capytaine 3.0.0a1__cp312-cp312-macosx_15_0_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- capytaine/.dylibs/libgcc_s.1.1.dylib +0 -0
- capytaine/.dylibs/libgfortran.5.dylib +0 -0
- capytaine/.dylibs/libquadmath.0.dylib +0 -0
- capytaine/__about__.py +21 -0
- capytaine/__init__.py +32 -0
- capytaine/bem/__init__.py +0 -0
- capytaine/bem/airy_waves.py +111 -0
- capytaine/bem/engines.py +321 -0
- capytaine/bem/problems_and_results.py +601 -0
- capytaine/bem/solver.py +718 -0
- capytaine/bodies/__init__.py +4 -0
- capytaine/bodies/bodies.py +630 -0
- capytaine/bodies/dofs.py +146 -0
- capytaine/bodies/hydrostatics.py +540 -0
- capytaine/bodies/multibodies.py +216 -0
- capytaine/green_functions/Delhommeau_float32.cpython-312-darwin.so +0 -0
- capytaine/green_functions/Delhommeau_float64.cpython-312-darwin.so +0 -0
- capytaine/green_functions/__init__.py +2 -0
- capytaine/green_functions/abstract_green_function.py +64 -0
- capytaine/green_functions/delhommeau.py +522 -0
- capytaine/green_functions/hams.py +210 -0
- capytaine/io/__init__.py +0 -0
- capytaine/io/bemio.py +153 -0
- capytaine/io/legacy.py +228 -0
- capytaine/io/wamit.py +479 -0
- capytaine/io/xarray.py +673 -0
- capytaine/meshes/__init__.py +2 -0
- capytaine/meshes/abstract_meshes.py +375 -0
- capytaine/meshes/clean.py +302 -0
- capytaine/meshes/clip.py +347 -0
- capytaine/meshes/export.py +89 -0
- capytaine/meshes/geometry.py +259 -0
- capytaine/meshes/io.py +433 -0
- capytaine/meshes/meshes.py +826 -0
- capytaine/meshes/predefined/__init__.py +6 -0
- capytaine/meshes/predefined/cylinders.py +280 -0
- capytaine/meshes/predefined/rectangles.py +202 -0
- capytaine/meshes/predefined/spheres.py +55 -0
- capytaine/meshes/quality.py +159 -0
- capytaine/meshes/surface_integrals.py +82 -0
- capytaine/meshes/symmetric_meshes.py +641 -0
- capytaine/meshes/visualization.py +353 -0
- capytaine/post_pro/__init__.py +6 -0
- capytaine/post_pro/free_surfaces.py +85 -0
- capytaine/post_pro/impedance.py +92 -0
- capytaine/post_pro/kochin.py +54 -0
- capytaine/post_pro/rao.py +60 -0
- capytaine/tools/__init__.py +0 -0
- capytaine/tools/block_circulant_matrices.py +275 -0
- capytaine/tools/cache_on_disk.py +26 -0
- capytaine/tools/deprecation_handling.py +18 -0
- capytaine/tools/lists_of_points.py +52 -0
- capytaine/tools/memory_monitor.py +45 -0
- capytaine/tools/optional_imports.py +27 -0
- capytaine/tools/prony_decomposition.py +150 -0
- capytaine/tools/symbolic_multiplication.py +161 -0
- capytaine/tools/timer.py +90 -0
- capytaine/ui/__init__.py +0 -0
- capytaine/ui/cli.py +28 -0
- capytaine/ui/rich.py +5 -0
- capytaine-3.0.0a1.dist-info/LICENSE +674 -0
- capytaine-3.0.0a1.dist-info/METADATA +755 -0
- capytaine-3.0.0a1.dist-info/RECORD +65 -0
- capytaine-3.0.0a1.dist-info/WHEEL +6 -0
- capytaine-3.0.0a1.dist-info/entry_points.txt +3 -0
capytaine/meshes/clip.py
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
1
|
+
# Copyright 2025 Mews Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
from typing import List, Set, Tuple
|
|
17
|
+
|
|
18
|
+
import numpy as np
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def _get_intersection(
|
|
22
|
+
v1: np.ndarray,
|
|
23
|
+
v2: np.ndarray,
|
|
24
|
+
normal: np.ndarray,
|
|
25
|
+
origin: np.ndarray,
|
|
26
|
+
tol: float = 1e-8,
|
|
27
|
+
) -> np.ndarray:
|
|
28
|
+
"""Intersect a line segment with a plane.
|
|
29
|
+
|
|
30
|
+
Parameters
|
|
31
|
+
----------
|
|
32
|
+
v1, v2 : numpy.ndarray
|
|
33
|
+
Endpoints of the segment expressed as 3D vectors.
|
|
34
|
+
normal : numpy.ndarray
|
|
35
|
+
Plane normal; does not need to be unit length.
|
|
36
|
+
origin : numpy.ndarray
|
|
37
|
+
Point lying on the plane.
|
|
38
|
+
tol : float, default=1e-8
|
|
39
|
+
Tolerance used to detect parallel segments and clamp the intersection
|
|
40
|
+
parameter to the segment bounds.
|
|
41
|
+
|
|
42
|
+
Returns
|
|
43
|
+
-------
|
|
44
|
+
numpy.ndarray
|
|
45
|
+
Intersection point located on the (possibly clamped) segment.
|
|
46
|
+
|
|
47
|
+
Raises
|
|
48
|
+
------
|
|
49
|
+
ValueError
|
|
50
|
+
If the segment is parallel to the plane or the intersection lies
|
|
51
|
+
outside the tolerated segment range.
|
|
52
|
+
"""
|
|
53
|
+
v1 = np.asarray(v1, dtype=float)
|
|
54
|
+
v2 = np.asarray(v2, dtype=float)
|
|
55
|
+
n = np.asarray(normal, dtype=float)
|
|
56
|
+
o = np.asarray(origin, dtype=float)
|
|
57
|
+
|
|
58
|
+
u = v2 - v1
|
|
59
|
+
denom = float(np.dot(n, u))
|
|
60
|
+
if abs(denom) < tol:
|
|
61
|
+
raise ValueError("Segment is parallel to the plane (no unique intersection).")
|
|
62
|
+
|
|
63
|
+
t = float(np.dot(n, (o - v1)) / denom)
|
|
64
|
+
|
|
65
|
+
if t < -tol or t > 1.0 + tol:
|
|
66
|
+
raise ValueError(f"Intersection t={t:.6g} lies outside the segment [0,1].")
|
|
67
|
+
|
|
68
|
+
t = max(0.0, min(1.0, t))
|
|
69
|
+
return v1 + t * u
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
def compute_aspect_ratio(tri_pts: np.ndarray) -> float:
|
|
73
|
+
"""Compute the aspect ratio of a triangle.
|
|
74
|
+
|
|
75
|
+
The aspect ratio is defined as the longest edge length divided by the
|
|
76
|
+
altitude relative to that edge.
|
|
77
|
+
|
|
78
|
+
Parameters
|
|
79
|
+
----------
|
|
80
|
+
tri_pts : numpy.ndarray
|
|
81
|
+
Triangle vertices arranged in a ``(3, 3)`` array.
|
|
82
|
+
|
|
83
|
+
Returns
|
|
84
|
+
-------
|
|
85
|
+
float
|
|
86
|
+
Aspect ratio ``L / h`` (values greater than or equal to 1).
|
|
87
|
+
|
|
88
|
+
Raises
|
|
89
|
+
------
|
|
90
|
+
ValueError
|
|
91
|
+
If the triangle is degenerate and its area approaches zero.
|
|
92
|
+
"""
|
|
93
|
+
tri_pts = np.asarray(tri_pts, dtype=float)
|
|
94
|
+
if tri_pts.shape != (3, 3):
|
|
95
|
+
raise ValueError("tri_pts must have shape (3,3).")
|
|
96
|
+
|
|
97
|
+
edges = np.array(
|
|
98
|
+
[
|
|
99
|
+
np.linalg.norm(tri_pts[1] - tri_pts[0]),
|
|
100
|
+
np.linalg.norm(tri_pts[2] - tri_pts[1]),
|
|
101
|
+
np.linalg.norm(tri_pts[0] - tri_pts[2]),
|
|
102
|
+
],
|
|
103
|
+
dtype=float,
|
|
104
|
+
)
|
|
105
|
+
L = float(np.max(edges))
|
|
106
|
+
i = int(np.argmax(edges))
|
|
107
|
+
|
|
108
|
+
A, B = tri_pts[i], tri_pts[(i + 1) % 3]
|
|
109
|
+
C = tri_pts[(i + 2) % 3]
|
|
110
|
+
area = 0.5 * np.linalg.norm(np.cross(B - A, C - A))
|
|
111
|
+
if area <= 0.0:
|
|
112
|
+
raise ValueError("Degenerate triangle: zero area.")
|
|
113
|
+
h = 2.0 * area / L
|
|
114
|
+
return L / h
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
def _signed_distances(
|
|
118
|
+
verts: list[list[float]],
|
|
119
|
+
face: list[int],
|
|
120
|
+
normal: np.ndarray,
|
|
121
|
+
origin: np.ndarray,
|
|
122
|
+
) -> np.ndarray:
|
|
123
|
+
"""Evaluate signed distances of face vertices to a clipping plane.
|
|
124
|
+
|
|
125
|
+
Parameters
|
|
126
|
+
----------
|
|
127
|
+
verts : list of list of float
|
|
128
|
+
All mesh vertices.
|
|
129
|
+
face : list of int
|
|
130
|
+
Indices of the vertices forming the face.
|
|
131
|
+
normal : numpy.ndarray
|
|
132
|
+
Plane normal vector.
|
|
133
|
+
origin : numpy.ndarray
|
|
134
|
+
Point belonging to the plane.
|
|
135
|
+
|
|
136
|
+
Returns
|
|
137
|
+
-------
|
|
138
|
+
numpy.ndarray
|
|
139
|
+
Signed distances for the vertices belonging to ``face``.
|
|
140
|
+
"""
|
|
141
|
+
pts = np.asarray([verts[i] for i in face], dtype=float)
|
|
142
|
+
return (origin - pts) @ normal
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
def _compute_keep_sets(
|
|
146
|
+
verts: list[list[float]],
|
|
147
|
+
face: list[int],
|
|
148
|
+
normal: np.ndarray,
|
|
149
|
+
origin: np.ndarray,
|
|
150
|
+
tol: float,
|
|
151
|
+
) -> tuple[list[int], set[int], np.ndarray]:
|
|
152
|
+
"""Split vertices of a face between kept and discarded sets.
|
|
153
|
+
|
|
154
|
+
Parameters
|
|
155
|
+
----------
|
|
156
|
+
verts : list of list of float
|
|
157
|
+
All mesh vertices.
|
|
158
|
+
face : list of int
|
|
159
|
+
Indices forming the face currently being clipped.
|
|
160
|
+
normal : numpy.ndarray
|
|
161
|
+
Plane normal vector defining the clipping plane.
|
|
162
|
+
origin : numpy.ndarray
|
|
163
|
+
Point on the clipping plane.
|
|
164
|
+
tol : float
|
|
165
|
+
Tolerance used to consider vertices inside the kept half-space.
|
|
166
|
+
|
|
167
|
+
Returns
|
|
168
|
+
-------
|
|
169
|
+
list of int
|
|
170
|
+
Indices of vertices that remain after clipping.
|
|
171
|
+
set of int
|
|
172
|
+
Indices of vertices removed by the clipping plane.
|
|
173
|
+
numpy.ndarray
|
|
174
|
+
Signed distance of each face vertex to the plane.
|
|
175
|
+
"""
|
|
176
|
+
s = _signed_distances(verts, face, normal, origin)
|
|
177
|
+
mask = s >= -tol
|
|
178
|
+
keep = [face[i] for i, m in enumerate(mask) if m]
|
|
179
|
+
unkeep = set(face) - set(keep)
|
|
180
|
+
return keep, unkeep, s
|
|
181
|
+
|
|
182
|
+
|
|
183
|
+
def _compute_edge_intersections(
|
|
184
|
+
verts: list[list[float]],
|
|
185
|
+
face: list[int],
|
|
186
|
+
keep: list[int],
|
|
187
|
+
normal: np.ndarray,
|
|
188
|
+
origin: np.ndarray,
|
|
189
|
+
tol: float,
|
|
190
|
+
) -> dict[tuple[int, int], int]:
|
|
191
|
+
"""Intersect face edges with the clipping plane.
|
|
192
|
+
|
|
193
|
+
Parameters
|
|
194
|
+
----------
|
|
195
|
+
verts : list of list of float
|
|
196
|
+
Mutable list of mesh vertices; intersection points are appended here.
|
|
197
|
+
face : list of int
|
|
198
|
+
Indices of the vertices forming the face being processed.
|
|
199
|
+
keep : list of int
|
|
200
|
+
Vertices that remain inside the kept half-space.
|
|
201
|
+
normal : numpy.ndarray
|
|
202
|
+
Plane normal vector.
|
|
203
|
+
origin : numpy.ndarray
|
|
204
|
+
Point belonging to the plane.
|
|
205
|
+
tol : float
|
|
206
|
+
Tolerance for plane intersection checks.
|
|
207
|
+
|
|
208
|
+
Returns
|
|
209
|
+
-------
|
|
210
|
+
dict[tuple[int, int], int]
|
|
211
|
+
Mapping from directed edges to newly created vertex indices.
|
|
212
|
+
"""
|
|
213
|
+
keep_set = set(keep)
|
|
214
|
+
edges = list(zip(face, face[1:] + face[:1]))
|
|
215
|
+
cut_edges = [(i, j) for (i, j) in edges if (i in keep_set) ^ (j in keep_set)]
|
|
216
|
+
|
|
217
|
+
edge_inters: dict[tuple[int, int], int] = {}
|
|
218
|
+
for i, j in cut_edges:
|
|
219
|
+
ip = _get_intersection(
|
|
220
|
+
np.array(verts[i]), np.array(verts[j]), normal, origin, tol
|
|
221
|
+
)
|
|
222
|
+
idx = len(verts)
|
|
223
|
+
verts.append(ip.tolist())
|
|
224
|
+
edge_inters[(i, j)] = idx
|
|
225
|
+
return edge_inters
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+
def _build_clipped_boundary(
|
|
229
|
+
face: list[int],
|
|
230
|
+
keep: list[int],
|
|
231
|
+
edge_inters: dict[tuple[int, int], int],
|
|
232
|
+
) -> list[int]:
|
|
233
|
+
"""Assemble the boundary indices for a clipped polygon.
|
|
234
|
+
|
|
235
|
+
Parameters
|
|
236
|
+
----------
|
|
237
|
+
face : list of int
|
|
238
|
+
Original face indices.
|
|
239
|
+
keep : list of int
|
|
240
|
+
Vertices that remain after clipping.
|
|
241
|
+
edge_inters : dict[tuple[int, int], int]
|
|
242
|
+
Mapping from edges to newly created intersection vertices.
|
|
243
|
+
|
|
244
|
+
Returns
|
|
245
|
+
-------
|
|
246
|
+
list of int
|
|
247
|
+
Ordered vertex indices describing the clipped boundary.
|
|
248
|
+
"""
|
|
249
|
+
keep_set = set(keep)
|
|
250
|
+
boundary: list[int] = []
|
|
251
|
+
for i, j in zip(face, face[1:] + face[:1]):
|
|
252
|
+
if i in keep_set:
|
|
253
|
+
boundary.append(i)
|
|
254
|
+
if (i, j) in edge_inters:
|
|
255
|
+
boundary.append(edge_inters[(i, j)])
|
|
256
|
+
return boundary
|
|
257
|
+
|
|
258
|
+
|
|
259
|
+
def clip_faces(
|
|
260
|
+
vertices: np.ndarray,
|
|
261
|
+
faces: list[list[int]],
|
|
262
|
+
normal: np.ndarray,
|
|
263
|
+
origin: np.ndarray,
|
|
264
|
+
tol: float = 1e-8,
|
|
265
|
+
) -> Tuple[np.ndarray, List[List[int]], np.ndarray]:
|
|
266
|
+
"""Clip faces of a mesh against a plane.
|
|
267
|
+
|
|
268
|
+
The kept half-space is defined by ``(v - origin) · normal >= -tol``.
|
|
269
|
+
|
|
270
|
+
Parameters
|
|
271
|
+
----------
|
|
272
|
+
vertices : numpy.ndarray
|
|
273
|
+
Input vertex positions of shape ``(n, 3)``.
|
|
274
|
+
faces : list of list of int
|
|
275
|
+
Face connectivity; triangles and quads are supported.
|
|
276
|
+
normal : numpy.ndarray
|
|
277
|
+
Normal vector of the clipping plane.
|
|
278
|
+
origin : numpy.ndarray
|
|
279
|
+
Point located on the plane.
|
|
280
|
+
tol : float, default=1e-8
|
|
281
|
+
Tolerance for classifying vertices relative to the plane.
|
|
282
|
+
|
|
283
|
+
Returns
|
|
284
|
+
-------
|
|
285
|
+
np.ndarray of floats of shape (new_nb_vertices, 3)
|
|
286
|
+
The pruned vertex array
|
|
287
|
+
list of list of int
|
|
288
|
+
The list of of length new_nb_faces with clipped faces
|
|
289
|
+
np.ndarray of ints of shape (new_nb_faces,)
|
|
290
|
+
For each new face, the index of the face it comes from in the input.
|
|
291
|
+
"""
|
|
292
|
+
normal = np.asarray(normal, dtype=float)
|
|
293
|
+
origin = np.asarray(origin, dtype=float)
|
|
294
|
+
|
|
295
|
+
verts: List[List[float]] = vertices.astype(float).tolist()
|
|
296
|
+
new_faces: List[Tuple[int, List[int]]] = []
|
|
297
|
+
# A new face is a tuple storing the index of the parent face in the
|
|
298
|
+
# original mesh and a list of vertices
|
|
299
|
+
dropped_vs: Set[int] = set()
|
|
300
|
+
|
|
301
|
+
for i_face, face in enumerate(faces):
|
|
302
|
+
keep, unkeep, _ = _compute_keep_sets(verts, face, normal, origin, tol)
|
|
303
|
+
dropped_vs.update(unkeep)
|
|
304
|
+
|
|
305
|
+
if len(keep) == 0:
|
|
306
|
+
continue # fully outside
|
|
307
|
+
if len(keep) == len(face):
|
|
308
|
+
# Face fully inside → keep original (quad or triangle unchanged)
|
|
309
|
+
new_faces.append((i_face, list(face)))
|
|
310
|
+
continue
|
|
311
|
+
|
|
312
|
+
edge_inters = _compute_edge_intersections(
|
|
313
|
+
verts, face, keep, normal, origin, tol
|
|
314
|
+
)
|
|
315
|
+
boundary = _build_clipped_boundary(face, keep, edge_inters)
|
|
316
|
+
|
|
317
|
+
if len(boundary) == 3:
|
|
318
|
+
new_faces.append((i_face, boundary))
|
|
319
|
+
elif len(boundary) == 4:
|
|
320
|
+
# clipped quad → 2 triangles
|
|
321
|
+
new_faces.append((i_face, [boundary[0], boundary[1], boundary[2]]))
|
|
322
|
+
new_faces.append((i_face, [boundary[0], boundary[2], boundary[3]]))
|
|
323
|
+
elif len(boundary) == 5:
|
|
324
|
+
# pentagon → 1 triangle + 1 quad
|
|
325
|
+
tri = [boundary[0], boundary[1], boundary[2]]
|
|
326
|
+
quad = [boundary[0], boundary[2], boundary[3], boundary[4]]
|
|
327
|
+
new_faces.append((i_face, tri))
|
|
328
|
+
new_faces.append((i_face, quad))
|
|
329
|
+
else:
|
|
330
|
+
# fallback: fan triangulation
|
|
331
|
+
for k in range(1, len(boundary) - 1):
|
|
332
|
+
new_faces.append((i_face, [boundary[0], boundary[k], boundary[k + 1]]))
|
|
333
|
+
|
|
334
|
+
if not new_faces:
|
|
335
|
+
return np.empty((0, 3), dtype=float), [], np.empty((0,), dtype=int)
|
|
336
|
+
|
|
337
|
+
used = {idx for (_, f) in new_faces for idx in f}
|
|
338
|
+
dropped_vs -= used
|
|
339
|
+
keep_vs = [i for i in range(len(verts)) if i not in dropped_vs]
|
|
340
|
+
remap = {old: new for new, old in enumerate(keep_vs)}
|
|
341
|
+
|
|
342
|
+
pruned_verts = np.asarray([verts[i] for i in keep_vs], dtype=float)
|
|
343
|
+
pruned_faces = [[remap[i] for i in face] for (_, face) in new_faces]
|
|
344
|
+
|
|
345
|
+
parent_of_face = np.array([i_parent_face for (i_parent_face, _) in new_faces])
|
|
346
|
+
|
|
347
|
+
return pruned_verts, pruned_faces, parent_of_face
|
|
@@ -0,0 +1,89 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import xarray as xr
|
|
3
|
+
|
|
4
|
+
from capytaine.tools.optional_imports import import_optional_dependency
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def export_mesh(mesh, format: str):
|
|
8
|
+
format = format.lower()
|
|
9
|
+
if format == "pyvista":
|
|
10
|
+
return export_to_pyvista(mesh)
|
|
11
|
+
elif format == "xarray":
|
|
12
|
+
return export_to_xarray(mesh)
|
|
13
|
+
elif format == "meshio":
|
|
14
|
+
return export_to_meshio(mesh)
|
|
15
|
+
elif format == "trimesh":
|
|
16
|
+
return export_to_trimesh(mesh)
|
|
17
|
+
else:
|
|
18
|
+
raise ValueError(f"Unrecognized output format: {format}")
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def export_to_pyvista(mesh):
|
|
22
|
+
"""
|
|
23
|
+
Build a PyVista UnstructuredGrid from a list of faces (triangles or quads).
|
|
24
|
+
"""
|
|
25
|
+
pv = import_optional_dependency("pyvista")
|
|
26
|
+
|
|
27
|
+
# flatten into the VTK cell‐array format: [n0, i0, i1, ..., in-1, n1, j0, j1, ...]
|
|
28
|
+
flat_cells = []
|
|
29
|
+
cell_types = []
|
|
30
|
+
for face in mesh._faces:
|
|
31
|
+
n = len(face)
|
|
32
|
+
flat_cells.append(n)
|
|
33
|
+
flat_cells.extend(face)
|
|
34
|
+
if n == 3:
|
|
35
|
+
cell_types.append(pv.CellType.TRIANGLE)
|
|
36
|
+
elif n == 4:
|
|
37
|
+
cell_types.append(pv.CellType.QUAD)
|
|
38
|
+
else:
|
|
39
|
+
# if you ever have ngons, you can map them as POLYGON:
|
|
40
|
+
cell_types.append(pv.CellType.POLYGON)
|
|
41
|
+
|
|
42
|
+
cells_array = np.array(flat_cells, dtype=np.int64)
|
|
43
|
+
cell_types = np.array(cell_types, dtype=np.uint8)
|
|
44
|
+
|
|
45
|
+
return pv.UnstructuredGrid(cells_array, cell_types, mesh.vertices.astype(np.float32))
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def export_to_xarray(mesh):
|
|
49
|
+
return xr.Dataset(
|
|
50
|
+
{
|
|
51
|
+
"mesh_vertices": (
|
|
52
|
+
["face", "vertices_of_face", "space_coordinate"],
|
|
53
|
+
mesh.as_array_of_faces()
|
|
54
|
+
)
|
|
55
|
+
},
|
|
56
|
+
coords={
|
|
57
|
+
"space_coordinate": ["x", "y", "z"],
|
|
58
|
+
})
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def export_to_meshio(mesh):
|
|
62
|
+
meshio = import_optional_dependency("meshio")
|
|
63
|
+
|
|
64
|
+
quads = [f for f in mesh._faces if len(f) == 4]
|
|
65
|
+
tris = [f for f in mesh._faces if len(f) == 3]
|
|
66
|
+
|
|
67
|
+
cells = []
|
|
68
|
+
if quads:
|
|
69
|
+
cells.append(meshio.CellBlock("quad", np.array(quads, dtype=np.int32)))
|
|
70
|
+
if tris:
|
|
71
|
+
cells.append(meshio.CellBlock("triangle", np.array(tris, dtype=np.int32)))
|
|
72
|
+
|
|
73
|
+
return meshio.Mesh(points=mesh.vertices, cells=cells)
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
def export_to_trimesh(mesh):
|
|
77
|
+
trimesh = import_optional_dependency("trimesh")
|
|
78
|
+
triangle_faces = []
|
|
79
|
+
for face in mesh._faces:
|
|
80
|
+
if len(face) == 4 and face[3] != face[2]:
|
|
81
|
+
triangle_faces.append([face[0], face[1], face[2]])
|
|
82
|
+
triangle_faces.append([face[0], face[2], face[3]])
|
|
83
|
+
else:
|
|
84
|
+
triangle_faces.append(face[:3])
|
|
85
|
+
return trimesh.Trimesh(
|
|
86
|
+
vertices=mesh.vertices,
|
|
87
|
+
faces=np.array(triangle_faces),
|
|
88
|
+
process=False
|
|
89
|
+
)
|
|
@@ -0,0 +1,259 @@
|
|
|
1
|
+
# Copyright 2025 Mews Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from typing import List
|
|
16
|
+
from functools import reduce
|
|
17
|
+
from itertools import chain
|
|
18
|
+
|
|
19
|
+
import numpy as np
|
|
20
|
+
from numpy.typing import NDArray
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def get_vertices_face(face, vertices):
|
|
24
|
+
if len(face) == 4 and face[2] != face[3]:
|
|
25
|
+
return (
|
|
26
|
+
vertices[face[0]],
|
|
27
|
+
vertices[face[1]],
|
|
28
|
+
vertices[face[2]],
|
|
29
|
+
vertices[face[3]],
|
|
30
|
+
)
|
|
31
|
+
else:
|
|
32
|
+
return vertices[face[0]], vertices[face[1]], vertices[face[2]]
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def compute_faces_normals(vertices, faces):
|
|
36
|
+
normals = []
|
|
37
|
+
for face in faces:
|
|
38
|
+
if len(face) == 4 and face[2] != face[3]:
|
|
39
|
+
normal = _quad_normal(vertices, face[0], face[1], face[2], face[3])
|
|
40
|
+
else:
|
|
41
|
+
normal = _triangle_normal(vertices, face[0], face[1], face[2])
|
|
42
|
+
normals.append(normal)
|
|
43
|
+
return np.array(normals)
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
def compute_faces_areas(vertices, faces):
|
|
47
|
+
areas = []
|
|
48
|
+
for face in faces:
|
|
49
|
+
verts = get_vertices_face(face, vertices)
|
|
50
|
+
if len(verts) == 4:
|
|
51
|
+
a, b, c, d = verts
|
|
52
|
+
area1 = 0.5 * np.linalg.norm(np.cross(b - a, c - a))
|
|
53
|
+
area2 = 0.5 * np.linalg.norm(np.cross(c - a, d - a))
|
|
54
|
+
areas.append(area1 + area2)
|
|
55
|
+
else:
|
|
56
|
+
a, b, c = verts
|
|
57
|
+
areas.append(0.5 * np.linalg.norm(np.cross(b - a, c - a)))
|
|
58
|
+
return np.array(areas)
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def compute_faces_centers(vertices, faces):
|
|
62
|
+
centers = []
|
|
63
|
+
for face in faces:
|
|
64
|
+
verts = get_vertices_face(face, vertices)
|
|
65
|
+
if len(verts) == 4:
|
|
66
|
+
a, b, c, d = verts
|
|
67
|
+
area1 = 0.5 * np.linalg.norm(np.cross(b - a, c - a))
|
|
68
|
+
area2 = 0.5 * np.linalg.norm(np.cross(c - a, d - a))
|
|
69
|
+
c1 = (a + b + c) / 3
|
|
70
|
+
c2 = (a + c + d) / 3
|
|
71
|
+
center = (c1 * area1 + c2 * area2) / (area1 + area2)
|
|
72
|
+
else:
|
|
73
|
+
a, b, c = verts
|
|
74
|
+
center = (a + b + c) / 3
|
|
75
|
+
centers.append(center)
|
|
76
|
+
return np.array(centers)
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
def compute_faces_radii(vertices, faces):
|
|
80
|
+
centers = compute_faces_centers(vertices, faces)
|
|
81
|
+
distances = []
|
|
82
|
+
for face, center in zip(faces, centers):
|
|
83
|
+
d = compute_distance_between_points(vertices[face[0]], center)
|
|
84
|
+
distances.append(d)
|
|
85
|
+
return np.array(distances)
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def compute_gauss_legendre_2_quadrature(vertices, faces):
|
|
89
|
+
# Parameters of Gauss-Legendre 2 quadrature scheme
|
|
90
|
+
local_points = np.array([(+1/np.sqrt(3), +1/np.sqrt(3)),
|
|
91
|
+
(+1/np.sqrt(3), -1/np.sqrt(3)),
|
|
92
|
+
(-1/np.sqrt(3), +1/np.sqrt(3)),
|
|
93
|
+
(-1/np.sqrt(3), -1/np.sqrt(3))])
|
|
94
|
+
local_weights = np.array([1/4, 1/4, 1/4, 1/4])
|
|
95
|
+
|
|
96
|
+
# Application to mesh
|
|
97
|
+
faces = vertices[faces[:, :], :]
|
|
98
|
+
nb_faces = faces.shape[0]
|
|
99
|
+
nb_quad_points = len(local_weights)
|
|
100
|
+
points = np.empty((nb_faces, nb_quad_points, 3))
|
|
101
|
+
weights = np.empty((nb_faces, nb_quad_points))
|
|
102
|
+
for i_face in range(nb_faces):
|
|
103
|
+
for k_quad in range(nb_quad_points):
|
|
104
|
+
xk, yk = local_points[k_quad, :]
|
|
105
|
+
points[i_face, k_quad, :] = (
|
|
106
|
+
(1+xk)*(1+yk) * faces[i_face, 0, :]
|
|
107
|
+
+ (1+xk)*(1-yk) * faces[i_face, 1, :]
|
|
108
|
+
+ (1-xk)*(1-yk) * faces[i_face, 2, :]
|
|
109
|
+
+ (1-xk)*(1+yk) * faces[i_face, 3, :]
|
|
110
|
+
)/4
|
|
111
|
+
dxidx = ((1+yk)*faces[i_face, 0, :] + (1-yk)*faces[i_face, 1, :]
|
|
112
|
+
- (1-yk)*faces[i_face, 2, :] - (1+yk)*faces[i_face, 3, :])/4
|
|
113
|
+
dxidy = ((1+xk)*faces[i_face, 0, :] - (1+xk)*faces[i_face, 1, :]
|
|
114
|
+
- (1-xk)*faces[i_face, 2, :] + (1-xk)*faces[i_face, 3, :])/4
|
|
115
|
+
detJ = np.linalg.norm(np.cross(dxidx, dxidy))
|
|
116
|
+
weights[i_face, k_quad] = local_weights[k_quad] * 4 * detJ
|
|
117
|
+
|
|
118
|
+
return points, weights
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
def _triangle_normal(vertices, v0_idx, v1_idx, v2_idx):
|
|
122
|
+
"""
|
|
123
|
+
Compute normal vector of a triangle face.
|
|
124
|
+
|
|
125
|
+
Parameters
|
|
126
|
+
----------
|
|
127
|
+
vertices : ndarray
|
|
128
|
+
Vertex coordinate array.
|
|
129
|
+
v0_idx, v1_idx, v2_idx : int
|
|
130
|
+
Indices of triangle vertices.
|
|
131
|
+
|
|
132
|
+
Returns
|
|
133
|
+
-------
|
|
134
|
+
np.ndarray
|
|
135
|
+
Normalized normal vector (3,)
|
|
136
|
+
"""
|
|
137
|
+
v0, v1, v2 = vertices[v0_idx], vertices[v1_idx], vertices[v2_idx]
|
|
138
|
+
normal = np.cross(v1 - v0, v2 - v0)
|
|
139
|
+
return normal / np.linalg.norm(normal)
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
def _quad_normal(vertices, v0_idx, v1_idx, v2_idx, v3_idx):
|
|
143
|
+
"""
|
|
144
|
+
Compute normal vector of a quadrilateral face via diagonals.
|
|
145
|
+
|
|
146
|
+
Parameters
|
|
147
|
+
----------
|
|
148
|
+
vertices : ndarray
|
|
149
|
+
Vertex coordinate array.
|
|
150
|
+
v0_idx, v1_idx, v2_idx, v3_idx : int
|
|
151
|
+
Indices of quad vertices.
|
|
152
|
+
|
|
153
|
+
Returns
|
|
154
|
+
-------
|
|
155
|
+
np.ndarray
|
|
156
|
+
Normalized normal vector (3,)
|
|
157
|
+
"""
|
|
158
|
+
v0, v1, v2, v3 = (
|
|
159
|
+
vertices[v0_idx],
|
|
160
|
+
vertices[v1_idx],
|
|
161
|
+
vertices[v2_idx],
|
|
162
|
+
vertices[v3_idx],
|
|
163
|
+
)
|
|
164
|
+
ac = v2 - v0
|
|
165
|
+
bd = v3 - v1
|
|
166
|
+
normal = np.cross(ac, bd)
|
|
167
|
+
return normal / np.linalg.norm(normal)
|
|
168
|
+
|
|
169
|
+
|
|
170
|
+
def compute_distance_between_points(a, b):
|
|
171
|
+
"""
|
|
172
|
+
Compute Euclidean distance between two points in n-dimensional space.
|
|
173
|
+
|
|
174
|
+
Parameters
|
|
175
|
+
----------
|
|
176
|
+
a, b : array_like
|
|
177
|
+
Coordinate arrays (length 3 or more).
|
|
178
|
+
|
|
179
|
+
Returns
|
|
180
|
+
-------
|
|
181
|
+
float
|
|
182
|
+
Euclidean distance.
|
|
183
|
+
"""
|
|
184
|
+
a = np.asarray(a)
|
|
185
|
+
b = np.asarray(b)
|
|
186
|
+
return np.linalg.norm(b - a)
|
|
187
|
+
|
|
188
|
+
def faces_in_group(faces: NDArray[np.integer], group: NDArray[np.integer]) -> NDArray[np.bool_]:
|
|
189
|
+
"""Identification of faces with vertices within group.
|
|
190
|
+
|
|
191
|
+
Parameters
|
|
192
|
+
----------
|
|
193
|
+
faces : NDArray[np.integer]
|
|
194
|
+
Mesh faces. Expecting a numpy array of shape N_faces x N_vertices_per_face.
|
|
195
|
+
group : NDArray[np.integer]
|
|
196
|
+
Group of connected vertices
|
|
197
|
+
|
|
198
|
+
Returns
|
|
199
|
+
-------
|
|
200
|
+
NDArray[np.bool]
|
|
201
|
+
Mask of faces containing vertices from the group
|
|
202
|
+
"""
|
|
203
|
+
return np.any(np.isin(faces, group), axis=1)
|
|
204
|
+
|
|
205
|
+
def clustering(faces: NDArray[np.integer]) -> List[NDArray[np.integer]]:
|
|
206
|
+
"""Clustering of vertices per connected faces.
|
|
207
|
+
|
|
208
|
+
Parameters
|
|
209
|
+
----------
|
|
210
|
+
faces : NDArray[np.integer]
|
|
211
|
+
Mesh faces. Expecting a numpy array of shape N_faces x N_vertices_per_face.
|
|
212
|
+
|
|
213
|
+
Returns
|
|
214
|
+
-------
|
|
215
|
+
list[NDArray[np.integer]]
|
|
216
|
+
Groups of connected vertices.
|
|
217
|
+
"""
|
|
218
|
+
vert_groups: list[NDArray[np.integer]] = []
|
|
219
|
+
mask = np.ones(faces.shape[0], dtype=bool)
|
|
220
|
+
while np.any(mask):
|
|
221
|
+
# Consider faces whose vertices are not already identified in a group.
|
|
222
|
+
# Start new group by considering first face
|
|
223
|
+
remaining_faces = faces[mask]
|
|
224
|
+
group = remaining_faces[0]
|
|
225
|
+
rem_mask = np.ones(remaining_faces.shape[0], dtype=bool)
|
|
226
|
+
# Iterative update of vertices group. Output final result to frozenset
|
|
227
|
+
while not np.allclose(new:=faces_in_group(remaining_faces, group), rem_mask):
|
|
228
|
+
group = np.unique(remaining_faces[new])
|
|
229
|
+
rem_mask = new
|
|
230
|
+
else:
|
|
231
|
+
group = np.unique(remaining_faces[new])
|
|
232
|
+
vert_groups.append(group)
|
|
233
|
+
# Identify faces that have no vertices in current groups
|
|
234
|
+
mask = ~reduce(np.logical_or, [faces_in_group(faces, group) for group in vert_groups])
|
|
235
|
+
return vert_groups
|
|
236
|
+
|
|
237
|
+
|
|
238
|
+
def connected_components(mesh):
|
|
239
|
+
"""Returns a list of meshes that each corresponds to the a connected component in the original mesh.
|
|
240
|
+
Assumes the mesh is mostly conformal without duplicate vertices.
|
|
241
|
+
"""
|
|
242
|
+
# Get connected vertices
|
|
243
|
+
vertices_components = clustering(mesh.faces)
|
|
244
|
+
# Verification
|
|
245
|
+
if sum(len(group) for group in vertices_components) != len(set(chain.from_iterable(vertices_components))):
|
|
246
|
+
raise ValueError("Error in connected components clustering. Some elements are duplicated")
|
|
247
|
+
# The components are found. The rest is just about retrieving the faces in each components.
|
|
248
|
+
faces_components = [np.argwhere(faces_in_group(mesh.faces, group)) for group in vertices_components]
|
|
249
|
+
components = [mesh.extract_faces(f) for f in faces_components]
|
|
250
|
+
return components
|
|
251
|
+
|
|
252
|
+
|
|
253
|
+
def connected_components_of_waterline(mesh, z=0.0):
|
|
254
|
+
if np.any(mesh.vertices[:, 2] > z + 1e-8):
|
|
255
|
+
mesh = mesh.immersed_part(free_surface=z)
|
|
256
|
+
fs_vertices_indices = np.where(np.isclose(mesh.vertices[:, 2], z))[0]
|
|
257
|
+
fs_faces_indices = np.where(np.any(np.isin(mesh.faces, fs_vertices_indices), axis=1))[0]
|
|
258
|
+
crown_mesh = mesh.extract_faces(fs_faces_indices)
|
|
259
|
+
return connected_components(crown_mesh)
|