careamics 0.0.11__py3-none-any.whl → 0.0.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of careamics might be problematic. Click here for more details.

Files changed (53) hide show
  1. careamics/careamist.py +20 -4
  2. careamics/config/configuration.py +10 -5
  3. careamics/config/data/data_model.py +38 -1
  4. careamics/config/optimizer_models.py +1 -3
  5. careamics/config/training_model.py +0 -2
  6. careamics/dataset_ng/README.md +212 -0
  7. careamics/dataset_ng/dataset.py +233 -0
  8. careamics/dataset_ng/demos/bsd68_demo.ipynb +356 -0
  9. careamics/dataset_ng/demos/care_U2OS_demo.ipynb +330 -0
  10. careamics/dataset_ng/demos/demo_custom_image_stack.ipynb +734 -0
  11. careamics/dataset_ng/demos/demo_datamodule.ipynb +443 -0
  12. careamics/dataset_ng/{demo_dataset.ipynb → demos/demo_dataset.ipynb} +39 -15
  13. careamics/dataset_ng/{demo_patch_extractor.py → demos/demo_patch_extractor.py} +7 -9
  14. careamics/dataset_ng/demos/mouse_nuclei_demo.ipynb +292 -0
  15. careamics/dataset_ng/factory.py +408 -0
  16. careamics/dataset_ng/legacy_interoperability.py +168 -0
  17. careamics/dataset_ng/patch_extractor/__init__.py +3 -8
  18. careamics/dataset_ng/patch_extractor/demo_custom_image_stack_loader.py +6 -4
  19. careamics/dataset_ng/patch_extractor/image_stack/__init__.py +2 -1
  20. careamics/dataset_ng/patch_extractor/image_stack/image_stack_protocol.py +5 -1
  21. careamics/dataset_ng/patch_extractor/image_stack_loader.py +5 -75
  22. careamics/dataset_ng/patch_extractor/patch_extractor.py +5 -4
  23. careamics/dataset_ng/patch_extractor/patch_extractor_factory.py +73 -106
  24. careamics/dataset_ng/patching_strategies/__init__.py +6 -1
  25. careamics/dataset_ng/patching_strategies/patching_strategy_protocol.py +31 -0
  26. careamics/dataset_ng/patching_strategies/random_patching.py +3 -1
  27. careamics/dataset_ng/patching_strategies/tiling_strategy.py +171 -0
  28. careamics/dataset_ng/patching_strategies/whole_sample.py +36 -0
  29. careamics/lightning/dataset_ng/data_module.py +488 -0
  30. careamics/lightning/dataset_ng/lightning_modules/__init__.py +9 -0
  31. careamics/lightning/dataset_ng/lightning_modules/care_module.py +58 -0
  32. careamics/lightning/dataset_ng/lightning_modules/n2v_module.py +67 -0
  33. careamics/lightning/dataset_ng/lightning_modules/unet_module.py +143 -0
  34. careamics/lightning/lightning_module.py +3 -0
  35. careamics/lvae_training/dataset/__init__.py +8 -3
  36. careamics/lvae_training/dataset/config.py +3 -3
  37. careamics/lvae_training/dataset/ms_dataset_ref.py +1067 -0
  38. careamics/lvae_training/dataset/multich_dataset.py +46 -17
  39. careamics/lvae_training/dataset/multicrop_dset.py +196 -0
  40. careamics/lvae_training/dataset/types.py +3 -3
  41. careamics/lvae_training/dataset/utils/index_manager.py +259 -0
  42. careamics/lvae_training/eval_utils.py +93 -3
  43. careamics/transforms/compose.py +1 -0
  44. careamics/transforms/normalize.py +18 -7
  45. careamics/utils/lightning_utils.py +25 -11
  46. {careamics-0.0.11.dist-info → careamics-0.0.12.dist-info}/METADATA +3 -3
  47. {careamics-0.0.11.dist-info → careamics-0.0.12.dist-info}/RECORD +50 -35
  48. careamics/dataset_ng/dataset/__init__.py +0 -3
  49. careamics/dataset_ng/dataset/dataset.py +0 -184
  50. careamics/dataset_ng/demo_patch_extractor_factory.py +0 -37
  51. {careamics-0.0.11.dist-info → careamics-0.0.12.dist-info}/WHEEL +0 -0
  52. {careamics-0.0.11.dist-info → careamics-0.0.12.dist-info}/entry_points.txt +0 -0
  53. {careamics-0.0.11.dist-info → careamics-0.0.12.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,443 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "from careamics.config.configuration_factories import create_n2v_configuration\n",
10
+ "from careamics.lightning.dataset_ng.data_module import CareamicsDataModule"
11
+ ]
12
+ },
13
+ {
14
+ "cell_type": "code",
15
+ "execution_count": null,
16
+ "metadata": {},
17
+ "outputs": [],
18
+ "source": [
19
+ "%load_ext autoreload\n",
20
+ "%autoreload 2\n"
21
+ ]
22
+ },
23
+ {
24
+ "cell_type": "code",
25
+ "execution_count": null,
26
+ "metadata": {},
27
+ "outputs": [],
28
+ "source": [
29
+ "from pathlib import Path\n",
30
+ "\n",
31
+ "import matplotlib.pyplot as plt\n",
32
+ "import numpy as np\n",
33
+ "import tifffile\n",
34
+ "from careamics_portfolio import PortfolioManager\n",
35
+ "\n",
36
+ "# instantiate data portfolio manage\n",
37
+ "portfolio = PortfolioManager()\n",
38
+ "\n",
39
+ "# and download the data\n",
40
+ "root_path = Path(\"./data\")\n",
41
+ "files = portfolio.denoising.N2V_BSD68.download(root_path)\n",
42
+ "\n",
43
+ "# create paths for the data\n",
44
+ "data_path = Path(root_path / \"denoising-N2V_BSD68.unzip/BSD68_reproducibility_data\")\n",
45
+ "train_path = data_path / \"train\"\n",
46
+ "val_path = data_path / \"val\"\n",
47
+ "test_path = data_path / \"test\" / \"images\"\n",
48
+ "gt_path = data_path / \"test\" / \"gt\""
49
+ ]
50
+ },
51
+ {
52
+ "cell_type": "code",
53
+ "execution_count": null,
54
+ "metadata": {},
55
+ "outputs": [],
56
+ "source": [
57
+ "image_std, image_mean = [], []\n",
58
+ "for file in train_path.glob(\"*.tiff\"):\n",
59
+ " image = tifffile.imread(file)\n",
60
+ " image_std.append(image.std())\n",
61
+ " image_mean.append(image.mean())\n",
62
+ "image_std, image_mean = np.mean(image_std), np.mean(image_mean)"
63
+ ]
64
+ },
65
+ {
66
+ "cell_type": "code",
67
+ "execution_count": null,
68
+ "metadata": {},
69
+ "outputs": [],
70
+ "source": [
71
+ "# from path, train and val, no target\n",
72
+ "\n",
73
+ "config = create_n2v_configuration(\n",
74
+ " experiment_name=\"bsd68_n2v\",\n",
75
+ " data_type=\"tiff\",\n",
76
+ " axes=\"SYX\",\n",
77
+ " patch_size=(64, 64),\n",
78
+ " batch_size=64,\n",
79
+ " num_epochs=100\n",
80
+ ")\n",
81
+ "\n",
82
+ "config.data_config.set_means_and_stds([image_mean], [image_std])\n",
83
+ "config.data_config.val_dataloader_params = {\"shuffle\": False}\n",
84
+ "\n",
85
+ "data_module = CareamicsDataModule(\n",
86
+ " data_config=config.data_config,\n",
87
+ " train_data=train_path,\n",
88
+ " val_data=val_path,\n",
89
+ ")\n",
90
+ "data_module.setup('fit')\n",
91
+ "data_module.setup('validate')\n",
92
+ "\n",
93
+ "train_batch = next(iter(data_module.train_dataloader()))\n",
94
+ "val_batch = next(iter(data_module.val_dataloader()))\n",
95
+ "\n",
96
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
97
+ "\n",
98
+ "for i in range(8):\n",
99
+ " ax[i].imshow(train_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
100
+ "\n",
101
+ "\n",
102
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
103
+ "for i in range(8):\n",
104
+ " ax[i].imshow(val_batch[0].data[i][0].numpy(), cmap=\"gray\")"
105
+ ]
106
+ },
107
+ {
108
+ "cell_type": "code",
109
+ "execution_count": null,
110
+ "metadata": {},
111
+ "outputs": [],
112
+ "source": [
113
+ "# from path, only predict\n",
114
+ "\n",
115
+ "from careamics.config.inference_model import InferenceConfig\n",
116
+ "\n",
117
+ "config = InferenceConfig(\n",
118
+ " model_config=config,\n",
119
+ " data_type=\"tiff\",\n",
120
+ " tile_size=(128, 128),\n",
121
+ " tile_overlap=(32, 32),\n",
122
+ " axes=\"YX\",\n",
123
+ " batch_size=8,\n",
124
+ " image_means=[image_mean],\n",
125
+ " image_stds=[image_std]\n",
126
+ ")\n",
127
+ "\n",
128
+ "data_module = CareamicsDataModule(\n",
129
+ " data_config=config,\n",
130
+ " pred_data=test_path\n",
131
+ ")\n",
132
+ "data_module.setup('predict')\n",
133
+ "\n",
134
+ "pred_batch = next(iter(data_module.predict_dataloader()))\n",
135
+ "\n",
136
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
137
+ "\n",
138
+ "for i in range(8):\n",
139
+ " ax[i].imshow(pred_batch[0].data[i][0].numpy(), cmap=\"gray\")"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "execution_count": null,
145
+ "metadata": {},
146
+ "outputs": [],
147
+ "source": [
148
+ "# test from array"
149
+ ]
150
+ },
151
+ {
152
+ "cell_type": "code",
153
+ "execution_count": null,
154
+ "metadata": {},
155
+ "outputs": [],
156
+ "source": [
157
+ "train_array = tifffile.imread(sorted(train_path.rglob('*'))[0])\n",
158
+ "val_array = tifffile.imread(sorted(val_path.rglob('*'))[0])\n",
159
+ "test_array = tifffile.imread(sorted(test_path.rglob('*'))[0])"
160
+ ]
161
+ },
162
+ {
163
+ "cell_type": "code",
164
+ "execution_count": null,
165
+ "metadata": {},
166
+ "outputs": [],
167
+ "source": [
168
+ "# from array, train and val, no target\n",
169
+ "\n",
170
+ "config = create_n2v_configuration(\n",
171
+ " experiment_name=\"bsd68_n2v\",\n",
172
+ " data_type=\"array\",\n",
173
+ " axes=\"SYX\",\n",
174
+ " patch_size=(64, 64),\n",
175
+ " batch_size=64,\n",
176
+ " num_epochs=100\n",
177
+ ")\n",
178
+ "\n",
179
+ "config.data_config.set_means_and_stds([image_mean], [image_std])\n",
180
+ "config.data_config.val_dataloader_params = {\"shuffle\": False}\n",
181
+ "\n",
182
+ "data_module = CareamicsDataModule(\n",
183
+ " data_config=config.data_config,\n",
184
+ " train_data=train_array,\n",
185
+ " val_data=val_array,\n",
186
+ ")\n",
187
+ "data_module.setup('fit')\n",
188
+ "data_module.setup('validate')\n",
189
+ "\n",
190
+ "train_batch = next(iter(data_module.train_dataloader()))\n",
191
+ "val_batch = next(iter(data_module.val_dataloader()))\n",
192
+ "\n",
193
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
194
+ "\n",
195
+ "for i in range(8):\n",
196
+ " ax[i].imshow(train_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
197
+ "\n",
198
+ "\n",
199
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
200
+ "for i in range(8):\n",
201
+ " ax[i].imshow(val_batch[0].data[i][0].numpy(), cmap=\"gray\")"
202
+ ]
203
+ },
204
+ {
205
+ "cell_type": "code",
206
+ "execution_count": null,
207
+ "metadata": {},
208
+ "outputs": [],
209
+ "source": [
210
+ "# test with target"
211
+ ]
212
+ },
213
+ {
214
+ "cell_type": "code",
215
+ "execution_count": null,
216
+ "metadata": {},
217
+ "outputs": [],
218
+ "source": [
219
+ "import skimage\n",
220
+ "\n",
221
+ "example_data = skimage.data.human_mitosis()\n",
222
+ "\n",
223
+ "markers = np.zeros_like(example_data)\n",
224
+ "markers[example_data < 25] = 1\n",
225
+ "markers[example_data > 50] = 2\n",
226
+ "\n",
227
+ "elevation_map = skimage.filters.sobel(example_data)\n",
228
+ "segmentation = skimage.segmentation.watershed(elevation_map, markers)\n",
229
+ "\n",
230
+ "fig, ax = plt.subplots(1, 2)\n",
231
+ "ax[0].imshow(example_data)\n",
232
+ "ax[1].imshow(segmentation)\n",
233
+ "plt.show()"
234
+ ]
235
+ },
236
+ {
237
+ "cell_type": "code",
238
+ "execution_count": null,
239
+ "metadata": {},
240
+ "outputs": [],
241
+ "source": [
242
+ "config = create_n2v_configuration(\n",
243
+ " experiment_name=\"mitosis\",\n",
244
+ " data_type=\"array\",\n",
245
+ " axes=\"YX\",\n",
246
+ " patch_size=(64, 64),\n",
247
+ " batch_size=64,\n",
248
+ " num_epochs=100\n",
249
+ ")\n",
250
+ "config.data_config.set_means_and_stds(\n",
251
+ " [example_data.mean()],\n",
252
+ " [example_data.std()],\n",
253
+ " [segmentation.mean()],\n",
254
+ " [segmentation.std()]\n",
255
+ ")\n",
256
+ "\n",
257
+ "data_module = CareamicsDataModule(\n",
258
+ " data_config=config.data_config,\n",
259
+ " train_data=[example_data],\n",
260
+ " train_data_target=[segmentation],\n",
261
+ " val_data=[example_data],\n",
262
+ " val_data_target=[segmentation]\n",
263
+ ")\n",
264
+ "data_module.setup('fit')\n",
265
+ "data_module.setup('validate')\n",
266
+ "\n",
267
+ "train_batch = next(iter(data_module.train_dataloader()))\n",
268
+ "val_batch = next(iter(data_module.val_dataloader()))\n",
269
+ "\n",
270
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
271
+ "\n",
272
+ "for i in range(8):\n",
273
+ " ax[i].imshow(train_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
274
+ "\n",
275
+ "\n",
276
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
277
+ "for i in range(8):\n",
278
+ " ax[i].imshow(val_batch[0].data[i][0].numpy(), cmap=\"gray\")"
279
+ ]
280
+ },
281
+ {
282
+ "cell_type": "code",
283
+ "execution_count": null,
284
+ "metadata": {},
285
+ "outputs": [],
286
+ "source": [
287
+ "# from array, only predict, with target\n",
288
+ "\n",
289
+ "from careamics.config.inference_model import InferenceConfig\n",
290
+ "\n",
291
+ "config = InferenceConfig(\n",
292
+ " model_config=config,\n",
293
+ " data_type=\"array\",\n",
294
+ " tile_size=(128, 128),\n",
295
+ " tile_overlap=(32, 32),\n",
296
+ " axes=\"YX\",\n",
297
+ " batch_size=8,\n",
298
+ " image_means=[image_mean],\n",
299
+ " image_stds=[image_std]\n",
300
+ ")\n",
301
+ "\n",
302
+ "data_module = CareamicsDataModule(\n",
303
+ " data_config=config,\n",
304
+ " pred_data=example_data,\n",
305
+ " pred_data_target=segmentation\n",
306
+ ")\n",
307
+ "data_module.setup('predict')\n",
308
+ "\n",
309
+ "pred_batch = next(iter(data_module.predict_dataloader()))\n",
310
+ "\n",
311
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
312
+ "\n",
313
+ "for i in range(8):\n",
314
+ " ax[i].imshow(pred_batch[0].data[i][0].numpy(), cmap=\"gray\")"
315
+ ]
316
+ },
317
+ {
318
+ "cell_type": "code",
319
+ "execution_count": null,
320
+ "metadata": {},
321
+ "outputs": [],
322
+ "source": [
323
+ "# from list of paths"
324
+ ]
325
+ },
326
+ {
327
+ "cell_type": "code",
328
+ "execution_count": null,
329
+ "metadata": {},
330
+ "outputs": [],
331
+ "source": [
332
+ "config = create_n2v_configuration(\n",
333
+ " experiment_name=\"bsd68_n2v\",\n",
334
+ " data_type=\"tiff\",\n",
335
+ " axes=\"SYX\",\n",
336
+ " patch_size=(64, 64),\n",
337
+ " batch_size=64,\n",
338
+ " num_epochs=100\n",
339
+ ")\n",
340
+ "\n",
341
+ "config.data_config.set_means_and_stds([image_mean], [image_std])\n",
342
+ "config.data_config.val_dataloader_params = {\"shuffle\": False}\n",
343
+ "\n",
344
+ "data_module = CareamicsDataModule(\n",
345
+ " data_config=config.data_config,\n",
346
+ " train_data=sorted(train_path.glob(\"*.tiff\")),\n",
347
+ " val_data=sorted(val_path.glob(\"*.tiff\")),\n",
348
+ ")\n",
349
+ "data_module.setup('fit')\n",
350
+ "data_module.setup('validate')\n",
351
+ "\n",
352
+ "train_batch = next(iter(data_module.train_dataloader()))\n",
353
+ "val_batch = next(iter(data_module.val_dataloader()))\n",
354
+ "\n",
355
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
356
+ "\n",
357
+ "for i in range(8):\n",
358
+ " ax[i].imshow(train_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
359
+ "\n",
360
+ "\n",
361
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
362
+ "for i in range(8):\n",
363
+ " ax[i].imshow(val_batch[0].data[i][0].numpy(), cmap=\"gray\")"
364
+ ]
365
+ },
366
+ {
367
+ "cell_type": "code",
368
+ "execution_count": null,
369
+ "metadata": {},
370
+ "outputs": [],
371
+ "source": [
372
+ "# from custom"
373
+ ]
374
+ },
375
+ {
376
+ "cell_type": "code",
377
+ "execution_count": null,
378
+ "metadata": {},
379
+ "outputs": [],
380
+ "source": [
381
+ "config = create_n2v_configuration(\n",
382
+ " experiment_name=\"bsd68_n2v\",\n",
383
+ " data_type=\"custom\",\n",
384
+ " axes=\"SYX\",\n",
385
+ " patch_size=(64, 64),\n",
386
+ " batch_size=64,\n",
387
+ " num_epochs=100\n",
388
+ ")\n",
389
+ "\n",
390
+ "config.data_config.set_means_and_stds([image_mean], [image_std])\n",
391
+ "config.data_config.val_dataloader_params = {\"shuffle\": False}\n",
392
+ "\n",
393
+ "def read_source_func(path):\n",
394
+ " image = tifffile.imread(path)\n",
395
+ " image = 255 - image\n",
396
+ " return image\n",
397
+ "\n",
398
+ "data_module = CareamicsDataModule(\n",
399
+ " data_config=config.data_config,\n",
400
+ " train_data=sorted(train_path.glob(\"*.tiff\")),\n",
401
+ " val_data=sorted(val_path.glob(\"*.tiff\")),\n",
402
+ " read_source_func=read_source_func\n",
403
+ ")\n",
404
+ "data_module.setup('fit')\n",
405
+ "data_module.setup('validate')\n",
406
+ "\n",
407
+ "train_batch = next(iter(data_module.train_dataloader()))\n",
408
+ "val_batch = next(iter(data_module.val_dataloader()))\n",
409
+ "\n",
410
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
411
+ "\n",
412
+ "for i in range(8):\n",
413
+ " ax[i].imshow(train_batch[0].data[i][0].numpy(), cmap=\"gray\")\n",
414
+ "\n",
415
+ "\n",
416
+ "fig, ax = plt.subplots(1, 8, figsize=(10, 5))\n",
417
+ "for i in range(8):\n",
418
+ " ax[i].imshow(val_batch[0].data[i][0].numpy(), cmap=\"gray\")"
419
+ ]
420
+ }
421
+ ],
422
+ "metadata": {
423
+ "kernelspec": {
424
+ "display_name": "Python 3",
425
+ "language": "python",
426
+ "name": "python3"
427
+ },
428
+ "language_info": {
429
+ "codemirror_mode": {
430
+ "name": "ipython",
431
+ "version": 3
432
+ },
433
+ "file_extension": ".py",
434
+ "mimetype": "text/x-python",
435
+ "name": "python",
436
+ "nbconvert_exporter": "python",
437
+ "pygments_lexer": "ipython3",
438
+ "version": "3.9.20"
439
+ }
440
+ },
441
+ "nbformat": 4,
442
+ "nbformat_minor": 2
443
+ }
@@ -15,7 +15,8 @@
15
15
  "import tifffile\n",
16
16
  "\n",
17
17
  "from careamics.config import create_n2n_configuration\n",
18
- "from careamics.dataset_ng.dataset.dataset import CareamicsDataset, Mode"
18
+ "from careamics.dataset_ng.dataset.dataset import Mode\n",
19
+ "from careamics.dataset_ng.dataset.factory import create_dataset"
19
20
  ]
20
21
  },
21
22
  {
@@ -77,17 +78,19 @@
77
78
  ").data_config\n",
78
79
  "\n",
79
80
  "\n",
80
- "train_dataset = CareamicsDataset(\n",
81
- " data_config=train_data_config,\n",
81
+ "train_dataset = create_dataset(\n",
82
+ " config=train_data_config,\n",
82
83
  " mode=Mode.TRAINING,\n",
83
84
  " inputs=[example_data],\n",
84
85
  " targets=[segmentation],\n",
86
+ " in_memory=True,\n",
85
87
  ")\n",
86
- "val_dataset = CareamicsDataset(\n",
87
- " data_config=val_data_config,\n",
88
+ "val_dataset = create_dataset(\n",
89
+ " config=val_data_config,\n",
88
90
  " mode=Mode.VALIDATING,\n",
89
91
  " inputs=[example_data],\n",
90
92
  " targets=[segmentation],\n",
93
+ " in_memory=True,\n",
91
94
  ")\n",
92
95
  "\n",
93
96
  "fig, ax = plt.subplots(2, 5, figsize=(10, 5))\n",
@@ -140,11 +143,19 @@
140
143
  "\n",
141
144
  "data = sorted(Path(\"./\").glob(\"example_data*.tiff\"))\n",
142
145
  "targets = sorted(Path(\"./\").glob(\"example_target*.tiff\"))\n",
143
- "train_dataset = CareamicsDataset(\n",
144
- " data_config=train_data_config, inputs=data, targets=targets\n",
146
+ "train_dataset = create_dataset(\n",
147
+ " config=train_data_config,\n",
148
+ " mode=Mode.TRAINING,\n",
149
+ " inputs=data,\n",
150
+ " targets=targets,\n",
151
+ " in_memory=True,\n",
145
152
  ")\n",
146
- "val_dataset = CareamicsDataset(\n",
147
- " data_config=val_data_config, inputs=data, targets=targets\n",
153
+ "val_dataset = create_dataset(\n",
154
+ " config=val_data_config,\n",
155
+ " mode=Mode.VALIDATING,\n",
156
+ " inputs=data,\n",
157
+ " targets=targets,\n",
158
+ " in_memory=True,\n",
148
159
  ")\n",
149
160
  "\n",
150
161
  "fig, ax = plt.subplots(2, 5, figsize=(10, 5))\n",
@@ -183,8 +194,12 @@
183
194
  " tta_transforms=False,\n",
184
195
  " batch_size=1,\n",
185
196
  ")\n",
186
- "prediction_dataset = CareamicsDataset(\n",
187
- " data_config=prediction_config, mode=Mode.PREDICTING, inputs=[example_data]\n",
197
+ "prediction_dataset = create_dataset(\n",
198
+ " config=prediction_config,\n",
199
+ " mode=Mode.PREDICTING,\n",
200
+ " inputs=[example_data],\n",
201
+ " targets=None,\n",
202
+ " in_memory=True,\n",
188
203
  ")\n",
189
204
  "\n",
190
205
  "fig, ax = plt.subplots(1, 5, figsize=(10, 5))\n",
@@ -219,16 +234,17 @@
219
234
  ").data_config\n",
220
235
  "\n",
221
236
  "\n",
222
- "def read_data_func_test(data):\n",
237
+ "def read_data_func_test(example_data):\n",
223
238
  " return 255 - example_data\n",
224
239
  "\n",
225
240
  "\n",
226
241
  "fig, ax = plt.subplots(1, 5, figsize=(10, 5))\n",
227
- "train_dataset = CareamicsDataset(\n",
228
- " data_config=train_data_config,\n",
242
+ "train_dataset = create_dataset(\n",
243
+ " config=train_data_config,\n",
229
244
  " mode=Mode.TRAINING,\n",
230
245
  " inputs=[example_data],\n",
231
246
  " targets=[segmentation],\n",
247
+ " in_memory=True,\n",
232
248
  " read_func=read_data_func_test,\n",
233
249
  " read_kwargs={}\n",
234
250
  ")\n",
@@ -245,6 +261,14 @@
245
261
  "metadata": {},
246
262
  "outputs": [],
247
263
  "source": []
264
+ },
265
+ {
266
+ "cell_type": "code",
267
+ "execution_count": null,
268
+ "id": "11",
269
+ "metadata": {},
270
+ "outputs": [],
271
+ "source": []
248
272
  }
249
273
  ],
250
274
  "metadata": {
@@ -263,7 +287,7 @@
263
287
  "name": "python",
264
288
  "nbconvert_exporter": "python",
265
289
  "pygments_lexer": "ipython3",
266
- "version": "3.11.11"
290
+ "version": "3.9.21"
267
291
  }
268
292
  },
269
293
  "nbformat": 4,
@@ -1,10 +1,12 @@
1
1
  # %%
2
2
  import numpy as np
3
3
 
4
- # %%
5
- from careamics.config.support import SupportedData
6
- from careamics.dataset_ng.patch_extractor import create_patch_extractor
7
4
  from careamics.dataset_ng.patch_extractor.image_stack import InMemoryImageStack
5
+
6
+ # %%
7
+ from careamics.dataset_ng.patch_extractor.patch_extractor_factory import (
8
+ create_array_extractor,
9
+ )
8
10
  from careamics.dataset_ng.patching_strategies import RandomPatchingStrategy
9
11
 
10
12
  # %%
@@ -30,12 +32,8 @@ print(target2)
30
32
 
31
33
  # %%
32
34
  # define example readers
33
- input_patch_extractor = create_patch_extractor(
34
- [array1, array2], axes="SYX", data_type=SupportedData.ARRAY
35
- )
36
- target_patch_extractor = create_patch_extractor(
37
- [target1, target2], axes="SYX", data_type=SupportedData.ARRAY
38
- )
35
+ input_patch_extractor = create_array_extractor([array1, array2], axes="SYX")
36
+ target_patch_extractor = create_array_extractor([target1, target2], axes="SYX")
39
37
 
40
38
  # %%
41
39
  # generate random patch specification