capytaine 2.3.1__cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- capytaine/__about__.py +16 -0
- capytaine/__init__.py +36 -0
- capytaine/bem/__init__.py +0 -0
- capytaine/bem/airy_waves.py +111 -0
- capytaine/bem/engines.py +441 -0
- capytaine/bem/problems_and_results.py +600 -0
- capytaine/bem/solver.py +594 -0
- capytaine/bodies/__init__.py +4 -0
- capytaine/bodies/bodies.py +1221 -0
- capytaine/bodies/dofs.py +19 -0
- capytaine/bodies/predefined/__init__.py +6 -0
- capytaine/bodies/predefined/cylinders.py +151 -0
- capytaine/bodies/predefined/rectangles.py +111 -0
- capytaine/bodies/predefined/spheres.py +70 -0
- capytaine/green_functions/FinGreen3D/.gitignore +1 -0
- capytaine/green_functions/FinGreen3D/FinGreen3D.f90 +3589 -0
- capytaine/green_functions/FinGreen3D/LICENSE +165 -0
- capytaine/green_functions/FinGreen3D/Makefile +16 -0
- capytaine/green_functions/FinGreen3D/README.md +24 -0
- capytaine/green_functions/FinGreen3D/test_program.f90 +39 -0
- capytaine/green_functions/LiangWuNoblesse/.gitignore +1 -0
- capytaine/green_functions/LiangWuNoblesse/LICENSE +504 -0
- capytaine/green_functions/LiangWuNoblesse/LiangWuNoblesseWaveTerm.f90 +751 -0
- capytaine/green_functions/LiangWuNoblesse/Makefile +16 -0
- capytaine/green_functions/LiangWuNoblesse/README.md +2 -0
- capytaine/green_functions/LiangWuNoblesse/test_program.f90 +28 -0
- capytaine/green_functions/__init__.py +2 -0
- capytaine/green_functions/abstract_green_function.py +64 -0
- capytaine/green_functions/delhommeau.py +507 -0
- capytaine/green_functions/hams.py +204 -0
- capytaine/green_functions/libs/Delhommeau_float32.cpython-311-x86_64-linux-gnu.so +0 -0
- capytaine/green_functions/libs/Delhommeau_float64.cpython-311-x86_64-linux-gnu.so +0 -0
- capytaine/green_functions/libs/__init__.py +0 -0
- capytaine/io/__init__.py +0 -0
- capytaine/io/bemio.py +153 -0
- capytaine/io/legacy.py +328 -0
- capytaine/io/mesh_loaders.py +1086 -0
- capytaine/io/mesh_writers.py +692 -0
- capytaine/io/meshio.py +38 -0
- capytaine/io/wamit.py +479 -0
- capytaine/io/xarray.py +668 -0
- capytaine/matrices/__init__.py +16 -0
- capytaine/matrices/block.py +592 -0
- capytaine/matrices/block_toeplitz.py +325 -0
- capytaine/matrices/builders.py +89 -0
- capytaine/matrices/linear_solvers.py +232 -0
- capytaine/matrices/low_rank.py +395 -0
- capytaine/meshes/__init__.py +6 -0
- capytaine/meshes/clipper.py +465 -0
- capytaine/meshes/collections.py +342 -0
- capytaine/meshes/geometry.py +409 -0
- capytaine/meshes/mesh_like_protocol.py +37 -0
- capytaine/meshes/meshes.py +890 -0
- capytaine/meshes/predefined/__init__.py +6 -0
- capytaine/meshes/predefined/cylinders.py +314 -0
- capytaine/meshes/predefined/rectangles.py +261 -0
- capytaine/meshes/predefined/spheres.py +62 -0
- capytaine/meshes/properties.py +276 -0
- capytaine/meshes/quadratures.py +80 -0
- capytaine/meshes/quality.py +448 -0
- capytaine/meshes/surface_integrals.py +63 -0
- capytaine/meshes/symmetric.py +462 -0
- capytaine/post_pro/__init__.py +6 -0
- capytaine/post_pro/free_surfaces.py +88 -0
- capytaine/post_pro/impedance.py +92 -0
- capytaine/post_pro/kochin.py +54 -0
- capytaine/post_pro/rao.py +60 -0
- capytaine/tools/__init__.py +0 -0
- capytaine/tools/cache_on_disk.py +26 -0
- capytaine/tools/deprecation_handling.py +18 -0
- capytaine/tools/lists_of_points.py +52 -0
- capytaine/tools/lru_cache.py +49 -0
- capytaine/tools/optional_imports.py +27 -0
- capytaine/tools/prony_decomposition.py +150 -0
- capytaine/tools/symbolic_multiplication.py +149 -0
- capytaine/tools/timer.py +66 -0
- capytaine/ui/__init__.py +0 -0
- capytaine/ui/cli.py +28 -0
- capytaine/ui/rich.py +5 -0
- capytaine/ui/vtk/__init__.py +3 -0
- capytaine/ui/vtk/animation.py +329 -0
- capytaine/ui/vtk/body_viewer.py +28 -0
- capytaine/ui/vtk/helpers.py +82 -0
- capytaine/ui/vtk/mesh_viewer.py +461 -0
- capytaine-2.3.1.dist-info/LICENSE +674 -0
- capytaine-2.3.1.dist-info/METADATA +750 -0
- capytaine-2.3.1.dist-info/RECORD +93 -0
- capytaine-2.3.1.dist-info/WHEEL +6 -0
- capytaine-2.3.1.dist-info/entry_points.txt +3 -0
- capytaine.libs/libgfortran-83c28eba.so.5.0.0 +0 -0
- capytaine.libs/libgomp-e985bcbb.so.1.0.0 +0 -0
- capytaine.libs/libmvec-2-583a17db.28.so +0 -0
- capytaine.libs/libquadmath-2284e583.so.0.0.0 +0 -0
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
BUILD_DIR=build
|
|
2
|
+
|
|
3
|
+
run_test: $(BUILD_DIR)/test_program
|
|
4
|
+
$(BUILD_DIR)/test_program
|
|
5
|
+
|
|
6
|
+
$(BUILD_DIR)/test_program: test_program.f90 $(BUILD_DIR)/LiangWuNoblesseWaveTerm.o
|
|
7
|
+
mkdir -p $(BUILD_DIR)
|
|
8
|
+
gfortran -fopenmp $^ -o $@ -J$(BUILD_DIR)
|
|
9
|
+
|
|
10
|
+
$(BUILD_DIR)/LiangWuNoblesseWaveTerm.o: LiangWuNoblesseWaveTerm.f90
|
|
11
|
+
mkdir -p $(BUILD_DIR)
|
|
12
|
+
gfortran -c $< -o $@ -J$(BUILD_DIR)
|
|
13
|
+
|
|
14
|
+
clean:
|
|
15
|
+
rm -rf $(BUILD_DIR)
|
|
16
|
+
.PHONY: run_test clean
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
! Just test that the library compiles and run
|
|
2
|
+
|
|
3
|
+
program test
|
|
4
|
+
use LiangWuNoblesseWaveTerm, only: HavelockGF
|
|
5
|
+
implicit none
|
|
6
|
+
|
|
7
|
+
integer, parameter :: n = 10
|
|
8
|
+
|
|
9
|
+
real(8), dimension(n) :: r, z
|
|
10
|
+
complex(8), dimension(n) :: gf, gf_r
|
|
11
|
+
integer :: i
|
|
12
|
+
|
|
13
|
+
do i = 1, n
|
|
14
|
+
r(i) = real(i, kind=8)/n
|
|
15
|
+
end do
|
|
16
|
+
|
|
17
|
+
do i = 1, n
|
|
18
|
+
z(i) = -real(i, kind=8)/n
|
|
19
|
+
end do
|
|
20
|
+
|
|
21
|
+
!$OMP PARALLEL DO PRIVATE(i)
|
|
22
|
+
do i = 1, n
|
|
23
|
+
call HavelockGF(r(i), z(i), gf(i), gf_r(i))
|
|
24
|
+
end do
|
|
25
|
+
|
|
26
|
+
print*, real(gf(:))
|
|
27
|
+
|
|
28
|
+
end program test
|
|
@@ -0,0 +1,64 @@
|
|
|
1
|
+
"""Abstract structure of a class used to compute the Green function"""
|
|
2
|
+
# Copyright (C) 2017-2024 Matthieu Ancellin
|
|
3
|
+
# See LICENSE file at <https://github.com/capytaine/capytaine>
|
|
4
|
+
|
|
5
|
+
from abc import ABC, abstractmethod
|
|
6
|
+
|
|
7
|
+
import numpy as np
|
|
8
|
+
|
|
9
|
+
from capytaine.meshes.mesh_like_protocol import MeshLike
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class GreenFunctionEvaluationError(Exception):
|
|
13
|
+
pass
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class AbstractGreenFunction(ABC):
|
|
17
|
+
"""Abstract method to evaluate the Green function."""
|
|
18
|
+
|
|
19
|
+
floating_point_precision: str
|
|
20
|
+
|
|
21
|
+
def _get_colocation_points_and_normals(self, mesh1, mesh2, adjoint_double_layer):
|
|
22
|
+
if isinstance(mesh1, MeshLike):
|
|
23
|
+
collocation_points = mesh1.faces_centers
|
|
24
|
+
nb_collocation_points = mesh1.nb_faces
|
|
25
|
+
if not adjoint_double_layer: # Computing the D matrix
|
|
26
|
+
early_dot_product_normals = mesh2.faces_normals
|
|
27
|
+
else: # Computing the K matrix
|
|
28
|
+
early_dot_product_normals = mesh1.faces_normals
|
|
29
|
+
|
|
30
|
+
elif isinstance(mesh1, np.ndarray) and mesh1.ndim == 2 and mesh1.shape[1] == 3:
|
|
31
|
+
# This is used when computing potential or velocity at given points in postprocessing
|
|
32
|
+
collocation_points = mesh1
|
|
33
|
+
nb_collocation_points = mesh1.shape[0]
|
|
34
|
+
if not adjoint_double_layer: # Computing the D matrix
|
|
35
|
+
early_dot_product_normals = mesh2.faces_normals
|
|
36
|
+
else: # Computing the K matrix
|
|
37
|
+
early_dot_product_normals = np.zeros((nb_collocation_points, 3))
|
|
38
|
+
# Dummy argument since this method is meant to be used either
|
|
39
|
+
# - to compute potential, then only S is needed and early_dot_product_normals is irrelevant,
|
|
40
|
+
# - to compute velocity, then the adjoint full gradient is needed and early_dot_product is False and this value is unused.
|
|
41
|
+
# TODO: add an only_S argument and return an error here if (early_dot_product and not only_S)
|
|
42
|
+
|
|
43
|
+
else:
|
|
44
|
+
raise ValueError(f"Unrecognized first input for {self.__class__.__name__}.evaluate:\n{mesh1}")
|
|
45
|
+
|
|
46
|
+
return collocation_points, early_dot_product_normals
|
|
47
|
+
|
|
48
|
+
def _init_matrices(self, shape, early_dot_product):
|
|
49
|
+
if self.floating_point_precision == "float32":
|
|
50
|
+
dtype = "complex64"
|
|
51
|
+
elif self.floating_point_precision == "float64":
|
|
52
|
+
dtype = "complex128"
|
|
53
|
+
else:
|
|
54
|
+
raise NotImplementedError(
|
|
55
|
+
f"Unsupported floating point precision: {self.floating_point_precision}"
|
|
56
|
+
)
|
|
57
|
+
|
|
58
|
+
S = np.zeros(shape, order="F", dtype=dtype)
|
|
59
|
+
K = np.zeros((shape[0], shape[1], 1 if early_dot_product else 3), order="F", dtype=dtype)
|
|
60
|
+
return S, K
|
|
61
|
+
|
|
62
|
+
@abstractmethod
|
|
63
|
+
def evaluate(self, mesh1, mesh2, free_surface, water_depth, wavenumber, adjoint_double_layer=True, early_dot_product=True):
|
|
64
|
+
pass
|
|
@@ -0,0 +1,507 @@
|
|
|
1
|
+
"""Variants of Delhommeau's method for the computation of the Green function."""
|
|
2
|
+
# Copyright (C) 2017-2024 Matthieu Ancellin
|
|
3
|
+
# See LICENSE file at <https://github.com/capytaine/capytaine>
|
|
4
|
+
|
|
5
|
+
import os
|
|
6
|
+
import logging
|
|
7
|
+
from functools import lru_cache
|
|
8
|
+
from importlib import import_module
|
|
9
|
+
|
|
10
|
+
import numpy as np
|
|
11
|
+
|
|
12
|
+
from capytaine.tools.prony_decomposition import find_best_exponential_decomposition, PronyDecompositionFailure
|
|
13
|
+
from capytaine.tools.cache_on_disk import cache_directory
|
|
14
|
+
|
|
15
|
+
from capytaine.green_functions.abstract_green_function import AbstractGreenFunction, GreenFunctionEvaluationError
|
|
16
|
+
|
|
17
|
+
LOG = logging.getLogger(__name__)
|
|
18
|
+
|
|
19
|
+
_default_parameters = dict(
|
|
20
|
+
tabulation_nr=676,
|
|
21
|
+
tabulation_rmax=100.0,
|
|
22
|
+
tabulation_nz=372,
|
|
23
|
+
tabulation_zmin=-251.0,
|
|
24
|
+
tabulation_nb_integration_points=1001,
|
|
25
|
+
tabulation_grid_shape="scaled_nemoh3",
|
|
26
|
+
finite_depth_method="newer",
|
|
27
|
+
finite_depth_prony_decomposition_method="python",
|
|
28
|
+
floating_point_precision="float64",
|
|
29
|
+
gf_singularities="low_freq",
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
class Delhommeau(AbstractGreenFunction):
|
|
34
|
+
"""The Green function as implemented in Aquadyn and Nemoh.
|
|
35
|
+
|
|
36
|
+
Parameters
|
|
37
|
+
----------
|
|
38
|
+
tabulation_nr: int, optional
|
|
39
|
+
Number of tabulation points for horizontal coordinate.
|
|
40
|
+
If 0 is given, no tabulation is used at all.
|
|
41
|
+
Default: 676
|
|
42
|
+
tabulation_rmax: float, optional
|
|
43
|
+
Maximum value of r range for the tabulation. (Minimum is zero.)
|
|
44
|
+
Only used with the :code:`"scaled_nemoh3"` method.
|
|
45
|
+
Default: 100.0
|
|
46
|
+
tabulation_nz: int, optional
|
|
47
|
+
Number of tabulation points for vertical coordinate.
|
|
48
|
+
If 0 is given, no tabulation is used at all.
|
|
49
|
+
Default: 372
|
|
50
|
+
tabulation_zmin: float, optional
|
|
51
|
+
Minimum value of z range for the tabulation. (Maximum is zero.)
|
|
52
|
+
Only used with the :code:`"scaled_nemoh3"` method.
|
|
53
|
+
Default: -251.0
|
|
54
|
+
tabulation_nb_integration_points: int, optional
|
|
55
|
+
Number of points for the numerical integration w.r.t. :math:`theta` of
|
|
56
|
+
Delhommeau's integrals
|
|
57
|
+
Default: 1000
|
|
58
|
+
tabulation_grid_shape: string, optional
|
|
59
|
+
Either :code:`"legacy"` or :code:`"scaled_nemoh3"`, which are the two
|
|
60
|
+
methods currently implemented.
|
|
61
|
+
Default: :code:`"scaled_nemoh3"`
|
|
62
|
+
tabulation_cache_dir: str or None, optional
|
|
63
|
+
Directory in which to save the tabulation file(s).
|
|
64
|
+
If None, the tabulation is not saved on disk.
|
|
65
|
+
Default: calls capytaine.tools.cache_on_disk.cache_directory(), which
|
|
66
|
+
returns the value of the environment variable CAPYTAINE_CACHE_DIR if
|
|
67
|
+
set, or else the default cache directory on your system.
|
|
68
|
+
finite_depth_method: string, optional
|
|
69
|
+
The method used to compute the finite depth Green function.
|
|
70
|
+
finite_depth_prony_decomposition_method: string, optional
|
|
71
|
+
The implementation of the Prony decomposition used to compute the
|
|
72
|
+
finite water_depth Green function. Accepted values: :code:`'fortran'`
|
|
73
|
+
for Nemoh's implementation (by default), :code:`'python'` for an
|
|
74
|
+
experimental Python implementation.
|
|
75
|
+
See :func:`find_best_exponential_decomposition`.
|
|
76
|
+
floating_point_precision: string, optional
|
|
77
|
+
Either :code:`'float32'` for single precision computations or
|
|
78
|
+
:code:`'float64'` for double precision computations.
|
|
79
|
+
Default: :code:`'float64'`.
|
|
80
|
+
gf_singularities: string, optional
|
|
81
|
+
Chose of the variant among the ways singularities can be extracted from
|
|
82
|
+
the Green function. Currently only affects the infinite depth Green
|
|
83
|
+
function.
|
|
84
|
+
Default: "low_freq".
|
|
85
|
+
|
|
86
|
+
Attributes
|
|
87
|
+
----------
|
|
88
|
+
fortran_core:
|
|
89
|
+
Compiled Fortran module with functions used to compute the Green
|
|
90
|
+
function.
|
|
91
|
+
tabulation_grid_shape_index: int
|
|
92
|
+
gf_singularities_index: int
|
|
93
|
+
finite_depth_method_index: int
|
|
94
|
+
Integers passed to Fortran code to describe which method is used.
|
|
95
|
+
tabulated_r_range: numpy.array of shape (tabulation_nr,) and type floating_point_precision
|
|
96
|
+
tabulated_z_range: numpy.array of shape (tabulation_nz,) and type floating_point_precision
|
|
97
|
+
Coordinates of the tabulation points.
|
|
98
|
+
tabulated_integrals: numpy.array of shape (tabulation_nr, tabulation_nz, nb_tabulated_values) and type floating_point_precision
|
|
99
|
+
Tabulated Delhommeau integrals.
|
|
100
|
+
"""
|
|
101
|
+
|
|
102
|
+
dispersion_relation_roots = np.empty(1) # dummy array
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
def __init__(self, *,
|
|
106
|
+
tabulation_nr=_default_parameters["tabulation_nr"],
|
|
107
|
+
tabulation_rmax=_default_parameters["tabulation_rmax"],
|
|
108
|
+
tabulation_nz=_default_parameters["tabulation_nz"],
|
|
109
|
+
tabulation_zmin=_default_parameters["tabulation_zmin"],
|
|
110
|
+
tabulation_nb_integration_points=_default_parameters["tabulation_nb_integration_points"],
|
|
111
|
+
tabulation_grid_shape=_default_parameters["tabulation_grid_shape"],
|
|
112
|
+
tabulation_cache_dir=cache_directory(),
|
|
113
|
+
finite_depth_method=_default_parameters["finite_depth_method"],
|
|
114
|
+
finite_depth_prony_decomposition_method=_default_parameters["finite_depth_prony_decomposition_method"],
|
|
115
|
+
floating_point_precision=_default_parameters["floating_point_precision"],
|
|
116
|
+
gf_singularities=_default_parameters["gf_singularities"],
|
|
117
|
+
):
|
|
118
|
+
|
|
119
|
+
self.fortran_core = import_module(f"capytaine.green_functions.libs.Delhommeau_{floating_point_precision}")
|
|
120
|
+
|
|
121
|
+
self.tabulation_grid_shape = tabulation_grid_shape
|
|
122
|
+
fortran_enum = {
|
|
123
|
+
'legacy': self.fortran_core.constants.legacy_grid,
|
|
124
|
+
'scaled_nemoh3': self.fortran_core.constants.scaled_nemoh3_grid,
|
|
125
|
+
}
|
|
126
|
+
self.tabulation_grid_shape_index = fortran_enum[tabulation_grid_shape]
|
|
127
|
+
|
|
128
|
+
self.gf_singularities = gf_singularities
|
|
129
|
+
self.gf_singularities_fortran_enum = {
|
|
130
|
+
'high_freq': self.fortran_core.constants.high_freq,
|
|
131
|
+
'low_freq': self.fortran_core.constants.low_freq,
|
|
132
|
+
'low_freq_with_rankine_part': self.fortran_core.constants.low_freq_with_rankine_part,
|
|
133
|
+
}
|
|
134
|
+
|
|
135
|
+
self.finite_depth_method = finite_depth_method
|
|
136
|
+
fortran_enum = {
|
|
137
|
+
'legacy': self.fortran_core.constants.legacy_finite_depth,
|
|
138
|
+
'newer': self.fortran_core.constants.newer_finite_depth,
|
|
139
|
+
}
|
|
140
|
+
self.finite_depth_method_index = fortran_enum[finite_depth_method]
|
|
141
|
+
|
|
142
|
+
self.floating_point_precision = floating_point_precision
|
|
143
|
+
self.tabulation_nb_integration_points = tabulation_nb_integration_points
|
|
144
|
+
|
|
145
|
+
self.tabulation_cache_dir = tabulation_cache_dir
|
|
146
|
+
if tabulation_cache_dir is None:
|
|
147
|
+
self._create_tabulation(tabulation_nr, tabulation_rmax,
|
|
148
|
+
tabulation_nz, tabulation_zmin,
|
|
149
|
+
tabulation_nb_integration_points)
|
|
150
|
+
else:
|
|
151
|
+
self._create_or_load_tabulation(tabulation_nr, tabulation_rmax,
|
|
152
|
+
tabulation_nz, tabulation_zmin,
|
|
153
|
+
tabulation_nb_integration_points,
|
|
154
|
+
tabulation_cache_dir)
|
|
155
|
+
|
|
156
|
+
self.finite_depth_prony_decomposition_method = finite_depth_prony_decomposition_method
|
|
157
|
+
|
|
158
|
+
self.exportable_settings = {
|
|
159
|
+
'green_function': self.__class__.__name__,
|
|
160
|
+
'tabulation_nr': tabulation_nr,
|
|
161
|
+
'tabulation_rmax': tabulation_rmax,
|
|
162
|
+
'tabulation_nz': tabulation_nz,
|
|
163
|
+
'tabulation_zmin': tabulation_zmin,
|
|
164
|
+
'tabulation_nb_integration_points': tabulation_nb_integration_points,
|
|
165
|
+
'tabulation_grid_shape': tabulation_grid_shape,
|
|
166
|
+
'finite_depth_method': finite_depth_method,
|
|
167
|
+
'finite_depth_prony_decomposition_method': finite_depth_prony_decomposition_method,
|
|
168
|
+
'floating_point_precision': floating_point_precision,
|
|
169
|
+
'gf_singularities': gf_singularities,
|
|
170
|
+
}
|
|
171
|
+
|
|
172
|
+
self._hash = hash(self.exportable_settings.values())
|
|
173
|
+
|
|
174
|
+
def __hash__(self):
|
|
175
|
+
return self._hash
|
|
176
|
+
|
|
177
|
+
def __str__(self):
|
|
178
|
+
# Print only the non-default values.
|
|
179
|
+
to_be_printed = []
|
|
180
|
+
for name, value in self.exportable_settings.items():
|
|
181
|
+
if name in _default_parameters and value != _default_parameters[name]:
|
|
182
|
+
to_be_printed.append(f"{name}={repr(value)}")
|
|
183
|
+
return f"{self.__class__.__name__}({', '.join(to_be_printed)})"
|
|
184
|
+
|
|
185
|
+
def __repr__(self):
|
|
186
|
+
# Same as __str__ except all values are printed even when they are the
|
|
187
|
+
# default value.
|
|
188
|
+
to_be_printed = []
|
|
189
|
+
for name, value in self.exportable_settings.items():
|
|
190
|
+
if name in _default_parameters:
|
|
191
|
+
to_be_printed.append(f"{name}={repr(value)}")
|
|
192
|
+
return f"{self.__class__.__name__}({', '.join(to_be_printed)})"
|
|
193
|
+
|
|
194
|
+
def _repr_pretty_(self, p, cycle):
|
|
195
|
+
p.text(self.__repr__())
|
|
196
|
+
|
|
197
|
+
def _create_or_load_tabulation(self, tabulation_nr, tabulation_rmax,
|
|
198
|
+
tabulation_nz, tabulation_zmin,
|
|
199
|
+
tabulation_nb_integration_points,
|
|
200
|
+
tabulation_cache_dir):
|
|
201
|
+
"""This method either:
|
|
202
|
+
- loads an existing tabulation saved on disk
|
|
203
|
+
- generates a new tabulation with the data provided as argument and save it on disk.
|
|
204
|
+
"""
|
|
205
|
+
|
|
206
|
+
# Normalize inputs
|
|
207
|
+
tabulation_rmax = float(tabulation_rmax)
|
|
208
|
+
tabulation_zmin = float(tabulation_zmin)
|
|
209
|
+
|
|
210
|
+
filename = "tabulation_{}_{}_{}_{}_{}_{}_{}.npz".format(
|
|
211
|
+
self.floating_point_precision, self.tabulation_grid_shape,
|
|
212
|
+
tabulation_nr, tabulation_rmax, tabulation_nz, tabulation_zmin,
|
|
213
|
+
tabulation_nb_integration_points
|
|
214
|
+
)
|
|
215
|
+
filepath = os.path.join(tabulation_cache_dir, filename)
|
|
216
|
+
|
|
217
|
+
if os.path.exists(filepath):
|
|
218
|
+
try:
|
|
219
|
+
LOG.info("Loading tabulation from %s", filepath)
|
|
220
|
+
loaded_arrays = np.load(filepath)
|
|
221
|
+
self.tabulated_r_range = loaded_arrays["r_range"]
|
|
222
|
+
self.tabulated_z_range = loaded_arrays["z_range"]
|
|
223
|
+
self.tabulated_integrals = loaded_arrays["values"]
|
|
224
|
+
return filename
|
|
225
|
+
except (EOFError, FileNotFoundError, KeyError, ValueError):
|
|
226
|
+
LOG.warning("Error loading tabulation from %s", filepath)
|
|
227
|
+
|
|
228
|
+
self._create_tabulation(tabulation_nr, tabulation_rmax,
|
|
229
|
+
tabulation_nz, tabulation_zmin,
|
|
230
|
+
tabulation_nb_integration_points)
|
|
231
|
+
LOG.debug("Saving tabulation in %s", filepath)
|
|
232
|
+
np.savez_compressed(
|
|
233
|
+
filepath, r_range=self.tabulated_r_range, z_range=self.tabulated_z_range,
|
|
234
|
+
values=self.tabulated_integrals
|
|
235
|
+
)
|
|
236
|
+
return filename
|
|
237
|
+
|
|
238
|
+
def _create_tabulation(self, tabulation_nr, tabulation_rmax,
|
|
239
|
+
tabulation_nz, tabulation_zmin,
|
|
240
|
+
tabulation_nb_integration_points):
|
|
241
|
+
LOG.warning("Precomputing tabulation, it may take a few seconds.")
|
|
242
|
+
self.tabulated_r_range = self.fortran_core.delhommeau_integrals.default_r_spacing(
|
|
243
|
+
tabulation_nr, tabulation_rmax, self.tabulation_grid_shape_index
|
|
244
|
+
)
|
|
245
|
+
self.tabulated_z_range = self.fortran_core.delhommeau_integrals.default_z_spacing(
|
|
246
|
+
tabulation_nz, tabulation_zmin, self.tabulation_grid_shape_index
|
|
247
|
+
)
|
|
248
|
+
self.tabulated_integrals = self.fortran_core.delhommeau_integrals.construct_tabulation(
|
|
249
|
+
self.tabulated_r_range, self.tabulated_z_range, tabulation_nb_integration_points,
|
|
250
|
+
)
|
|
251
|
+
|
|
252
|
+
@property
|
|
253
|
+
def all_tabulation_parameters(self):
|
|
254
|
+
"""An alias meant to pass to the Fortran functions all the parameters controlling the tabulation in a single item."""
|
|
255
|
+
return (self.tabulation_nb_integration_points, self.tabulation_grid_shape_index,
|
|
256
|
+
self.tabulated_r_range, self.tabulated_z_range, self.tabulated_integrals)
|
|
257
|
+
|
|
258
|
+
@lru_cache(maxsize=128)
|
|
259
|
+
def find_best_exponential_decomposition(self, dimensionless_wavenumber, *, method=None):
|
|
260
|
+
"""Compute the decomposition of a part of the finite water_depth Green function as a sum of exponential functions.
|
|
261
|
+
|
|
262
|
+
Two implementations are available: the legacy Fortran implementation from Nemoh and a newer one written in Python.
|
|
263
|
+
For some still unexplained reasons, the two implementations do not always give the exact same result.
|
|
264
|
+
Until the problem is better understood, the Fortran implementation is the default one, to ensure consistency with Nemoh.
|
|
265
|
+
The Fortran version is also significantly faster...
|
|
266
|
+
|
|
267
|
+
Results are cached.
|
|
268
|
+
|
|
269
|
+
Parameters
|
|
270
|
+
----------
|
|
271
|
+
dimensionless_wavenumber: float
|
|
272
|
+
dimensionless wavenumber: :math:`kh`
|
|
273
|
+
method: str, optional
|
|
274
|
+
"python" or "fortran". If not provided, uses self.finite_depth_prony_decomposition_method.
|
|
275
|
+
|
|
276
|
+
Returns
|
|
277
|
+
-------
|
|
278
|
+
Tuple[np.ndarray, np.ndarray]
|
|
279
|
+
the amplitude and growth rates of the exponentials
|
|
280
|
+
"""
|
|
281
|
+
kh = dimensionless_wavenumber
|
|
282
|
+
|
|
283
|
+
if method is None:
|
|
284
|
+
method = self.finite_depth_prony_decomposition_method
|
|
285
|
+
|
|
286
|
+
LOG.debug("\tCompute Prony decomposition in finite water_depth Green function "
|
|
287
|
+
"for dimensionless_wavenumber=%.2e", dimensionless_wavenumber)
|
|
288
|
+
|
|
289
|
+
if method.lower() == 'python':
|
|
290
|
+
if kh <= 0.1:
|
|
291
|
+
raise NotImplementedError(
|
|
292
|
+
f"{self} cannot evaluate finite depth Green function "
|
|
293
|
+
f"for kh<0.1 (kh={kh})"
|
|
294
|
+
)
|
|
295
|
+
elif kh < 1e5:
|
|
296
|
+
# The function that will be approximated.
|
|
297
|
+
sing_coef = (1 + np.tanh(kh))**2/(1 - np.tanh(kh)**2 + np.tanh(kh)/kh)
|
|
298
|
+
def ref_function(x):
|
|
299
|
+
"""The function that should be approximated by a sum of exponentials."""
|
|
300
|
+
return ((x + kh*np.tanh(kh)) * np.exp(x))/(x*np.sinh(x) - kh*np.tanh(kh)*np.cosh(x)) - sing_coef/(x - kh) - 2
|
|
301
|
+
else:
|
|
302
|
+
# Asymptotic approximation of the function for large kh, including infinite frequency
|
|
303
|
+
def ref_function(x):
|
|
304
|
+
return -2/(1 + np.exp(-2*x)) + 2
|
|
305
|
+
|
|
306
|
+
try:
|
|
307
|
+
a, lamda = find_best_exponential_decomposition(ref_function, x_min=-0.1, x_max=20.0, n_exp_range=range(4, 31, 2), tol=1e-4)
|
|
308
|
+
return np.stack([lamda, a])
|
|
309
|
+
except PronyDecompositionFailure as e:
|
|
310
|
+
raise GreenFunctionEvaluationError(
|
|
311
|
+
f"{self} cannot evaluate finite depth Green function "
|
|
312
|
+
f"for kh={dimensionless_wavenumber}"
|
|
313
|
+
) from e
|
|
314
|
+
|
|
315
|
+
elif method.lower() == 'fortran':
|
|
316
|
+
if kh > 1e5:
|
|
317
|
+
raise NotImplementedError("Fortran implementation of the Prony decomposition does not support infinite frequency")
|
|
318
|
+
omega2_h_over_g = kh*np.tanh(kh)
|
|
319
|
+
nexp, pr_d = self.fortran_core.old_prony_decomposition.lisc(omega2_h_over_g, kh)
|
|
320
|
+
return pr_d[0:2, :nexp]
|
|
321
|
+
|
|
322
|
+
else:
|
|
323
|
+
raise ValueError(f"Unrecognized name for the Prony decomposition method: {repr(method)}. Expected 'python' or 'fortran'.")
|
|
324
|
+
|
|
325
|
+
def evaluate_rankine_only(self,
|
|
326
|
+
mesh1, mesh2,
|
|
327
|
+
adjoint_double_layer=True, early_dot_product=True
|
|
328
|
+
):
|
|
329
|
+
r"""Construct the matrices between mesh1 (that can also be a list of points)
|
|
330
|
+
and mesh2 for a Rankine kernel.
|
|
331
|
+
|
|
332
|
+
Parameters
|
|
333
|
+
----------
|
|
334
|
+
mesh1: Mesh or CollectionOfMeshes or list of points
|
|
335
|
+
mesh of the receiving body (where the potential is measured)
|
|
336
|
+
if only S is wanted or early_dot_product is False, then only a list
|
|
337
|
+
of points as an array of shape (n, 3) can be passed.
|
|
338
|
+
mesh2: Mesh or CollectionOfMeshes
|
|
339
|
+
mesh of the source body (over which the source distribution is integrated)
|
|
340
|
+
adjoint_double_layer: bool, optional
|
|
341
|
+
compute double layer for direct method (F) or adjoint double layer
|
|
342
|
+
for indirect method (T) matrices (default: True)
|
|
343
|
+
early_dot_product: boolean, optional
|
|
344
|
+
if False, return K as a (n, m, 3) array storing ∫∇G
|
|
345
|
+
if True, return K as a (n, m) array storing ∫∇G·n
|
|
346
|
+
|
|
347
|
+
Returns
|
|
348
|
+
-------
|
|
349
|
+
tuple of real-valued numpy arrays
|
|
350
|
+
the matrices :math:`S` and :math:`K`
|
|
351
|
+
"""
|
|
352
|
+
collocation_points, early_dot_product_normals = \
|
|
353
|
+
self._get_colocation_points_and_normals(mesh1, mesh2, adjoint_double_layer)
|
|
354
|
+
|
|
355
|
+
S, K = self._init_matrices(
|
|
356
|
+
(collocation_points.shape[0], mesh2.nb_faces), early_dot_product
|
|
357
|
+
)
|
|
358
|
+
|
|
359
|
+
self.fortran_core.matrices.add_rankine_term_only(
|
|
360
|
+
collocation_points, early_dot_product_normals,
|
|
361
|
+
mesh2.vertices, mesh2.faces + 1,
|
|
362
|
+
mesh2.faces_centers, mesh2.faces_normals,
|
|
363
|
+
mesh2.faces_areas, mesh2.faces_radiuses,
|
|
364
|
+
*mesh2.quadrature_points,
|
|
365
|
+
adjoint_double_layer,
|
|
366
|
+
S, K)
|
|
367
|
+
|
|
368
|
+
if mesh1 is mesh2:
|
|
369
|
+
self.fortran_core.matrices.add_diagonal_term(
|
|
370
|
+
mesh2.faces_centers, early_dot_product_normals, np.inf, K,
|
|
371
|
+
)
|
|
372
|
+
|
|
373
|
+
S, K = np.real(S), np.real(K)
|
|
374
|
+
|
|
375
|
+
if np.any(np.isnan(S)) or np.any(np.isnan(K)):
|
|
376
|
+
raise GreenFunctionEvaluationError(
|
|
377
|
+
"Green function returned a NaN in the interaction matrix.\n"
|
|
378
|
+
"It could be due to overlapping panels.")
|
|
379
|
+
|
|
380
|
+
if early_dot_product:
|
|
381
|
+
K = K.reshape((collocation_points.shape[0], mesh2.nb_faces))
|
|
382
|
+
|
|
383
|
+
return S, K
|
|
384
|
+
|
|
385
|
+
|
|
386
|
+
def evaluate(self,
|
|
387
|
+
mesh1, mesh2,
|
|
388
|
+
free_surface=0.0, water_depth=np.inf, wavenumber=1.0,
|
|
389
|
+
adjoint_double_layer=True, early_dot_product=True
|
|
390
|
+
):
|
|
391
|
+
r"""The main method of the class, called by the engine to assemble the influence matrices.
|
|
392
|
+
|
|
393
|
+
Parameters
|
|
394
|
+
----------
|
|
395
|
+
mesh1: MeshLike or list of points
|
|
396
|
+
mesh of the receiving body (where the potential is measured)
|
|
397
|
+
if only S is wanted or early_dot_product is False, then only a list of points as an array of shape (n, 3) can be passed.
|
|
398
|
+
mesh2: MeshLike
|
|
399
|
+
mesh of the source body (over which the source distribution is integrated)
|
|
400
|
+
free_surface: float, optional
|
|
401
|
+
position of the free surface (default: :math:`z = 0`)
|
|
402
|
+
water_depth: float, optional
|
|
403
|
+
constant depth of water (default: :math:`+\infty`)
|
|
404
|
+
wavenumber: float, optional
|
|
405
|
+
wavenumber (default: 1.0)
|
|
406
|
+
adjoint_double_layer: bool, optional
|
|
407
|
+
compute double layer for direct method (F) or adjoint double layer for indirect method (T) matrices (default: True)
|
|
408
|
+
early_dot_product: boolean, optional
|
|
409
|
+
if False, return K as a (n, m, 3) array storing ∫∇G
|
|
410
|
+
if True, return K as a (n, m) array storing ∫∇G·n
|
|
411
|
+
|
|
412
|
+
Returns
|
|
413
|
+
-------
|
|
414
|
+
tuple of numpy arrays
|
|
415
|
+
the matrices :math:`S` and :math:`K`
|
|
416
|
+
the dtype of the matrix can be real or complex and depends on self.floating_point_precision
|
|
417
|
+
"""
|
|
418
|
+
|
|
419
|
+
if free_surface == np.inf: # No free surface, only a single Rankine source term
|
|
420
|
+
if water_depth != np.inf:
|
|
421
|
+
raise ValueError("When setting free_surface=inf, "
|
|
422
|
+
"the water depth should also be infinite "
|
|
423
|
+
f"(got water_depth={water_depth})")
|
|
424
|
+
|
|
425
|
+
return self.evaluate_rankine_only(
|
|
426
|
+
mesh1, mesh2,
|
|
427
|
+
adjoint_double_layer=adjoint_double_layer,
|
|
428
|
+
early_dot_product=early_dot_product,
|
|
429
|
+
)
|
|
430
|
+
|
|
431
|
+
# Main case:
|
|
432
|
+
collocation_points, early_dot_product_normals = \
|
|
433
|
+
self._get_colocation_points_and_normals(mesh1, mesh2, adjoint_double_layer)
|
|
434
|
+
|
|
435
|
+
S, K = self._init_matrices(
|
|
436
|
+
(collocation_points.shape[0], mesh2.nb_faces), early_dot_product
|
|
437
|
+
)
|
|
438
|
+
|
|
439
|
+
wavenumber = float(wavenumber)
|
|
440
|
+
|
|
441
|
+
# Overrides gf_singularities setting in some specific cases, else use the class one.
|
|
442
|
+
if water_depth < np.inf and self.finite_depth_method == 'legacy' and not self.gf_singularities == 'low_freq':
|
|
443
|
+
gf_singularities = "low_freq" # Reproduce legacy method behavior
|
|
444
|
+
LOG.debug(
|
|
445
|
+
f"Overriding gf_singularities='{self.gf_singularities}' because of finite_depth_method=='legacy'"
|
|
446
|
+
)
|
|
447
|
+
elif wavenumber == 0.0 and not self.gf_singularities == 'low_freq':
|
|
448
|
+
gf_singularities = "low_freq"
|
|
449
|
+
LOG.debug(
|
|
450
|
+
f"Overriding gf_singularities='{self.gf_singularities}' because of wavenumber==0.0"
|
|
451
|
+
)
|
|
452
|
+
elif wavenumber == np.inf and not self.gf_singularities == 'high_freq':
|
|
453
|
+
gf_singularities = "high_freq"
|
|
454
|
+
LOG.debug(
|
|
455
|
+
f"Overriding gf_singularities='{self.gf_singularities}' because of wavenumber==np.inf"
|
|
456
|
+
)
|
|
457
|
+
elif np.any(abs(mesh2.faces_centers[:, 2]) < 1e-6) and not self.gf_singularities == 'low_freq':
|
|
458
|
+
gf_singularities = "low_freq"
|
|
459
|
+
LOG.warning(
|
|
460
|
+
f"Overriding gf_singularities='{self.gf_singularities}' because of free surface panels, "
|
|
461
|
+
"which are currently only supported by gf_singularities='low_freq'"
|
|
462
|
+
)
|
|
463
|
+
else:
|
|
464
|
+
gf_singularities = self.gf_singularities
|
|
465
|
+
gf_singularities_index = self.gf_singularities_fortran_enum[gf_singularities]
|
|
466
|
+
|
|
467
|
+
if water_depth == np.inf:
|
|
468
|
+
prony_decomposition = np.zeros((1, 1)) # Dummy array that won't actually be used by the fortran code.
|
|
469
|
+
else:
|
|
470
|
+
prony_decomposition = self.find_best_exponential_decomposition(wavenumber*water_depth)
|
|
471
|
+
|
|
472
|
+
# Main call to Fortran code
|
|
473
|
+
self.fortran_core.matrices.build_matrices(
|
|
474
|
+
collocation_points, early_dot_product_normals,
|
|
475
|
+
mesh2.vertices, mesh2.faces + 1,
|
|
476
|
+
mesh2.faces_centers, mesh2.faces_normals,
|
|
477
|
+
mesh2.faces_areas, mesh2.faces_radiuses,
|
|
478
|
+
*mesh2.quadrature_points,
|
|
479
|
+
wavenumber, water_depth,
|
|
480
|
+
*self.all_tabulation_parameters,
|
|
481
|
+
self.finite_depth_method_index, prony_decomposition, self.dispersion_relation_roots,
|
|
482
|
+
gf_singularities_index, adjoint_double_layer,
|
|
483
|
+
S, K
|
|
484
|
+
)
|
|
485
|
+
|
|
486
|
+
if mesh1 is mesh2:
|
|
487
|
+
self.fortran_core.matrices.add_diagonal_term(
|
|
488
|
+
mesh2.faces_centers, early_dot_product_normals, free_surface, K,
|
|
489
|
+
)
|
|
490
|
+
|
|
491
|
+
if np.any(np.isnan(S)) or np.any(np.isnan(K)):
|
|
492
|
+
raise GreenFunctionEvaluationError(
|
|
493
|
+
"Green function returned a NaN in the interaction matrix.\n"
|
|
494
|
+
"It could be due to overlapping panels.")
|
|
495
|
+
|
|
496
|
+
if early_dot_product:
|
|
497
|
+
K = K.reshape((collocation_points.shape[0], mesh2.nb_faces))
|
|
498
|
+
|
|
499
|
+
return S, K
|
|
500
|
+
|
|
501
|
+
################################
|
|
502
|
+
|
|
503
|
+
class XieDelhommeau(Delhommeau):
|
|
504
|
+
"""Legacy way to call the gf_singularities="low_freq" variant."""
|
|
505
|
+
|
|
506
|
+
def __init__(self, **kwargs):
|
|
507
|
+
super().__init__(gf_singularities="low_freq", **kwargs)
|