canns 0.15.1__py3-none-any.whl → 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,257 @@
1
+ Metadata-Version: 2.4
2
+ Name: canns
3
+ Version: 1.0.0
4
+ Summary: A Python Library for Continuous Attractor Neural Networks
5
+ Project-URL: Repository, https://github.com/routhleck/canns
6
+ Author-email: Sichao He <sichaohe@outlook.com>
7
+ License-Expression: Apache-2.0
8
+ License-File: LICENSE
9
+ Classifier: Development Status :: 4 - Beta
10
+ Classifier: Intended Audience :: Developers
11
+ Classifier: Operating System :: OS Independent
12
+ Classifier: Programming Language :: Python
13
+ Classifier: Programming Language :: Python :: 3
14
+ Classifier: Programming Language :: Python :: 3.11
15
+ Classifier: Programming Language :: Python :: 3.12
16
+ Classifier: Programming Language :: Python :: 3.13
17
+ Classifier: Typing :: Typed
18
+ Requires-Python: <4.0,>=3.11
19
+ Requires-Dist: brainpy[cpu]
20
+ Requires-Dist: canns-lib>=0.6.2
21
+ Requires-Dist: climage>=0.2.2
22
+ Requires-Dist: furo>=2025.7.19
23
+ Requires-Dist: h5py>=3.7
24
+ Requires-Dist: igraph>=1.0.0
25
+ Requires-Dist: imageio[ffmpeg]>=2.37.0
26
+ Requires-Dist: leidenalg>=0.11.0
27
+ Requires-Dist: matplotlib>=3.5
28
+ Requires-Dist: notebook>=7.4.4
29
+ Requires-Dist: numba>=0.56.0
30
+ Requires-Dist: numpy<2.3,>=1.24
31
+ Requires-Dist: scikit-image>=0.19
32
+ Requires-Dist: scipy>=1.9.0
33
+ Requires-Dist: seaborn>=0.13.2
34
+ Requires-Dist: textual>=7.3.0
35
+ Requires-Dist: tqdm
36
+ Provides-Extra: cpu
37
+ Requires-Dist: brainpy[cpu]; extra == 'cpu'
38
+ Provides-Extra: cuda12
39
+ Requires-Dist: brainpy[cuda12]; (platform_system == 'Linux') and extra == 'cuda12'
40
+ Provides-Extra: cuda13
41
+ Requires-Dist: brainpy[cuda13]; (platform_system == 'Linux') and extra == 'cuda13'
42
+ Provides-Extra: gui
43
+ Requires-Dist: imageio; extra == 'gui'
44
+ Requires-Dist: pillow; extra == 'gui'
45
+ Requires-Dist: pyside6>=6.6.0; extra == 'gui'
46
+ Requires-Dist: qtawesome; extra == 'gui'
47
+ Requires-Dist: requests>=2.31.0; extra == 'gui'
48
+ Provides-Extra: tpu
49
+ Requires-Dist: brainpy[tpu]; (platform_system == 'Linux') and extra == 'tpu'
50
+ Description-Content-Type: text/markdown
51
+
52
+ # CANNs: Continuous Attractor Neural Networks Toolkit
53
+
54
+ <div align="center">
55
+ <img src="images/logo.svg" alt="CANNs Logo" width="350">
56
+ </div>
57
+
58
+ [<img src="https://badges.ws/badge/status-stable-green" />](https://github.com/routhleck/canns)
59
+ ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/canns)
60
+ [<img src="https://badges.ws/maintenance/yes/2026" />](https://github.com/routhleck/canns)
61
+ <picture><img src="https://badges.ws/github/release/routhleck/canns" /></picture>
62
+ <picture><img src="https://badges.ws/github/license/routhleck/canns" /></picture>
63
+ [![DOI](https://zenodo.org/badge/1001781809.svg)](https://doi.org/10.5281/zenodo.17412545)
64
+
65
+
66
+ <picture><img src="https://badges.ws/github/stars/routhleck/canns?logo=github" /></picture>
67
+ [![PyPI Downloads](https://static.pepy.tech/personalized-badge/canns?period=total&units=INTERNATIONAL_SYSTEM&left_color=BLACK&right_color=GREEN&left_text=downloads)](https://pepy.tech/projects/canns)
68
+ [![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/Routhleck/canns)
69
+ [<img src="https://badges.ws/badge/Buy_Me_a_Coffee-ff813f?icon=buymeacoffee" />](https://buymeacoffee.com/forrestcai6)
70
+
71
+ > 中文说明请见 [README_zh.md](README_zh.md)
72
+
73
+ ## Overview
74
+
75
+ CANNs (Continuous Attractor Neural Networks toolkit) is a research toolkit built on [BrainPy](https://github.com/brainpy/BrainPy) and [JAX](https://github.com/jax-ml/jax), with optional Rust-accelerated [`canns-lib`](https://github.com/Routhleck/canns-lib) for selected performance-critical routines (e.g., TDA/Ripser and task generation). It bundles model collections, task generators, analyzers, and the ASA pipeline (GUI/TUI) so researchers can run simulations and analyze results in a consistent workflow. The API separates models, tasks, analyzers, and trainers to keep experiments modular and extensible.
76
+
77
+ ## Architecture
78
+
79
+ <p align="center">
80
+ <img src="images/architecture.png" alt="CANNs Architecture" width="900">
81
+ <br>
82
+ <span style="color: grey; font-size: 14px;">Library architecture overview: models, tasks, analyzers, trainers, and pipeline built on BrainPy/JAX with optional Rust acceleration.</span>
83
+ </p>
84
+
85
+ The CANNs library follows a modular architecture guided by two core principles: **separation of concerns** and **extensibility through
86
+ base classes**. The design separates functional responsibilities into five independent modules:
87
+ 1. **Models** (`canns.models`) define neural network dynamics;
88
+ 2. **Tasks** (`canns.task`) generate experimental paradigms and input data;
89
+ 3. **Analyzers** (`canns.analyzer`) provide visualization and analysis tools;
90
+ 4. **Trainers** (`canns.trainer`) implement learning rules for brain-inspired models;
91
+ 5. **Pipeline** (`canns.pipeline`) orchestrates complete workflows.
92
+
93
+ Each module focuses on a single responsibility—models don't generate input data, tasks don't analyze results, and analyzers don't modify
94
+ parameters. This separation ensures maintainability, testability, and extensibility. All major components inherit from abstract base classes
95
+ (`BasicModel`, `BrainInspiredModel`, `Trainer`) that define standard interfaces, enabling users to create custom implementations that
96
+ seamlessly integrate with the built-in ecosystem.
97
+
98
+ ## Core Features
99
+
100
+
101
+
102
+ - **Model collections**: basic CANNs (1D/2D, SFA), hierarchical path integration, theta-sweep models, brain-inspired models (e.g., Amari-Hopfield, linear/spiking layers)
103
+ - **Task generators**: smooth tracking, population coding, template matching, open/closed-loop navigation
104
+ - **Analyzer suite**: energy landscapes, tuning curves, raster/firing-rate plots, TDA and decoding utilities, cell classification
105
+ - **ASA pipeline & GUI/TUI**: end-to-end workflow for preprocessing, TDA, decoding, and result visualization (e.g., CohoMap/CohoSpace/PathCompare/FR/FRM/GridScore)
106
+ - **Training & extensibility**: HebbianTrainer plus base classes for consistent extension
107
+ - **Optional acceleration**: `canns-lib` for selected performance-critical routines
108
+
109
+ ## Analyzer Visuals
110
+
111
+ <p align="center">
112
+ <img src="docs/_static/figure2_full.png" alt="Model Analysis Overview" width="900">
113
+ <br>
114
+ <span style="color: grey; font-size: 14px;">Overview of Neural Dynamics Models. Comparison of three basic models: (A) 1D CANN, (B) 2D CANN, and (C) Grid Cell Network</span>
115
+ </p>
116
+
117
+ <p align="center">
118
+ <img src="images/analyzer-display.png" alt="Analyzer Display" width="900">
119
+ <br>
120
+ <span style="color: grey; font-size: 14px;">Rich Analyzer Visualization Results</span>
121
+ </p>
122
+ <p align="center">
123
+ <img src="images/asa-gui.gif" alt="ASA GUI Preview" width="720">
124
+ <br>
125
+ <span style="color: grey; font-size: 14px;">ASA GUI preview</span>
126
+ </p>
127
+ <p align="center">
128
+ <a href="https://youtu.be/OoEo5Qa9f7M">
129
+ <img src="https://img.youtube.com/vi/OoEo5Qa9f7M/hqdefault.jpg" alt="ASA GUI Demo (YouTube)" width="720">
130
+ </a>
131
+ <br>
132
+ <span style="color: grey; font-size: 14px;">ASA GUI demo video</span>
133
+ </p>
134
+
135
+ <div align="center">
136
+ <table>
137
+ <tr>
138
+ <td align="center" width="50%" valign="top">
139
+ <h4>Smooth Tracking 1D</h4>
140
+ <img src="docs/_static/smooth_tracking_1d.gif" alt="Smooth Tracking 1D" width="320">
141
+ <br><em>Activity bump following a moving stimulus</em>
142
+ </td>
143
+ <td align="center" width="50%" valign="top">
144
+ <h4>CANN2D Encoding</h4>
145
+ <img src="docs/_static/CANN2D_encoding.gif" alt="CANN2D Encoding" width="320">
146
+ <br><em>2D population encoding patterns over time</em>
147
+ </td>
148
+ </tr>
149
+ <tr>
150
+ <td colspan="2" align="center">
151
+ <h4>Theta Sweep Animation</h4>
152
+ <img src="docs/_static/theta_sweep_animation.gif" alt="Theta Sweep Animation" width="600">
153
+ <br><em>Theta-modulated sweep dynamics</em>
154
+ </td>
155
+ </tr>
156
+ <tr>
157
+ <td align="center" width="50%" valign="top">
158
+ <h4>Bump Analysis</h4>
159
+ <img src="docs/_static/bump_analysis_demo.gif" alt="Bump Analysis Demo" width="320">
160
+ <br><em>Bump fitting and stability diagnostics</em>
161
+ </td>
162
+ <td align="center" width="50%" valign="top">
163
+ <h4>Torus Bump</h4>
164
+ <img src="docs/_static/torus_bump.gif" alt="Torus Bump" width="320">
165
+ <br><em>Bump dynamics projected onto a torus manifold</em>
166
+ </td>
167
+ </tr>
168
+ </table>
169
+ </div>
170
+
171
+ ## Quick Start
172
+
173
+ 1D CANN smooth tracking (imports → simulation → visualization)
174
+
175
+ ```python
176
+ import brainpy.math as bm
177
+ from canns.analyzer.visualization import PlotConfigs, energy_landscape_1d_animation
178
+ from canns.models.basic import CANN1D
179
+ from canns.task.tracking import SmoothTracking1D
180
+
181
+ # simulation time step
182
+ bm.set_dt(0.1)
183
+
184
+ # build model
185
+ cann = CANN1D(num=512)
186
+
187
+ # build tracking task (Iext length = duration length + 1)
188
+ task = SmoothTracking1D(
189
+ cann_instance=cann,
190
+ Iext=(0.0, 0.5, 1.0, 1.5),
191
+ duration=(5.0, 5.0, 5.0),
192
+ time_step=bm.get_dt(),
193
+ )
194
+ task.get_data()
195
+
196
+
197
+ # one-step simulation callback
198
+ def step(t, stimulus):
199
+ cann(stimulus)
200
+ return cann.u.value, cann.inp.value
201
+
202
+
203
+ # run simulation loop
204
+ us, inputs = bm.for_loop(
205
+ step,
206
+ operands=(task.run_steps, task.data),
207
+ )
208
+
209
+ # visualize with energy landscape animation
210
+ config = PlotConfigs.energy_landscape_1d_animation(
211
+ time_steps_per_second=int(1 / bm.get_dt()),
212
+ fps=20,
213
+ title="Smooth Tracking 1D",
214
+ xlabel="State",
215
+ ylabel="Activity",
216
+ show=True,
217
+ )
218
+
219
+ energy_landscape_1d_animation(
220
+ data_sets={"u": (cann.x, us), "Iext": (cann.x, inputs)},
221
+ config=config,
222
+ )
223
+ ```
224
+
225
+ ## Installation
226
+
227
+ ```bash
228
+ # CPU-only
229
+ pip install canns
230
+
231
+ # Optional accelerators (Linux)
232
+ pip install "canns[cuda12]"
233
+ pip install "canns[cuda13]"
234
+ pip install "canns[tpu]"
235
+
236
+ # GUI (ASA Pipeline)
237
+ pip install "canns[gui]"
238
+ ```
239
+
240
+ Optional (uv):
241
+
242
+ ```bash
243
+ uv pip install canns
244
+ ```
245
+
246
+ ## Docs & Examples
247
+
248
+ - Documentation and tutorials: <https://routhleck.com/canns/>
249
+ - Local scripts: `examples/`
250
+ - Sphinx docs and notebooks: `docs/`
251
+ - ASA GUI entry: `canns-gui`
252
+
253
+ ## Contributing & License
254
+
255
+ Contributions are welcome. Please read [CONTRIBUTING.md](CONTRIBUTING.md) before opening a PR.
256
+
257
+ Apache License 2.0. See [LICENSE](LICENSE).
@@ -165,8 +165,8 @@ canns/trainer/utils.py,sha256=ZdoLiRqFLfKXsWi0KX3wGUp0OqFikwiou8dPf3xvFhE,2847
165
165
  canns/typing/__init__.py,sha256=mXySdfmD8fA56WqZTb1Nj-ZovcejwLzNjuk6PRfTwmA,156
166
166
  canns/utils/__init__.py,sha256=OMyZ5jqZAIUS2Jr0qcnvvrx6YM-BZ1EJy5uZYeA3HC0,366
167
167
  canns/utils/benchmark.py,sha256=oJ7nvbvnQMh4_MZh7z160NPLp-197X0rEnmnLHYlev4,1361
168
- canns-0.15.1.dist-info/METADATA,sha256=Rxhq9ndM1JJjHYGYaB_BjffkvlLXO-22xIzwzOm8h1I,9799
169
- canns-0.15.1.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
170
- canns-0.15.1.dist-info/entry_points.txt,sha256=57YF2HZp_BG3GeGB8L0m3wR1sSfNyMXF1q4CKEjce6U,164
171
- canns-0.15.1.dist-info/licenses/LICENSE,sha256=u6NJ1N-QSnf5yTwSk5UvFAdU2yKD0jxG0Xa91n1cPO4,11306
172
- canns-0.15.1.dist-info/RECORD,,
168
+ canns-1.0.0.dist-info/METADATA,sha256=6k3grZUT-4Iw_wi9nqHcJzcHBVJpQA76EowoG9IprvU,9699
169
+ canns-1.0.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
170
+ canns-1.0.0.dist-info/entry_points.txt,sha256=57YF2HZp_BG3GeGB8L0m3wR1sSfNyMXF1q4CKEjce6U,164
171
+ canns-1.0.0.dist-info/licenses/LICENSE,sha256=u6NJ1N-QSnf5yTwSk5UvFAdU2yKD0jxG0Xa91n1cPO4,11306
172
+ canns-1.0.0.dist-info/RECORD,,
@@ -1,245 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: canns
3
- Version: 0.15.1
4
- Summary: A Python Library for Continuous Attractor Neural Networks
5
- Project-URL: Repository, https://github.com/routhleck/canns
6
- Author-email: Sichao He <sichaohe@outlook.com>
7
- License-Expression: Apache-2.0
8
- License-File: LICENSE
9
- Classifier: Development Status :: 4 - Beta
10
- Classifier: Intended Audience :: Developers
11
- Classifier: Operating System :: OS Independent
12
- Classifier: Programming Language :: Python
13
- Classifier: Programming Language :: Python :: 3
14
- Classifier: Programming Language :: Python :: 3.11
15
- Classifier: Programming Language :: Python :: 3.12
16
- Classifier: Programming Language :: Python :: 3.13
17
- Classifier: Typing :: Typed
18
- Requires-Python: <4.0,>=3.11
19
- Requires-Dist: brainpy[cpu]
20
- Requires-Dist: canns-lib>=0.6.2
21
- Requires-Dist: climage>=0.2.2
22
- Requires-Dist: furo>=2025.7.19
23
- Requires-Dist: h5py>=3.7
24
- Requires-Dist: igraph>=1.0.0
25
- Requires-Dist: imageio[ffmpeg]>=2.37.0
26
- Requires-Dist: leidenalg>=0.11.0
27
- Requires-Dist: matplotlib>=3.5
28
- Requires-Dist: notebook>=7.4.4
29
- Requires-Dist: numba>=0.56.0
30
- Requires-Dist: numpy<2.3,>=1.24
31
- Requires-Dist: scikit-image>=0.19
32
- Requires-Dist: scipy>=1.9.0
33
- Requires-Dist: seaborn>=0.13.2
34
- Requires-Dist: textual>=7.3.0
35
- Requires-Dist: tqdm
36
- Provides-Extra: cpu
37
- Requires-Dist: brainpy[cpu]; extra == 'cpu'
38
- Provides-Extra: cuda12
39
- Requires-Dist: brainpy[cuda12]; (platform_system == 'Linux') and extra == 'cuda12'
40
- Provides-Extra: cuda13
41
- Requires-Dist: brainpy[cuda13]; (platform_system == 'Linux') and extra == 'cuda13'
42
- Provides-Extra: gui
43
- Requires-Dist: imageio; extra == 'gui'
44
- Requires-Dist: pillow; extra == 'gui'
45
- Requires-Dist: pyside6>=6.6.0; extra == 'gui'
46
- Requires-Dist: qtawesome; extra == 'gui'
47
- Requires-Dist: requests>=2.31.0; extra == 'gui'
48
- Provides-Extra: tpu
49
- Requires-Dist: brainpy[tpu]; (platform_system == 'Linux') and extra == 'tpu'
50
- Description-Content-Type: text/markdown
51
-
52
- # CANNs: Continuous Attractor Neural Networks Toolkit
53
-
54
- <div align="center">
55
- <img src="images/logo.svg" alt="CANNs Logo" width="350">
56
- </div>
57
-
58
- [<img src="https://badges.ws/badge/status-beta-yellow" />](https://github.com/routhleck/canns)
59
- ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/canns)
60
- [<img src="https://badges.ws/maintenance/yes/2026" />](https://github.com/routhleck/canns)
61
- <picture><img src="https://badges.ws/github/release/routhleck/canns" /></picture>
62
- <picture><img src="https://badges.ws/github/license/routhleck/canns" /></picture>
63
- [![DOI](https://zenodo.org/badge/1001781809.svg)](https://doi.org/10.5281/zenodo.17412545)
64
-
65
-
66
- <picture><img src="https://badges.ws/github/stars/routhleck/canns?logo=github" /></picture>
67
- [![PyPI Downloads](https://static.pepy.tech/personalized-badge/canns?period=total&units=INTERNATIONAL_SYSTEM&left_color=BLACK&right_color=GREEN&left_text=downloads)](https://pepy.tech/projects/canns)
68
- [![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/Routhleck/canns)
69
- [<img src="https://badges.ws/badge/Buy_Me_a_Coffee-ff813f?icon=buymeacoffee" />](https://buymeacoffee.com/forrestcai6)
70
-
71
- > 中文说明请见 [README_zh.md](README_zh.md)
72
-
73
- CANNs is a Python library built on top of brainpy with performance‑critical modules accelerated by a dedicated Rust backend (`canns-lib`). It streamlines experimentation with continuous attractor neural networks and related brain‑inspired models, providing ready‑to‑use models, task generators, analysis tools, and pipelines so neuroscience and AI researchers can move from ideas to reproducible simulations quickly.
74
-
75
- ## Highlights
76
-
77
- - **Model families** – `canns.models.basic` ships 1D/2D CANNs (including SFA variants and hierarchical networks), while `canns.models.brain_inspired` adds Hopfield-style systems.
78
- - **Task-first API** – `canns.task.tracking` and `canns.task.open_loop_navigation` generate smooth tracking inputs, population coding stimuli, or import experimental trajectories.
79
- - **Rich analysis suite** – `canns.analyzer` covers energy landscapes, tuning curves, spike embeddings, UMAP/TDA helpers, and theta-sweep animations.
80
- - **Unified training** – `canns.trainer.HebbianTrainer` implements generic Hebbian learning and prediction, layered on the abstract `Trainer` base.
81
- - **Pipeline workspace** – the ASA GUI (Attractor Structure Analyzer) provides an end-to-end analysis workflow (TDA → decode → CohoMap/CohoSpace/FR/FRM) with interactive visualization, help tips, and bilingual UI.
82
- - **Extensible foundations** – base classes (`BasicModel`, `Task`, `Trainer`, `Pipeline`) keep custom components consistent with the built-in ecosystem.
83
-
84
- ## Visual Gallery
85
-
86
- <div align="center">
87
- <table>
88
- <tr>
89
- <td align="center" width="50%" valign="top">
90
- <h4>1D CANN Smooth Tracking</h4>
91
- <img src="docs/_static/smooth_tracking_1d.gif" alt="1D CANN Smooth Tracking" width="320">
92
- <br><em>Real-time dynamics during smooth tracking</em>
93
- </td>
94
- <td align="center" width="50%" valign="top">
95
- <h4>2D CANN Population Encoding</h4>
96
- <img src="docs/_static/CANN2D_encoding.gif" alt="2D CANN Encoding" width="320">
97
- <br><em>Spatial information encoding patterns</em>
98
- </td>
99
- </tr>
100
- <tr>
101
- <td colspan="2" align="center">
102
- <h4>Theta Sweep Analysis</h4>
103
- <img src="docs/_static/theta_sweep_animation.gif" alt="Theta Sweep Animation" width="600">
104
- <br><em>Grid cell and head direction networks with theta rhythm modulation</em>
105
- </td>
106
- </tr>
107
- <tr>
108
- <td align="center" width="50%" valign="top">
109
- <h4>Bump Analysis</h4>
110
- <img src="docs/_static/bump_analysis_demo.gif" alt="Bump Analysis Demo" width="320">
111
- <br><em>1D bump fitting and analysis</em>
112
- </td>
113
- <td align="center" width="50%" valign="top">
114
- <h4>Torus Topology Analysis</h4>
115
- <img src="docs/_static/torus_bump.gif" alt="Torus Bump Analysis" width="320">
116
- <br><em>3D torus visualization and decoding</em>
117
- </td>
118
- </tr>
119
- </table>
120
- </div>
121
-
122
- ## Installation
123
-
124
- ```bash
125
- # CPU-only installation
126
- pip install canns
127
-
128
- # Optional accelerators (Linux only)
129
- pip install canns[cuda12]
130
- pip install canns[tpu]
131
-
132
- # GUI (recommended for pipeline usage)
133
- pip install canns[gui]
134
-
135
- ```
136
-
137
- ## Quick Start
138
-
139
- ```python
140
- import brainpy as bp
141
- import brainpy.math as bm
142
- from canns.models.basic import CANN1D
143
- from canns.task.tracking import SmoothTracking1D
144
-
145
- bm.set_dt(0.1)
146
-
147
- cann = CANN1D(num=512)
148
-
149
- task = SmoothTracking1D(
150
- cann_instance=cann,
151
- Iext=(0.0, 0.5, 1.0, 1.5),
152
- duration=(5.0, 5.0, 5.0, 5.0),
153
- time_step=bm.get_dt(),
154
- )
155
- task.get_data()
156
-
157
- def step(t, stimulus):
158
- cann(stimulus)
159
- return cann.u.value, cann.inp.value
160
-
161
- us, inputs = bm.for_loop(
162
- step,
163
- task.run_steps,
164
- task.data,
165
- )
166
- ```
167
-
168
- For the ASA pipeline, the recommended entrypoint is the GUI:
169
-
170
- ```bash
171
- canns-gui
172
- # or
173
- python -m canns.pipeline.asa_gui
174
- ```
175
-
176
- > Note: ASA TUI (`python -m canns.pipeline.asa` / `canns-tui`) is a legacy interface kept for transition.
177
-
178
- ## Documentation & Notebooks
179
-
180
- - [Quick Start Guide](https://routhleck.com/canns/en/notebooks/01_quick_start.html) – condensed tour of the library layout.
181
- - [Design Philosophy](https://routhleck.com/canns/en/notebooks/00_design_philosophy.html) – detailed design rationale for each module.
182
- - Interactive launchers: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/routhleck/canns/HEAD?filepath=docs%2Fen%2Fnotebooks) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/routhleck/canns/blob/master/docs/en/notebooks/)
183
- - Tutorials (Chinese, online):
184
- - [ASA GUI end-to-end](https://routhleck.com/canns/zh/3_full_detail_tutorials/04_pipeline/03_asa_gui.html)
185
- - [ASA pipeline principles & parameters](https://routhleck.com/canns/zh/3_full_detail_tutorials/02_data_analysis/01_asa_pipeline.html)
186
- - [Cell classification](https://routhleck.com/canns/zh/3_full_detail_tutorials/02_data_analysis/04_cell_classification.html)
187
-
188
- ## Development Workflow
189
-
190
- ```bash
191
- # Create the dev environment (uv-based)
192
- make install
193
-
194
- # Format and lint (ruff, codespell, etc.)
195
- make lint
196
-
197
- # Run the test suite (pytest)
198
- make test
199
- ```
200
-
201
- Additional scripts live under `devtools/` and `scripts/`.
202
-
203
- ## Repository Layout
204
-
205
- ```
206
- src/canns/ Core library modules (models, tasks, analyzers, trainer, pipeline)
207
- docs/ Sphinx documentation and notebooks
208
- examples/ Ready-to-run scripts for models, analysis, and pipelines
209
- tests/ Pytest coverage for key behaviours
210
- ```
211
-
212
- ## Citation
213
-
214
- If you use CANNs in your research, please cite it using the information from our [CITATION.cff](CITATION.cff) file or use the following:
215
-
216
- [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.17412545.svg)](https://doi.org/10.5281/zenodo.17412545)
217
-
218
- ```bibtex
219
- @software{he_2025_canns,
220
- author = {He, Sichao},
221
- title = {CANNs: Continuous Attractor Neural Networks Toolkit},
222
- year = 2025,
223
- publisher = {Zenodo},
224
- version = {v0.9.0},
225
- doi = {10.5281/zenodo.17412545},
226
- url = {https://github.com/Routhleck/canns}
227
- }
228
- ```
229
-
230
- ## Contributing
231
-
232
- Contributions are welcome! Please open an issue or discussion if you plan significant changes. Pull requests should follow the existing lint/test workflow (`make lint && make test`).
233
-
234
- ## License
235
-
236
- Apache License 2.0. See [LICENSE](LICENSE) for details.
237
-
238
- [contributors-shield]: https://img.shields.io/github/contributors/routhleck/canns.svg?style=for-the-badge
239
- [contributors-url]: https://github.com/routhleck/canns/graphs/contributors
240
- [stars-shield]: https://img.shields.io/github/stars/routhleck/canns.svg?style=for-the-badge
241
- [stars-url]: https://github.com/routhleck/canns/stargazers
242
- [issues-shield]: https://img.shields.io/github/issues/routhleck/canns.svg?style=for-the-badge
243
- [issues-url]: https://github.com/routhleck/canns/issues
244
- [license-shield]: https://img.shields.io/github/license/routhleck/canns.svg?style=for-the-badge
245
- [license-url]: https://github.com/routhleck/canns/blob/master/LICENSE
File without changes