
248
272
|
}
|
|
249
273
|
],
|
|
250
274
|
"metadata": {
|
|
@@ -263,7 +287,7 @@
|
|
|
263
287
|
"name": "python",
|
|
264
288
|
"nbconvert_exporter": "python",
|
|
265
289
|
"pygments_lexer": "ipython3",
|
|
266
|
-
"version": "3.
|
|
290
|
+
"version": "3.9.21"
|
|
267
291
|
}
|
|
268
292
|
},
|
|
269
293
|
"nbformat": 4,
|
|
@@ -1,10 +1,12 @@
|
|
|
1
1
|
# %%
|
|
2
2
|
import numpy as np
|
|
3
3
|
|
|
4
|
-
# %%
|
|
5
|
-
from careamics.config.support import SupportedData
|
|
6
|
-
from careamics.dataset_ng.patch_extractor import create_patch_extractor
|
|
7
4
|
from careamics.dataset_ng.patch_extractor.image_stack import InMemoryImageStack
|
|
5
|
+
|
|
6
|
+
# %%
|
|
7
|
+
from careamics.dataset_ng.patch_extractor.patch_extractor_factory import (
|
|
8
|
+
create_array_extractor,
|
|
9
|
+
)
|
|
8
10
|
from careamics.dataset_ng.patching_strategies import RandomPatchingStrategy
|
|
9
11
|
|
|
10
12
|
# %%
|
|
@@ -30,12 +32,8 @@ print(target2)
|
|
|
30
32
|
|
|
31
33
|
# %%
|
|
32
34
|
# define example readers
|
|
33
|
-
input_patch_extractor =
|
|
34
|
-
|
|
35
|
-
)
|
|
36
|
-
target_patch_extractor = create_patch_extractor(
|
|
37
|
-
[target1, target2], axes="SYX", data_type=SupportedData.ARRAY
|
|
38
|
-
)
|
|
35
|
+
input_patch_extractor = create_array_extractor([array1, array2], axes="SYX")
|
|
36
|
+
target_patch_extractor = create_array_extractor([target1, target2], axes="SYX")
|
|
39
37
|
|
|
40
38
|
# %%
|
|
41
39
|
# generate random patch specification
|