capytaine 3.0.0a1__cp314-cp314t-macosx_15_0_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (65) hide show
  1. capytaine/.dylibs/libgcc_s.1.1.dylib +0 -0
  2. capytaine/.dylibs/libgfortran.5.dylib +0 -0
  3. capytaine/.dylibs/libquadmath.0.dylib +0 -0
  4. capytaine/__about__.py +21 -0
  5. capytaine/__init__.py +32 -0
  6. capytaine/bem/__init__.py +0 -0
  7. capytaine/bem/airy_waves.py +111 -0
  8. capytaine/bem/engines.py +321 -0
  9. capytaine/bem/problems_and_results.py +601 -0
  10. capytaine/bem/solver.py +718 -0
  11. capytaine/bodies/__init__.py +4 -0
  12. capytaine/bodies/bodies.py +630 -0
  13. capytaine/bodies/dofs.py +146 -0
  14. capytaine/bodies/hydrostatics.py +540 -0
  15. capytaine/bodies/multibodies.py +216 -0
  16. capytaine/green_functions/Delhommeau_float32.cpython-314t-darwin.so +0 -0
  17. capytaine/green_functions/Delhommeau_float64.cpython-314t-darwin.so +0 -0
  18. capytaine/green_functions/__init__.py +2 -0
  19. capytaine/green_functions/abstract_green_function.py +64 -0
  20. capytaine/green_functions/delhommeau.py +522 -0
  21. capytaine/green_functions/hams.py +210 -0
  22. capytaine/io/__init__.py +0 -0
  23. capytaine/io/bemio.py +153 -0
  24. capytaine/io/legacy.py +228 -0
  25. capytaine/io/wamit.py +479 -0
  26. capytaine/io/xarray.py +673 -0
  27. capytaine/meshes/__init__.py +2 -0
  28. capytaine/meshes/abstract_meshes.py +375 -0
  29. capytaine/meshes/clean.py +302 -0
  30. capytaine/meshes/clip.py +347 -0
  31. capytaine/meshes/export.py +89 -0
  32. capytaine/meshes/geometry.py +259 -0
  33. capytaine/meshes/io.py +433 -0
  34. capytaine/meshes/meshes.py +826 -0
  35. capytaine/meshes/predefined/__init__.py +6 -0
  36. capytaine/meshes/predefined/cylinders.py +280 -0
  37. capytaine/meshes/predefined/rectangles.py +202 -0
  38. capytaine/meshes/predefined/spheres.py +55 -0
  39. capytaine/meshes/quality.py +159 -0
  40. capytaine/meshes/surface_integrals.py +82 -0
  41. capytaine/meshes/symmetric_meshes.py +641 -0
  42. capytaine/meshes/visualization.py +353 -0
  43. capytaine/post_pro/__init__.py +6 -0
  44. capytaine/post_pro/free_surfaces.py +85 -0
  45. capytaine/post_pro/impedance.py +92 -0
  46. capytaine/post_pro/kochin.py +54 -0
  47. capytaine/post_pro/rao.py +60 -0
  48. capytaine/tools/__init__.py +0 -0
  49. capytaine/tools/block_circulant_matrices.py +275 -0
  50. capytaine/tools/cache_on_disk.py +26 -0
  51. capytaine/tools/deprecation_handling.py +18 -0
  52. capytaine/tools/lists_of_points.py +52 -0
  53. capytaine/tools/memory_monitor.py +45 -0
  54. capytaine/tools/optional_imports.py +27 -0
  55. capytaine/tools/prony_decomposition.py +150 -0
  56. capytaine/tools/symbolic_multiplication.py +161 -0
  57. capytaine/tools/timer.py +90 -0
  58. capytaine/ui/__init__.py +0 -0
  59. capytaine/ui/cli.py +28 -0
  60. capytaine/ui/rich.py +5 -0
  61. capytaine-3.0.0a1.dist-info/LICENSE +674 -0
  62. capytaine-3.0.0a1.dist-info/METADATA +755 -0
  63. capytaine-3.0.0a1.dist-info/RECORD +65 -0
  64. capytaine-3.0.0a1.dist-info/WHEEL +6 -0
  65. capytaine-3.0.0a1.dist-info/entry_points.txt +3 -0
@@ -0,0 +1,275 @@
1
+ """Implementation of block circulant matrices to be used for optimizing resolution with symmetries."""
2
+ # Copyright (C) 2025 Capytaine developers
3
+ # See LICENSE file at <https://github.com/capytaine/capytaine>
4
+
5
+ import logging
6
+ import numpy as np
7
+ from typing import List, Union, Sequence
8
+ from numpy.typing import NDArray, ArrayLike
9
+ import scipy.linalg as sl
10
+
11
+ LOG = logging.getLogger(__name__)
12
+
13
+
14
+ def circular_permutation(l: List, i: int) -> List:
15
+ return l[-i:] + l[:-i]
16
+
17
+
18
+ def leading_dimensions_at_the_end(a):
19
+ """Transform an array of shape (n, m, ...) into (..., n, m).
20
+ Invert of `leading_dimensions_at_the_end`"""
21
+ return np.moveaxis(a, [0, 1], [-2, -1])
22
+
23
+
24
+ def ending_dimensions_at_the_beginning(a):
25
+ """Transform an array of shape (..., n, m) into (n, m, ...).
26
+ Invert of `leading_dimensions_at_the_end`"""
27
+ return np.moveaxis(a, [-2, -1], [0, 1])
28
+
29
+
30
+ class BlockCirculantMatrix:
31
+ """Data-sparse representation of a block matrix of the following form
32
+
33
+ ( a d c b )
34
+ ( b a d c )
35
+ ( c b a d )
36
+ ( d c b a )
37
+
38
+ where a, b, c and d are matrices of the same shape.
39
+
40
+ Parameters
41
+ ----------
42
+ blocks: Sequence of matrix-like, can be also a ndarray of shape (nb_blocks, n, n, ...)
43
+ The **first column** of blocks [a, b, c, d, ...]
44
+ Each block should have the same shape.
45
+ """
46
+ def __init__(self, blocks: Sequence[ArrayLike]):
47
+ self.blocks = blocks
48
+ self.nb_blocks = len(blocks)
49
+ assert all(self.blocks[0].shape == b.shape for b in self.blocks[1:])
50
+ assert all(self.blocks[0].dtype == b.dtype for b in self.blocks[1:])
51
+ self.shape = (
52
+ self.nb_blocks*self.blocks[0].shape[0],
53
+ self.nb_blocks*self.blocks[0].shape[1],
54
+ *self.blocks[0].shape[2:]
55
+ )
56
+ self.ndim = len(self.shape)
57
+ self.dtype = self.blocks[0].dtype
58
+
59
+ def __array__(self, dtype=None, copy=True):
60
+ if not copy:
61
+ raise NotImplementedError
62
+ if dtype is None:
63
+ dtype = self.dtype
64
+ full_blocks = [np.asarray(b) for b in self.blocks] # Transform all blocks to numpy arrays
65
+ first_row = [full_blocks[0], *(full_blocks[1:][::-1])]
66
+ if self.ndim >= 3:
67
+ first_row = [leading_dimensions_at_the_end(b) for b in first_row]
68
+ # Need to permute_dims to conform to `block` usage when the array is more than 2D
69
+ full_matrix = np.block([[b for b in circular_permutation(first_row, i)]
70
+ for i in range(self.nb_blocks)]).astype(dtype)
71
+ if self.ndim >= 3:
72
+ full_matrix = ending_dimensions_at_the_beginning(full_matrix)
73
+ return full_matrix
74
+
75
+ def __add__(self, other):
76
+ if isinstance(other, BlockCirculantMatrix) and self.shape == other.shape:
77
+ return BlockCirculantMatrix([a + b for (a, b) in zip(self.blocks, other.blocks)])
78
+ else:
79
+ return NotImplemented
80
+
81
+ def __sub__(self, other):
82
+ if isinstance(other, BlockCirculantMatrix) and self.shape == other.shape:
83
+ return BlockCirculantMatrix([a - b for (a, b) in zip(self.blocks, other.blocks)])
84
+ else:
85
+ return NotImplemented
86
+
87
+ def __matmul__(self, other):
88
+ if self.nb_blocks == 2 and isinstance(other, np.ndarray) and other.ndim == 1:
89
+ a, b = self.blocks
90
+ x1, x2 = other[:len(other)//2], other[len(other)//2:]
91
+ y = np.concatenate([a @ x1 + b @ x2, b @ x1 + a @ x2], axis=0)
92
+ return y
93
+ elif self.nb_blocks == 3 and isinstance(other, np.ndarray) and other.ndim == 1:
94
+ a, b, c = self.blocks
95
+ n = len(other)
96
+ x1, x2, x3 = other[:n//3], other[n//3:2*n//3], other[2*n//3:]
97
+ y = np.concatenate([
98
+ a @ x1 + c @ x2 + b @ x3,
99
+ b @ x1 + a @ x2 + c @ x3,
100
+ c @ x1 + b @ x2 + a @ x3,
101
+ ], axis=0)
102
+ return y
103
+ elif isinstance(other, np.ndarray) and other.ndim == 1:
104
+ self.blocks
105
+ y = np.zeros(other.shape, dtype=np.result_type(self.dtype, other.dtype))
106
+ blocks_indices = list(range(self.nb_blocks))
107
+ for i, x_i in enumerate(np.split(other, self.nb_blocks)):
108
+ y += np.concatenate([self.blocks[j] @ x_i for j in circular_permutation(blocks_indices, i)])
109
+ return y
110
+ else:
111
+ return NotImplemented
112
+
113
+ def matvec(self, other):
114
+ return self.__matmul__(other)
115
+
116
+ def block_diagonalize(self) -> "BlockDiagonalMatrix":
117
+ if self.ndim == 2 and self.nb_blocks == 2:
118
+ a, b = self.blocks
119
+ return BlockDiagonalMatrix([a + b, a - b])
120
+ elif self.ndim == 2 and self.nb_blocks == 3:
121
+ a, b, c = self.blocks
122
+ return BlockDiagonalMatrix([
123
+ a + b + c,
124
+ a + np.exp(-2j*np.pi/3, dtype=self.dtype) * b + np.exp(2j*np.pi/3, dtype=self.dtype) * c,
125
+ a + np.exp(2j*np.pi/3, dtype=self.dtype) * b + np.exp(-2j*np.pi/3, dtype=self.dtype) * c,
126
+ ])
127
+ elif self.ndim == 2 and self.nb_blocks == 4:
128
+ a, b, c, d = self.blocks
129
+ return BlockDiagonalMatrix([
130
+ a + b + c + d,
131
+ a - 1j*b - c + 1j*d,
132
+ a - b + c - d,
133
+ a + 1j*b - c - 1j*d,
134
+ ])
135
+ elif self.ndim == 2 and all(isinstance(b, np.ndarray) for b in self.blocks):
136
+ return BlockDiagonalMatrix(np.fft.fft(np.asarray(self.blocks), axis=0))
137
+ else:
138
+ raise NotImplementedError()
139
+
140
+ def solve(self, b: np.ndarray) -> np.ndarray:
141
+ LOG.debug("Called solve on %s of shape %s",
142
+ self.__class__.__name__, self.shape)
143
+ n = self.nb_blocks
144
+ b_fft = np.fft.fft(b.reshape((n, b.shape[0]//n)), axis=0).reshape(b.shape)
145
+ res_fft = self.block_diagonalize().solve(b_fft)
146
+ res = np.fft.ifft(res_fft.reshape((n, b.shape[0]//n)), axis=0).reshape(b.shape)
147
+ LOG.debug("Done")
148
+ return res
149
+
150
+
151
+ class BlockDiagonalMatrix:
152
+ """Data-sparse representation of a block matrix of the following form
153
+
154
+ ( a 0 0 0 )
155
+ ( 0 b 0 0 )
156
+ ( 0 0 c 0 )
157
+ ( 0 0 0 d )
158
+
159
+ where a, b, c and d are matrices of the same shape.
160
+
161
+ Parameters
162
+ ----------
163
+ blocks: iterable of matrix-like
164
+ The blocks [a, b, c, d, ...]
165
+ """
166
+ def __init__(self, blocks: Sequence[ArrayLike]):
167
+ self.blocks = blocks
168
+ self.nb_blocks = len(blocks)
169
+ assert all(blocks[0].shape == b.shape for b in blocks[1:])
170
+ self.shape = (
171
+ sum(bl.shape[0] for bl in blocks),
172
+ sum(bl.shape[1] for bl in blocks)
173
+ )
174
+ assert all(blocks[0].dtype == b.dtype for b in blocks[1:])
175
+ self.dtype = blocks[0].dtype
176
+
177
+ def __array__(self, dtype=None, copy=True):
178
+ if not copy:
179
+ raise NotImplementedError
180
+ if dtype is None:
181
+ dtype = self.dtype
182
+ full_blocks = [np.asarray(b) for b in self.blocks] # Transform all blocks to numpy arrays
183
+ if self.ndim >= 3:
184
+ full_blocks = [leading_dimensions_at_the_end(b) for b in full_blocks]
185
+ full_matrix = np.block([
186
+ [full_blocks[i] if i == j else np.zeros(full_blocks[i].shape)
187
+ for j in range(self.nb_blocks)]
188
+ for i in range(self.nb_blocks)])
189
+ if self.ndim >= 3:
190
+ full_matrix = ending_dimensions_at_the_beginning(full_matrix)
191
+ return full_matrix
192
+
193
+ def solve(self, b: np.ndarray) -> np.ndarray:
194
+ LOG.debug("Called solve on %s of shape %s",
195
+ self.__class__.__name__, self.shape)
196
+ n = self.nb_blocks
197
+ rhs = np.split(b, n)
198
+ res = [np.linalg.solve(Ai, bi) if isinstance(Ai, np.ndarray) else Ai.solve(bi)
199
+ for (Ai, bi) in zip(self.blocks, rhs)]
200
+ LOG.debug("Done")
201
+ return np.hstack(res)
202
+
203
+
204
+ MatrixLike = Union[np.ndarray, BlockDiagonalMatrix, BlockCirculantMatrix]
205
+
206
+
207
+ def lu_decompose(A: MatrixLike, *, overwrite_a : bool = False):
208
+ if isinstance(A, np.ndarray):
209
+ return LUDecomposedMatrix(A, overwrite_a=overwrite_a)
210
+ elif isinstance(A, BlockDiagonalMatrix):
211
+ return LUDecomposedBlockDiagonalMatrix(A, overwrite_a=overwrite_a)
212
+ elif isinstance(A, BlockCirculantMatrix):
213
+ return LUDecomposedBlockCirculantMatrix(A, overwrite_a=overwrite_a)
214
+ else:
215
+ raise NotImplementedError()
216
+
217
+
218
+ class LUDecomposedMatrix:
219
+ def __init__(self, A: NDArray, *, overwrite_a : bool = False):
220
+ LOG.debug("LU decomp of %s of shape %s",
221
+ A.__class__.__name__, A.shape)
222
+ self._lu_decomp = sl.lu_factor(A, overwrite_a=overwrite_a)
223
+ self.shape = A.shape
224
+ self.dtype = A.dtype
225
+
226
+ def solve(self, b: np.ndarray) -> np.ndarray:
227
+ LOG.debug("Called solve on %s of shape %s",
228
+ self.__class__.__name__, self.shape)
229
+ return sl.lu_solve(self._lu_decomp, b)
230
+
231
+
232
+ class LUDecomposedBlockDiagonalMatrix:
233
+ """LU decomposition of a BlockDiagonalMatrix,
234
+ stored as the LU decomposition of each block."""
235
+ def __init__(self, bdm: BlockDiagonalMatrix, *, overwrite_a : bool = False):
236
+ LOG.debug("LU decomp of %s of shape %s",
237
+ bdm.__class__.__name__, bdm.shape)
238
+ self._lu_decomp = [lu_decompose(bl, overwrite_a=overwrite_a) for bl in bdm.blocks]
239
+ self.shape = bdm.shape
240
+ self.nb_blocks = bdm.nb_blocks
241
+ self.dtype = bdm.dtype
242
+
243
+ def solve(self, b: np.ndarray) -> np.ndarray:
244
+ LOG.debug("Called solve on %s of shape %s",
245
+ self.__class__.__name__, self.shape)
246
+ rhs = np.split(b, self.nb_blocks)
247
+ res = [Ai.solve(bi) for (Ai, bi) in zip(self._lu_decomp, rhs)]
248
+ return np.hstack(res)
249
+
250
+
251
+ class LUDecomposedBlockCirculantMatrix:
252
+ def __init__(self, bcm: BlockCirculantMatrix, *, overwrite_a : bool = False):
253
+ LOG.debug("LU decomp of %s of shape %s",
254
+ bcm.__class__.__name__, bcm.shape)
255
+ self._lu_decomp = lu_decompose(bcm.block_diagonalize(), overwrite_a=overwrite_a)
256
+ self.shape = bcm.shape
257
+ self.nb_blocks = bcm.nb_blocks
258
+ self.dtype = bcm.dtype
259
+
260
+ def solve(self, b: np.ndarray) -> np.ndarray:
261
+ LOG.debug("Called solve on %s of shape %s",
262
+ self.__class__.__name__, self.shape)
263
+ n = self.nb_blocks
264
+ b_fft = np.fft.fft(b.reshape((n, b.shape[0]//n)), axis=0).reshape(b.shape)
265
+ res_fft = self._lu_decomp.solve(b_fft)
266
+ res = np.fft.ifft(res_fft.reshape((n, b.shape[0]//n)), axis=0).reshape(b.shape)
267
+ return res
268
+
269
+
270
+ LUDecomposedMatrixLike = Union[LUDecomposedMatrix, LUDecomposedBlockDiagonalMatrix, LUDecomposedBlockCirculantMatrix]
271
+
272
+
273
+ def has_been_lu_decomposed(A):
274
+ # Python 3.8 does not support isinstance(A, LUDecomposedMatrixLike)
275
+ return isinstance(A, (LUDecomposedMatrix, LUDecomposedBlockDiagonalMatrix, LUDecomposedBlockCirculantMatrix))
@@ -0,0 +1,26 @@
1
+ """
2
+ Adapted from https://github.com/platformdirs/platformdirs (MIT Licensed)
3
+ """
4
+ import os
5
+ import sys
6
+ from pathlib import Path
7
+
8
+ from capytaine import __version__
9
+
10
+
11
+ def cache_directory():
12
+ if "CAPYTAINE_CACHE_DIR" in os.environ:
13
+ path = os.path.join(os.environ["CAPYTAINE_CACHE_DIR"], __version__)
14
+ elif sys.platform == "win32": # Windows
15
+ path = os.path.normpath(os.environ.get("LOCALAPPDATA"))
16
+ path = os.path.join(path, "capytaine", "Cache", __version__)
17
+ elif sys.platform == "darwin": # MacOS
18
+ path = os.path.expanduser("~/Library/Caches")
19
+ path = os.path.join(path, "capytaine", __version__)
20
+ else:
21
+ path = os.environ.get("XDG_CACHE_HOME", "")
22
+ if path.strip() == "":
23
+ path = os.path.expanduser("~/.cache")
24
+ path = os.path.join(path, "capytaine", __version__)
25
+ Path(path).mkdir(parents=True, exist_ok=True)
26
+ return path
@@ -0,0 +1,18 @@
1
+ import logging
2
+
3
+ import numpy as np
4
+
5
+ LOG = logging.getLogger(__name__)
6
+
7
+ def _get_water_depth(free_surface, water_depth, sea_bottom, default_water_depth=np.inf):
8
+ if water_depth is None and sea_bottom is None:
9
+ return default_water_depth
10
+ elif water_depth is not None and sea_bottom is None:
11
+ if water_depth <= 0.0:
12
+ raise ValueError(f"`water_depth` should be strictly positive. Received value: {water_depth}")
13
+ return float(water_depth)
14
+ elif water_depth is None and sea_bottom is not None:
15
+ LOG.warning("To uniformize notations througouth Capytaine, setting `water_depth` is preferred to `sea_bottom` since version 2.0.")
16
+ return float(free_surface - sea_bottom)
17
+ else:
18
+ raise ValueError("Cannot give both a `water_depth` and a `sea_bottom`.")
@@ -0,0 +1,52 @@
1
+ import numpy as np
2
+ from capytaine.bodies import FloatingBody
3
+ from capytaine.post_pro.free_surfaces import FreeSurface
4
+ from capytaine.meshes.abstract_meshes import AbstractMesh
5
+
6
+
7
+ def _normalize_points(points, keep_mesh=False):
8
+ if isinstance(points, (FloatingBody, FreeSurface)):
9
+ if keep_mesh:
10
+ return points.mesh, (points.mesh.nb_faces,)
11
+ else:
12
+ return points.mesh.faces_centers, (points.mesh.nb_faces,)
13
+
14
+ if isinstance(points, AbstractMesh):
15
+ if keep_mesh:
16
+ return points, (points.nb_faces,)
17
+ else:
18
+ return points.faces_centers, (points.nb_faces,)
19
+
20
+ points = np.asarray(points)
21
+
22
+ if points.ndim == 1: # A single point has been provided
23
+ output_shape = (1,)
24
+ points = points.reshape((1, points.shape[0]))
25
+
26
+ elif points.ndim == 2:
27
+ output_shape = (points.shape[0],)
28
+
29
+ elif points.ndim > 2:
30
+ # `points` is expected to be the results of a meshgrid. Points has shape (d, nx, ny, ...)
31
+ output_shape = points.shape[1:]
32
+ points = points.reshape(points.shape[0], -1).transpose()
33
+ # points is now a (nx*ny*... , d) array
34
+
35
+ else:
36
+ raise ValueError(f"Expected a list of points or a mesh, but got instead: {points}")
37
+
38
+ return points, output_shape
39
+
40
+ def _normalize_free_surface_points(points, keep_mesh=False):
41
+ if keep_mesh and isinstance(points, (FloatingBody, FreeSurface)):
42
+ return points.mesh, (points.mesh.nb_faces,)
43
+
44
+ if keep_mesh and isinstance(points, MeshLike):
45
+ return points, (points.nb_faces,)
46
+
47
+ points, output_shape = _normalize_points(points, keep_mesh)
48
+
49
+ if points.ndim == 2 and points.shape[1] == 2: # Only x and y have been provided
50
+ points = np.concatenate([points, np.zeros((points.shape[0], 1))], axis=1)
51
+
52
+ return points, output_shape
@@ -0,0 +1,45 @@
1
+ import logging
2
+ import time
3
+ from threading import Thread
4
+
5
+ from capytaine.tools.optional_imports import silently_import_optional_dependency
6
+
7
+ LOG = logging.getLogger(__name__)
8
+
9
+ class MemoryMonitor(Thread):
10
+ """Monitor the memory usage in a separate thread.
11
+ from : https://joblib.readthedocs.io/en/stable/auto_examples/parallel_generator.html#sphx-glr-auto-examples-parallel-generator-py
12
+ """
13
+
14
+ def __init__(self):
15
+ super().__init__()
16
+ self.stop = False
17
+ self.memory_buffer = [0]
18
+ self.psutil = silently_import_optional_dependency("psutil")
19
+ self.start()
20
+
21
+ def get_memory(self):
22
+ "Get memory of a process and its children."
23
+ p = self.psutil.Process()
24
+ memory = p.memory_info().rss
25
+ for c in p.children():
26
+ try:
27
+ memory += c.memory_info().rss
28
+ except self.psutil.NoSuchProcess:
29
+ pass
30
+ return memory
31
+
32
+ def run(self):
33
+ if self.psutil is not None:
34
+ memory_start = self.get_memory()
35
+ while not self.stop:
36
+ self.memory_buffer.append(self.get_memory() - memory_start)
37
+ time.sleep(0.2)
38
+
39
+ def get_memory_peak(self):
40
+ self.stop = True
41
+ super().join()
42
+ if self.psutil is None:
43
+ return None
44
+ else:
45
+ return round(max(self.memory_buffer) / 1e9, 2)
@@ -0,0 +1,27 @@
1
+ """Tool to import optional dependencies. Inspired by similar code in pandas."""
2
+
3
+ import importlib
4
+
5
+ def import_optional_dependency(module_name: str, package_name: str = None):
6
+ try:
7
+ module = importlib.import_module(module_name)
8
+ except ImportError:
9
+ if package_name is None:
10
+ package_name = module_name
11
+
12
+ message = (
13
+ f"Missing optional dependency '{module_name}'. "
14
+ f"Use pip or conda to install {package_name}."
15
+ )
16
+ raise ImportError(message) from None
17
+
18
+ return module
19
+
20
+ def silently_import_optional_dependency(module_name: str):
21
+ # Same as above, except it does not raise a exception when the module is not found.
22
+ # Instead, simply returns None.
23
+ try:
24
+ module = importlib.import_module(module_name)
25
+ except ImportError:
26
+ module = None
27
+ return module
@@ -0,0 +1,150 @@
1
+ """Prony decomposition: tool to approximate a function as a sum of exponentials.
2
+ Used in particular in the finite depth Green function.
3
+ """
4
+ # Copyright (C) 2017-2024 Matthieu Ancellin
5
+ # See LICENSE file at <https://github.com/capytaine/capytaine>
6
+
7
+ import logging
8
+
9
+ import numpy as np
10
+ from numpy.polynomial import polynomial
11
+ from scipy.optimize import curve_fit
12
+ from scipy.linalg import toeplitz
13
+
14
+ LOG = logging.getLogger(__name__)
15
+ RNG = np.random.default_rng()
16
+
17
+
18
+ def exponential_decomposition(X, F, m):
19
+ """Use Prony's method to approximate the sampled real function F=f(X) as a sum of m
20
+ exponential functions x → Σ a_i exp(lamda_i x).
21
+
22
+ Parameters
23
+ ----------
24
+ X: 1D array
25
+ sampling points.
26
+ F: 1D array (same size as X)
27
+ values of the function to approximate at the points of x.
28
+ m: integer
29
+ number of exponential functions
30
+
31
+ Return
32
+ ------
33
+ a: 1D array (size m)
34
+ coefficients of the exponentials
35
+ lamda: 1D array (size m)
36
+ growth rate of the exponentials
37
+ """
38
+ assert X.shape == F.shape
39
+
40
+ # Compute the coefficients of the polynomials of Prony's method
41
+ A = toeplitz(c=F[m-1:-1], r=F[:m][::-1])
42
+ P, *_ = np.linalg.lstsq(A, F[m:], rcond=None)
43
+
44
+ # Build and solve polynomial function
45
+ coeffs = np.ones(m+1)
46
+ # coeffs[:m] = -P[::-1]
47
+ for i in range(m):
48
+ coeffs[m-i-1] = -P[i]
49
+ roots = polynomial.polyroots(coeffs)
50
+
51
+ # Discard values where log is undefined
52
+ roots = roots[np.logical_or(np.imag(roots) != 0.0, np.real(roots) >= 0.0)]
53
+
54
+ # Deduce lamda and keep only interesting values
55
+ lamda = np.real(np.log(roots)/(X[1] - X[0]))
56
+ lamda = np.unique(lamda)
57
+ lamda = lamda[np.logical_and(-20.0 < lamda, lamda < 0.0)]
58
+
59
+ # Fit the values of 'a' on the curve
60
+ def f(x, *ar):
61
+ ar = np.asarray(ar)[:, np.newaxis]
62
+ la = lamda[:, np.newaxis]
63
+ return np.sum(ar * np.exp(la * x), axis=0)
64
+ a, *_ = curve_fit(f, X, F, p0=np.zeros(lamda.shape))
65
+
66
+ return a, lamda
67
+
68
+
69
+ def error_exponential_decomposition(X, F, a, lamda):
70
+ """Mean square error of the exponential decomposition defined by the
71
+ coefficients a and lamda with respect to the reference values in F.
72
+
73
+ Parameters
74
+ ----------
75
+ X: 1D array
76
+ sampling points
77
+ F: 1D array (same size as X)
78
+ reference values
79
+ a: 1D array
80
+ coefficients of the exponentials
81
+ lamda: 1D array (same size as a)
82
+ growth rate of the exponentials
83
+
84
+ Returns
85
+ -------
86
+ error: float
87
+ mean square error of the decomposition
88
+ """
89
+ a = np.asarray(a)[:, np.newaxis]
90
+ lamda = np.asarray(lamda)[:, np.newaxis]
91
+
92
+ def f(x):
93
+ return np.sum(a * np.exp(lamda*x), axis=0)
94
+
95
+ return np.square(f(X) - F).mean()
96
+
97
+
98
+ class PronyDecompositionFailure(Exception):
99
+ pass
100
+
101
+
102
+ def find_best_exponential_decomposition(f, x_min, x_max, n_exp_range, *, tol=1e-4, noise_on_domain_points_std=0.01):
103
+ """Tries to construct an exponential decompositoin of the function f on the
104
+ domain [x_min, x_max] by testing the number of exponentials in n_exp_range.
105
+
106
+ Parameters
107
+ ----------
108
+ f: callable
109
+ The function ℝ→ℝ to be approximated.
110
+ Should support vectorized calls (that is passing a vector of inputs
111
+ and get the vector of corresponding outputs)
112
+ x_min, x_max: floats
113
+ The bounds of the domain of input in which f should be approximated
114
+ n_exp_range: iterable of ints
115
+ The decomposition sizes that will be tested
116
+ tol: float, optional
117
+ The target mean square error.
118
+ noise_on_domain_points_std: float, optional
119
+ Introduces some random variability on the points where the function is evaluated.
120
+ Set this parameter to zero to disable randomness.
121
+
122
+ """
123
+ # Try different range of evaluation points to construct the decomposition.
124
+ for n_exp in n_exp_range:
125
+
126
+ # f might be ill-defined at some single specific values
127
+ # (for the use-case of delhommeau.py, it is when x = kh exactly).
128
+ # Thus we slightly randomize the range of evaluation points for the Prony decomposition.
129
+ # This way, if one of the evaluation points hits the singular point, it will most likely not hit it again at the next iteration.
130
+ x_max_iter = (1 + noise_on_domain_points_std*RNG.uniform())*x_max
131
+
132
+ try:
133
+ # The coefficients are computed on a resolution of 4*n_exp+1 ...
134
+ X = np.linspace(x_min, x_max_iter, 4*n_exp+1)
135
+ a, lamda = exponential_decomposition(X, f(X), n_exp)
136
+
137
+ # ... and they are evaluated on a finer discretization.
138
+ X = np.linspace(x_min, x_max_iter, 8*n_exp+1)
139
+ if error_exponential_decomposition(X, f(X), a, lamda) < tol:
140
+ return a, lamda
141
+ except Exception:
142
+ # If something bad happened while computing the decomposition, try
143
+ # the next one.
144
+ continue
145
+
146
+ raise PronyDecompositionFailure(
147
+ "No suitable Prony decomposition has been found in "
148
+ f"[{x_min}, {x_max}] for tol={tol} "
149
+ f"using a number of terms in {n_exp_range}."
150
+ )