canns 0.14.0__py3-none-any.whl → 0.14.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -42,12 +42,20 @@ def main() -> int:
42
42
  app.setApplicationDisplayName("ASA GUI")
43
43
  QGuiApplication.setApplicationDisplayName("ASA GUI")
44
44
 
45
- base = Path(__file__).resolve().parents[4] / "images"
46
- logo_path = base / "logo_256.png"
45
+ from .resources import resource_path
46
+
47
+ logo_path = resource_path("logo_256.png")
48
+ if not logo_path.exists():
49
+ logo_path = resource_path("logo.svg")
47
50
  if not logo_path.exists():
48
- logo_path = base / "logo.svg"
51
+ logo_path = resource_path("logo.ico")
49
52
  if not logo_path.exists():
50
- logo_path = base / "logo.ico"
53
+ base = Path(__file__).resolve().parents[4] / "images"
54
+ logo_path = base / "logo_256.png"
55
+ if not logo_path.exists():
56
+ logo_path = base / "logo.svg"
57
+ if not logo_path.exists():
58
+ logo_path = base / "logo.ico"
51
59
  icon = QIcon(str(logo_path)) if logo_path.exists() else QIcon()
52
60
  if not icon.isNull():
53
61
  app.setWindowIcon(icon)
@@ -29,6 +29,10 @@ class AbstractAnalysisMode(ABC):
29
29
  """Apply neuron/time ranges based on loaded data."""
30
30
  return None
31
31
 
32
+ def apply_language(self, lang: str) -> None:
33
+ """Apply localized tooltips/text."""
34
+ return None
35
+
32
36
 
33
37
  def configure_form_layout(form: QFormLayout) -> None:
34
38
  """Apply consistent spacing/alignment for analysis parameter forms."""
@@ -54,3 +54,14 @@ class CohoMapMode(AbstractAnalysisMode):
54
54
  self.num_circ.setValue(2)
55
55
  elif preset == "hd":
56
56
  self.num_circ.setValue(1)
57
+
58
+ def apply_language(self, lang: str) -> None:
59
+ is_zh = str(lang).lower().startswith("zh")
60
+ if is_zh:
61
+ self.decode_version.setToolTip("解码版本(推荐 v2)。")
62
+ self.num_circ.setToolTip("解码圆数(grid 常用 2,hd 常用 1)。")
63
+ self.subsample.setToolTip("CohoMap 绘制下采样步长。")
64
+ else:
65
+ self.decode_version.setToolTip("Decode version (recommend v2).")
66
+ self.num_circ.setToolTip("Number of circles to decode (grid=2, hd=1).")
67
+ self.subsample.setToolTip("Subsample step for CohoMap plotting.")
@@ -192,3 +192,40 @@ class CohoSpaceMode(AbstractAnalysisMode):
192
192
  val = self.neuron_id.value() + int(delta)
193
193
  val = max(self.neuron_id.minimum(), min(self.neuron_id.maximum(), val))
194
194
  self.neuron_id.setValue(val)
195
+
196
+ def apply_language(self, lang: str) -> None:
197
+ is_zh = str(lang).lower().startswith("zh")
198
+ if is_zh:
199
+ self.dim_mode.setToolTip("解码维度模式(1D/2D)。")
200
+ self.dim.setToolTip("1D 解码维度索引。")
201
+ self.dim1.setToolTip("2D 解码维度 1。")
202
+ self.dim2.setToolTip("2D 解码维度 2。")
203
+ self.mode.setToolTip("spike 或 fr 模式。")
204
+ self.top_percent.setToolTip("活跃点百分比阈值。")
205
+ self.view.setToolTip("显示单神经元或群体。")
206
+ self.subsample.setToolTip("轨迹下采样步长。")
207
+ self.unfold.setToolTip("展开方式(square / skew)。")
208
+ self.skew_show_grid.setToolTip("skew 模式下显示网格。")
209
+ self.skew_tiles.setToolTip("skew 平铺次数。")
210
+ self.enable_score.setToolTip("计算 CohoScore 并选 top-K。")
211
+ self.top_k.setToolTip("Top-K 神经元数量。")
212
+ self.neuron_id.setToolTip("单神经元编号。")
213
+ self.use_best.setToolTip("使用 CohoScore 最小的神经元。")
214
+ self.btn_show.setToolTip("显示当前 neuron 结果。")
215
+ else:
216
+ self.dim_mode.setToolTip("Decode dimension mode (1D/2D).")
217
+ self.dim.setToolTip("1D decoded dimension index.")
218
+ self.dim1.setToolTip("2D decoded dimension 1.")
219
+ self.dim2.setToolTip("2D decoded dimension 2.")
220
+ self.mode.setToolTip("spike or fr mode.")
221
+ self.top_percent.setToolTip("Active percentile threshold.")
222
+ self.view.setToolTip("Show single neuron or population.")
223
+ self.subsample.setToolTip("Trajectory subsample step.")
224
+ self.unfold.setToolTip("Unfold mode (square / skew).")
225
+ self.skew_show_grid.setToolTip("Show grid in skew mode.")
226
+ self.skew_tiles.setToolTip("Skew tiling count.")
227
+ self.enable_score.setToolTip("Compute CohoScore and top-K.")
228
+ self.top_k.setToolTip("Top-K neuron count.")
229
+ self.neuron_id.setToolTip("Single neuron id.")
230
+ self.use_best.setToolTip("Use neuron with lowest CohoScore.")
231
+ self.btn_show.setToolTip("Show current neuron result.")
@@ -50,3 +50,16 @@ class DecodeMode(AbstractAnalysisMode):
50
50
  self.num_circ.setValue(2)
51
51
  elif preset == "hd":
52
52
  self.num_circ.setValue(1)
53
+
54
+ def apply_language(self, lang: str) -> None:
55
+ is_zh = str(lang).lower().startswith("zh")
56
+ if is_zh:
57
+ self.decode_version.setToolTip("解码版本(推荐 v2)。")
58
+ self.num_circ.setToolTip("解码圆数(grid=2,hd=1)。")
59
+ self.real_ground.setToolTip("是否使用 real_ground。")
60
+ self.real_of.setToolTip("是否使用 real_of。")
61
+ else:
62
+ self.decode_version.setToolTip("Decode version (recommend v2).")
63
+ self.num_circ.setToolTip("Number of circles to decode (grid=2, hd=1).")
64
+ self.real_ground.setToolTip("Use real_ground if available.")
65
+ self.real_of.setToolTip("Use real_of if available.")
@@ -79,3 +79,20 @@ class FRMode(AbstractAnalysisMode):
79
79
  self.time_end.setRange(0, total_steps)
80
80
  if self.time_end.value() == 0:
81
81
  self.time_end.setValue(total_steps)
82
+
83
+ def apply_language(self, lang: str) -> None:
84
+ is_zh = str(lang).lower().startswith("zh")
85
+ if is_zh:
86
+ self.normalize.setToolTip("归一化方式;none 表示不归一化。")
87
+ self.mode.setToolTip("fr 需要预处理;spike 直接用事件。")
88
+ self.neuron_start.setToolTip("神经元起始索引。")
89
+ self.neuron_end.setToolTip("神经元结束索引(不包含)。")
90
+ self.time_start.setToolTip("时间起始索引。")
91
+ self.time_end.setToolTip("时间结束索引(不包含)。")
92
+ else:
93
+ self.normalize.setToolTip("Normalization method; none = no normalization.")
94
+ self.mode.setToolTip("fr requires preprocess; spike uses events directly.")
95
+ self.neuron_start.setToolTip("Start neuron index.")
96
+ self.neuron_end.setToolTip("End neuron index (exclusive).")
97
+ self.time_start.setToolTip("Start time index.")
98
+ self.time_end.setToolTip("End time index (exclusive).")
@@ -86,6 +86,23 @@ class FRMMode(AbstractAnalysisMode):
86
86
  return
87
87
  self.neuron_id.setRange(0, max(0, neuron_count - 1))
88
88
 
89
+ def apply_language(self, lang: str) -> None:
90
+ is_zh = str(lang).lower().startswith("zh")
91
+ if is_zh:
92
+ self.neuron_id.setToolTip("要查看的神经元编号。")
93
+ self.bin_size.setToolTip("空间分箱大小。")
94
+ self.min_occupancy.setToolTip("最小占据数。")
95
+ self.smoothing.setToolTip("是否启用平滑。")
96
+ self.smooth_sigma.setToolTip("平滑强度(sigma)。")
97
+ self.mode.setToolTip("fr 需要预处理;spike 直接用事件。")
98
+ else:
99
+ self.neuron_id.setToolTip("Neuron index to inspect.")
100
+ self.bin_size.setToolTip("Spatial bin size.")
101
+ self.min_occupancy.setToolTip("Minimum occupancy.")
102
+ self.smoothing.setToolTip("Enable smoothing.")
103
+ self.smooth_sigma.setToolTip("Smoothing strength (sigma).")
104
+ self.mode.setToolTip("fr requires preprocess; spike uses events directly.")
105
+
89
106
  def _shift(self, delta: int) -> None:
90
107
  val = self.neuron_id.value() + int(delta)
91
108
  val = max(self.neuron_id.minimum(), min(self.neuron_id.maximum(), val))
@@ -117,6 +117,29 @@ class GridScoreMode(AbstractAnalysisMode):
117
117
  if "neuron_id" in meta:
118
118
  self.neuron_id.setValue(int(meta["neuron_id"]))
119
119
 
120
+ def apply_language(self, lang: str) -> None:
121
+ is_zh = str(lang).lower().startswith("zh")
122
+ if is_zh:
123
+ self.neuron_start.setToolTip("神经元起始索引。")
124
+ self.neuron_end.setToolTip("神经元结束索引(不包含)。")
125
+ self.bins.setToolTip("空间分箱数。")
126
+ self.min_occupancy.setToolTip("最小占据数。")
127
+ self.smoothing.setToolTip("是否启用平滑(需 scipy)。")
128
+ self.sigma.setToolTip("平滑强度(sigma)。")
129
+ self.overlap.setToolTip("自相关重叠比例。")
130
+ self.mode.setToolTip("fr 需要预处理;spike 直接用事件。")
131
+ self.score_thr.setToolTip("可视化阈值(仅显示)。")
132
+ else:
133
+ self.neuron_start.setToolTip("Start neuron index.")
134
+ self.neuron_end.setToolTip("End neuron index (exclusive).")
135
+ self.bins.setToolTip("Spatial bin count.")
136
+ self.min_occupancy.setToolTip("Minimum occupancy.")
137
+ self.smoothing.setToolTip("Enable smoothing (requires scipy).")
138
+ self.sigma.setToolTip("Smoothing strength (sigma).")
139
+ self.overlap.setToolTip("Autocorrelation overlap ratio.")
140
+ self.mode.setToolTip("fr requires preprocess; spike uses events directly.")
141
+ self.score_thr.setToolTip("Visualization threshold only.")
142
+
120
143
 
121
144
  class GridScoreInspectMode(GridScoreMode):
122
145
  name = "gridscore_inspect"
@@ -197,3 +197,46 @@ class PathCompareMode(AbstractAnalysisMode):
197
197
  "no_wrap": bool(self.no_wrap.isChecked()),
198
198
  "animation_format": "gif" if self.save_gif.isChecked() else "none",
199
199
  }
200
+
201
+ def apply_language(self, lang: str) -> None:
202
+ is_zh = str(lang).lower().startswith("zh")
203
+ if is_zh:
204
+ self.angle_scale.setToolTip("角度尺度:auto / rad / deg / unit。")
205
+ self.dim_mode.setToolTip("解码维度模式(1D/2D)。")
206
+ self.dim.setToolTip("1D 解码维度索引。")
207
+ self.dim1.setToolTip("2D 解码维度 1。")
208
+ self.dim2.setToolTip("2D 解码维度 2。")
209
+ self.use_box.setToolTip("使用 coordsbox / times_box 对齐(推荐速度过滤后开启)。")
210
+ self.interp_full.setToolTip("插值回完整轨迹。")
211
+ self.coords_key.setToolTip("可选:解码坐标键(默认 coords/coordsbox)。")
212
+ self.times_key.setToolTip("可选:times_box 键名。")
213
+ self.slice_mode.setToolTip("按时间或索引裁剪。")
214
+ self.tmin.setToolTip("起始时间(秒),-1 自动。")
215
+ self.tmax.setToolTip("结束时间(秒),-1 自动。")
216
+ self.imin.setToolTip("起始索引,-1 自动。")
217
+ self.imax.setToolTip("结束索引,-1 自动。")
218
+ self.stride.setToolTip("采样步长。")
219
+ self.tail.setToolTip("尾迹长度(帧)。")
220
+ self.fps.setToolTip("动画帧率。")
221
+ self.no_wrap.setToolTip("禁用角度环绕。")
222
+ self.save_gif.setToolTip("保存 GIF 动画。")
223
+ else:
224
+ self.angle_scale.setToolTip("Angle scale: auto / rad / deg / unit.")
225
+ self.dim_mode.setToolTip("Decode dimension mode (1D/2D).")
226
+ self.dim.setToolTip("1D decoded dimension index.")
227
+ self.dim1.setToolTip("2D decoded dimension 1.")
228
+ self.dim2.setToolTip("2D decoded dimension 2.")
229
+ self.use_box.setToolTip("Use coordsbox/times_box alignment (recommended with speed_filter).")
230
+ self.interp_full.setToolTip("Interpolate back to full trajectory.")
231
+ self.coords_key.setToolTip("Optional decode coords key (default coords/coordsbox).")
232
+ self.times_key.setToolTip("Optional times_box key.")
233
+ self.slice_mode.setToolTip("Slice by time or index.")
234
+ self.tmin.setToolTip("Start time (sec), -1 = auto.")
235
+ self.tmax.setToolTip("End time (sec), -1 = auto.")
236
+ self.imin.setToolTip("Start index, -1 = auto.")
237
+ self.imax.setToolTip("End index, -1 = auto.")
238
+ self.stride.setToolTip("Sampling stride.")
239
+ self.tail.setToolTip("Trail length (frames).")
240
+ self.fps.setToolTip("Animation FPS.")
241
+ self.no_wrap.setToolTip("Disable angle wrap.")
242
+ self.save_gif.setToolTip("Save GIF animation.")
@@ -110,3 +110,30 @@ class TDAMode(AbstractAnalysisMode):
110
110
  self.maxdim.setValue(2)
111
111
  elif preset == "hd":
112
112
  self.maxdim.setValue(1)
113
+
114
+ def apply_language(self, lang: str) -> None:
115
+ is_zh = str(lang).lower().startswith("zh")
116
+ if is_zh:
117
+ self.dim.setToolTip("PCA 维度(常见起点 6–12)。")
118
+ self.num_times.setToolTip("时间下采样步长;越大越快但可能丢细节。")
119
+ self.active_times.setToolTip("选取最活跃时间点数;过小不稳,过大更慢。")
120
+ self.k.setToolTip("采样/去噪相关参数,影响速度与稳定性。")
121
+ self.n_points.setToolTip("点云代表点数量,越大越慢。")
122
+ self.metric.setToolTip("距离度量;推荐 cosine。")
123
+ self.nbs.setToolTip("邻域规模参数,影响稳定性与速度。")
124
+ self.maxdim.setToolTip("最大同调维度;先 1 再 2。")
125
+ self.coeff.setToolTip("有限域系数(默认 47)。")
126
+ self.do_shuffle.setToolTip("显著性检验;代价高,建议少量。")
127
+ self.num_shuffles.setToolTip("Shuffle 次数(越多越慢)。")
128
+ else:
129
+ self.dim.setToolTip("PCA dimension (typical 6–12).")
130
+ self.num_times.setToolTip("Time downsampling step; larger is faster but less detail.")
131
+ self.active_times.setToolTip("Number of most active points; too small is unstable.")
132
+ self.k.setToolTip("Sampling/denoising parameter; affects speed/stability.")
133
+ self.n_points.setToolTip("Number of representative points; larger is slower.")
134
+ self.metric.setToolTip("Distance metric; recommend cosine.")
135
+ self.nbs.setToolTip("Neighborhood parameter; affects stability and speed.")
136
+ self.maxdim.setToolTip("Max homology dimension; start with 1, then 2.")
137
+ self.coeff.setToolTip("Finite field coefficient (default 47).")
138
+ self.do_shuffle.setToolTip("Significance test; expensive, keep small.")
139
+ self.num_shuffles.setToolTip("Number of shuffles (more is slower).")
@@ -20,7 +20,7 @@ from PySide6.QtWidgets import (
20
20
 
21
21
  from .controllers import AnalysisController, PreprocessController
22
22
  from .core import PipelineRunner, StateManager, WorkerManager
23
- from .resources import load_theme_qss
23
+ from .resources import load_theme_qss, resource_path
24
24
  from .views.pages.analysis_page import AnalysisPage
25
25
  from .views.pages.preprocess_page import PreprocessPage
26
26
  from .views.widgets.popup_combo import PopupComboBox
@@ -164,12 +164,13 @@ class MainWindow(QMainWindow):
164
164
  pass
165
165
 
166
166
  def _load_logo_pixmap(self, height: int):
167
- from pathlib import Path
168
-
169
- base = Path(__file__).resolve().parents[4] / "images"
170
- logo_path = base / "logo.svg"
167
+ logo_path = resource_path("logo.svg")
171
168
  if not logo_path.exists():
172
- return None
169
+ from pathlib import Path
170
+
171
+ logo_path = Path(__file__).resolve().parents[4] / "images" / "logo.svg"
172
+ if not logo_path.exists():
173
+ return None
173
174
  icon = QIcon(str(logo_path))
174
175
  if icon.isNull():
175
176
  return None
@@ -14,3 +14,8 @@ def load_theme_qss(theme: str) -> str:
14
14
  fname = "light.qss"
15
15
  path = Path(__file__).parent / fname
16
16
  return path.read_text(encoding="utf-8")
17
+
18
+
19
+ def resource_path(name: str) -> Path:
20
+ """Return the package resource path for a bundled file."""
21
+ return Path(__file__).parent / name
@@ -14,6 +14,14 @@ QLabel#muted {
14
14
  color: #9ca3af;
15
15
  }
16
16
 
17
+ QToolTip {
18
+ color: #e5e7eb;
19
+ background-color: #111827;
20
+ border: 1px solid #4b5563;
21
+ border-radius: 4px;
22
+ padding: 4px 8px;
23
+ }
24
+
17
25
  QFrame#card, QGroupBox#card {
18
26
  background-color: #1f2937;
19
27
  border: 1px solid #374151;
@@ -14,6 +14,14 @@ QLabel#muted {
14
14
  color: #6b7280;
15
15
  }
16
16
 
17
+ QToolTip {
18
+ color: #111827;
19
+ background-color: #fef3c7;
20
+ border: 1px solid #f59e0b;
21
+ border-radius: 4px;
22
+ padding: 4px 8px;
23
+ }
24
+
17
25
  QFrame#card, QGroupBox#card {
18
26
  background-color: #ffffff;
19
27
  border: 1px solid #e5e7eb;
@@ -0,0 +1,369 @@
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <svg id="Layer_1" data-name="Layer 1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0 0 1099.81 387.71">
3
+ <defs>
4
+ <style>
5
+ .cls-1, .cls-2 {
6
+ fill: none;
7
+ }
8
+
9
+ .cls-3 {
10
+ fill: #9600bf;
11
+ }
12
+
13
+ .cls-3, .cls-4, .cls-5, .cls-6, .cls-7, .cls-2, .cls-8, .cls-9, .cls-10, .cls-11, .cls-12, .cls-13, .cls-14, .cls-15, .cls-16, .cls-17, .cls-18, .cls-19 {
14
+ stroke: #fff;
15
+ stroke-linejoin: round;
16
+ }
17
+
18
+ .cls-4 {
19
+ fill: #009c70;
20
+ }
21
+
22
+ .cls-5 {
23
+ fill: #350400;
24
+ }
25
+
26
+ .cls-6 {
27
+ fill: #002faa;
28
+ }
29
+
30
+ .cls-7 {
31
+ fill: #00ce53;
32
+ }
33
+
34
+ .cls-8 {
35
+ fill: #9f2800;
36
+ }
37
+
38
+ .cls-9 {
39
+ fill: #8a0b00;
40
+ }
41
+
42
+ .cls-20 {
43
+ clip-path: url(#clippath-1);
44
+ }
45
+
46
+ .cls-10 {
47
+ fill: #1200df;
48
+ }
49
+
50
+ .cls-11 {
51
+ fill: #9f5000;
52
+ }
53
+
54
+ .cls-12 {
55
+ fill: #004b94;
56
+ }
57
+
58
+ .cls-13 {
59
+ fill: #7500b4;
60
+ }
61
+
62
+ .cls-14 {
63
+ fill: #c97700;
64
+ }
65
+
66
+ .cls-15 {
67
+ fill: #bc00c9;
68
+ }
69
+
70
+ .cls-16 {
71
+ fill: #d41a00;
72
+ }
73
+
74
+ .cls-17 {
75
+ fill: #2a72ff;
76
+ }
77
+
78
+ .cls-18 {
79
+ fill: #ff7e1f;
80
+ }
81
+
82
+ .cls-21 {
83
+ clip-path: url(#clippath);
84
+ }
85
+
86
+ .cls-19 {
87
+ fill: #00c570;
88
+ }
89
+ </style>
90
+ <clipPath id="clippath">
91
+ <polygon class="cls-1" points="799.99 32.33 799.99 32.41 750.01 59.66 700.02 32.36 700.02 32.33 750.01 5 750.01 5 799.99 32.33"/>
92
+ </clipPath>
93
+ <clipPath id="clippath-1">
94
+ <rect class="cls-1" x="695.02" width="109.97" height="64.66"/>
95
+ </clipPath>
96
+ </defs>
97
+ <g id="C">
98
+ <polygon class="cls-10" points="200.56 31.32 200.56 31.4 150.58 58.65 100.59 31.35 100.59 31.32 150.58 3.99 150.58 3.99 200.56 31.32"/>
99
+ <polygon class="cls-17" points="200.44 31.54 200.44 86.13 150.45 113.46 150.45 58.8 200.44 31.54"/>
100
+ <polygon class="cls-17" points="150.45 58.8 150.45 113.46 100.47 86.13 100.47 31.49 150.45 58.8"/>
101
+ <polygon class="cls-17" points="200.44 304.76 200.44 359.42 150.45 332.09 150.45 277.45 200.44 304.76"/>
102
+ <polygon class="cls-10" points="250.42 58.75 250.42 58.82 200.44 86.08 150.45 58.77 150.45 58.75 200.44 31.42 200.44 31.41 250.42 58.75"/>
103
+ <polygon class="cls-12" points="200.44 86.08 200.44 140.74 150.45 113.41 150.45 58.77 200.44 86.08"/>
104
+ <polygon class="cls-10" points="150.45 58.72 150.45 58.8 100.47 86.05 50.48 58.75 50.48 58.72 100.47 31.39 100.47 31.39 150.45 58.72"/>
105
+ <polygon class="cls-6" points="150.45 58.8 150.45 113.38 100.47 140.72 100.47 86.05 150.45 58.8"/>
106
+ <polygon class="cls-6" points="250.42 58.8 250.42 113.38 200.43 140.72 200.43 86.05 250.42 58.8"/>
107
+ <polygon class="cls-6" points="100.47 86.05 100.47 140.72 50.48 113.38 50.48 58.75 100.47 86.05"/>
108
+ <polygon class="cls-12" points="100.47 250.04 100.47 250.12 50.48 277.37 .5 250.07 .5 250.04 50.48 222.71 50.49 222.71 100.47 250.04"/>
109
+ <polygon class="cls-17" points="100.47 250.12 100.47 304.71 50.48 332.04 50.48 277.37 100.47 250.12"/>
110
+ <polygon class="cls-12" points="50.48 277.37 50.48 332.04 .5 304.7 .5 250.07 50.48 277.37"/>
111
+ <polygon class="cls-6" points="100.47 195.38 100.47 195.46 50.48 222.71 .5 195.41 .5 195.38 50.48 168.05 50.49 168.05 100.47 195.38"/>
112
+ <polygon class="cls-6" points="100.47 195.46 100.47 250.04 50.48 277.37 50.48 222.71 100.47 195.46"/>
113
+ <polygon class="cls-12" points="50.48 222.71 50.48 277.37 .5 250.04 .5 195.41 50.48 222.71"/>
114
+ <polygon class="cls-6" points="100.47 140.72 100.47 140.79 50.48 168.05 .5 140.74 .5 140.71 50.48 113.39 50.49 113.38 100.47 140.72"/>
115
+ <polygon class="cls-6" points="100.47 140.79 100.47 195.38 50.48 222.71 50.48 168.05 100.47 140.79"/>
116
+ <polygon class="cls-12" points="50.48 168.05 50.48 222.71 .5 195.38 .5 140.74 50.48 168.05"/>
117
+ <polygon class="cls-10" points="100.47 86.05 100.47 86.13 50.48 113.38 .5 86.08 .5 86.05 50.48 58.72 50.49 58.72 100.47 86.05"/>
118
+ <polygon class="cls-6" points="100.47 86.13 100.47 140.72 50.48 168.05 50.48 113.38 100.47 86.13"/>
119
+ <polygon class="cls-12" points="50.48 113.38 50.48 168.05 .5 140.71 .5 86.08 50.48 113.38"/>
120
+ <polygon class="cls-10" points="150.45 277.38 150.45 277.45 100.47 304.71 50.48 277.4 50.48 277.37 100.47 250.05 100.47 250.04 150.45 277.38"/>
121
+ <polygon class="cls-17" points="150.45 277.45 150.45 332.04 100.47 359.37 100.47 304.71 150.45 277.45"/>
122
+ <polygon class="cls-12" points="100.47 304.71 100.47 359.37 50.48 332.04 50.48 277.4 100.47 304.71"/>
123
+ <polygon class="cls-10" points="200.44 304.68 200.44 304.76 150.45 332.01 100.47 304.71 100.47 304.68 150.45 277.35 150.45 277.35 200.44 304.68"/>
124
+ <polygon class="cls-6" points="200.44 304.76 200.44 359.34 150.45 386.68 150.45 332.01 200.44 304.76"/>
125
+ <polygon class="cls-12" points="150.45 332.01 150.45 386.68 100.47 359.34 100.47 304.71 150.45 332.01"/>
126
+ </g>
127
+ <g id="A">
128
+ <g id="basic_A">
129
+ <polygon class="cls-4" points="450.34 222.79 450.34 277.38 425.6 290.91 425.59 290.91 403.98 302.73 400.36 304.71 400.35 304.71 400.35 250.04 400.36 250.04 400.6 249.9 425.59 236.28 425.6 236.28 450.34 222.79"/>
130
+ <polygon class="cls-7" points="450.34 222.71 450.34 222.79 400.36 250.04 350.37 222.74 350.37 222.71 400.36 195.38 400.36 195.38 450.34 222.71"/>
131
+ <polygon class="cls-19" points="400.36 250.04 400.36 304.71 350.37 277.37 350.37 222.74 400.36 250.04"/>
132
+ </g>
133
+ <g id="basic_A-2" data-name="basic_A">
134
+ <polygon class="cls-4" points="350.38 222.99 350.38 277.58 325.64 291.11 325.63 291.11 304.02 302.93 300.4 304.91 300.39 304.91 300.39 250.24 300.4 250.24 300.64 250.1 325.63 236.48 325.64 236.48 350.38 222.99"/>
135
+ <polygon class="cls-7" points="350.38 222.92 350.38 222.99 300.4 250.25 250.41 222.94 250.41 222.91 300.4 195.59 300.4 195.58 350.38 222.92"/>
136
+ <polygon class="cls-19" points="300.4 250.25 300.4 304.91 250.41 277.58 250.41 222.94 300.4 250.25"/>
137
+ </g>
138
+ <g id="basic_A-3" data-name="basic_A">
139
+ <polygon class="cls-4" points="300.4 195.58 300.4 250.17 275.66 263.7 275.65 263.7 254.04 275.52 250.42 277.5 250.41 277.5 250.41 222.83 250.42 222.83 250.66 222.69 275.65 209.07 275.66 209.07 300.4 195.58"/>
140
+ <polygon class="cls-7" points="300.4 195.51 300.4 195.58 250.41 222.84 200.43 195.53 200.43 195.5 250.41 168.18 250.42 168.17 300.4 195.51"/>
141
+ <polygon class="cls-19" points="250.41 222.84 250.41 277.5 200.43 250.17 200.43 195.53 250.41 222.84"/>
142
+ </g>
143
+ <g id="basic_A-4" data-name="basic_A">
144
+ <polygon class="cls-4" points="350.38 114.21 350.38 168.8 325.64 182.33 325.63 182.33 304.02 194.15 300.4 196.13 300.39 196.13 300.39 141.46 300.4 141.46 300.64 141.32 325.63 127.7 325.64 127.7 350.38 114.21"/>
145
+ <polygon class="cls-7" points="350.37 114.14 350.37 114.22 300.39 141.47 250.41 114.16 250.41 114.14 300.39 86.81 300.39 86.81 350.37 114.14"/>
146
+ <polygon class="cls-19" points="300.39 141.47 300.39 196.13 250.41 168.8 250.41 114.16 300.39 141.47"/>
147
+ </g>
148
+ <g id="basic_A-5" data-name="basic_A">
149
+ <polygon class="cls-4" points="450.36 114.21 450.36 168.8 425.62 182.33 425.61 182.33 404 194.15 400.38 196.13 400.37 196.13 400.37 141.46 400.38 141.46 400.62 141.32 425.61 127.7 425.62 127.7 450.36 114.21"/>
150
+ <polygon class="cls-7" points="450.36 114.14 450.36 114.21 400.38 141.47 350.39 114.16 350.39 114.14 400.38 86.81 400.38 86.8 450.36 114.14"/>
151
+ <polygon class="cls-19" points="400.38 141.47 400.38 196.13 350.39 168.8 350.39 114.16 400.38 141.47"/>
152
+ </g>
153
+ <g id="basic_A-6" data-name="basic_A">
154
+ <polygon class="cls-4" points="400.36 32.29 400.36 86.88 375.62 100.41 375.61 100.41 354 112.23 350.38 114.21 350.37 114.21 350.37 59.54 350.38 59.54 350.62 59.4 375.61 45.78 375.62 45.78 400.36 32.29"/>
155
+ <polygon class="cls-7" points="400.36 32.22 400.36 32.3 350.37 59.55 300.39 32.24 300.39 32.22 350.37 4.89 350.38 4.89 400.36 32.22"/>
156
+ <polygon class="cls-19" points="350.37 59.55 350.37 114.21 300.39 86.88 300.39 32.24 350.37 59.55"/>
157
+ </g>
158
+ <g id="basic_A-7" data-name="basic_A">
159
+ <polygon class="cls-4" points="550.33 277.42 550.33 332.01 525.59 345.54 525.58 345.54 503.97 357.36 500.35 359.34 500.34 359.34 500.34 304.67 500.35 304.67 500.59 304.53 525.58 290.91 525.59 290.91 550.33 277.42"/>
160
+ <polygon class="cls-7" points="550.33 277.35 550.33 277.42 500.35 304.68 450.36 277.37 450.36 277.35 500.35 250.02 500.35 250.02 550.33 277.35"/>
161
+ <polygon class="cls-19" points="500.35 304.68 500.35 359.34 450.36 332.01 450.36 277.37 500.35 304.68"/>
162
+ </g>
163
+ <g id="basic_A-8" data-name="basic_A">
164
+ <polygon class="cls-4" points="500.34 195.5 500.34 250.09 475.6 263.62 475.59 263.62 453.98 275.44 450.36 277.42 450.35 277.42 450.35 222.75 450.36 222.75 450.6 222.61 475.59 208.99 475.6 208.99 500.34 195.5"/>
165
+ <polygon class="cls-7" points="500.34 195.43 500.34 195.51 450.35 222.76 400.37 195.45 400.37 195.43 450.35 168.1 450.36 168.1 500.34 195.43"/>
166
+ <polygon class="cls-19" points="450.35 222.76 450.35 277.42 400.37 250.09 400.37 195.45 450.35 222.76"/>
167
+ </g>
168
+ <polygon class="cls-7" points="250.41 277.43 250.41 277.51 250.03 277.72 200.43 304.76 150.45 277.46 150.45 277.43 150.52 277.39 200.43 250.1 200.89 250.35 250.41 277.43"/>
169
+ <polygon class="cls-4" points="250.42 277.5 250.42 332.09 200.44 359.42 200.44 304.76 250.42 277.5"/>
170
+ </g>
171
+ <g id="s">
172
+ <g id="basic_s">
173
+ <polygon class="cls-8" points="1099.13 305.42 1099.13 305.46 1074.13 319.08 1049.14 305.43 1049.14 305.42 1074.13 291.75 1074.14 291.75 1099.13 305.42"/>
174
+ <polygon class="cls-5" points="1099.13 278.12 1099.13 305.41 1086.76 312.18 1086.75 312.18 1075.95 318.09 1074.14 319.08 1074.13 319.08 1074.13 291.74 1074.14 291.74 1074.26 291.67 1086.75 284.86 1086.76 284.86 1099.13 278.12"/>
175
+ <polygon class="cls-16" points="1099.13 278.08 1099.13 278.12 1074.13 291.74 1049.14 278.09 1049.14 278.08 1074.13 264.41 1074.14 264.41 1099.13 278.08"/>
176
+ <polygon class="cls-9" points="1074.13 291.74 1074.13 319.08 1049.14 305.41 1049.14 278.09 1074.13 291.74"/>
177
+ </g>
178
+ <g id="basic_s-2" data-name="basic_s">
179
+ <polygon class="cls-8" points="1074.14 319.09 1074.14 319.12 1049.14 332.75 1024.15 319.1 1024.15 319.08 1049.14 305.42 1049.14 305.42 1074.14 319.09"/>
180
+ <polygon class="cls-5" points="1074.14 291.79 1074.14 319.08 1061.77 325.85 1061.76 325.85 1050.96 331.76 1049.15 332.75 1049.14 332.75 1049.14 305.41 1049.15 305.41 1049.27 305.34 1061.76 298.53 1061.77 298.53 1074.14 291.79"/>
181
+ <polygon class="cls-16" points="1074.14 291.75 1074.14 291.79 1049.14 305.41 1024.15 291.76 1024.15 291.75 1049.14 278.08 1049.15 278.08 1074.14 291.75"/>
182
+ <polygon class="cls-9" points="1049.14 305.41 1049.14 332.74 1024.15 319.08 1024.15 291.76 1049.14 305.41"/>
183
+ </g>
184
+ <g id="basic_s-3" data-name="basic_s">
185
+ <polygon class="cls-8" points="1049.14 332.94 1049.14 332.98 1024.15 346.61 999.16 332.96 999.16 332.94 1024.15 319.28 1024.15 319.28 1049.14 332.94"/>
186
+ <polygon class="cls-5" points="1049.15 305.64 1049.15 332.94 1036.78 339.7 1036.77 339.7 1025.97 345.61 1024.16 346.6 1024.15 346.6 1024.15 319.27 1024.16 319.27 1024.28 319.2 1036.77 312.39 1036.78 312.39 1049.15 305.64"/>
187
+ <polygon class="cls-16" points="1049.14 305.61 1049.14 305.64 1024.15 319.27 999.16 305.62 999.16 305.6 1024.15 291.94 1024.15 291.94 1049.14 305.61"/>
188
+ <polygon class="cls-9" points="1024.15 319.27 1024.15 346.6 999.16 332.94 999.16 305.62 1024.15 319.27"/>
189
+ </g>
190
+ <g id="basic_s-4" data-name="basic_s">
191
+ <polygon class="cls-8" points="1024.15 346.61 1024.15 346.65 999.16 360.28 974.17 346.63 974.17 346.61 999.16 332.95 999.16 332.95 1024.15 346.61"/>
192
+ <polygon class="cls-5" points="1024.15 319.31 1024.15 346.61 1011.78 353.37 1011.78 353.37 1000.97 359.28 999.16 360.27 999.16 360.27 999.16 332.94 999.16 332.94 999.28 332.87 1011.78 326.06 1011.78 326.06 1024.15 319.31"/>
193
+ <polygon class="cls-16" points="1024.15 319.28 1024.15 319.31 999.16 332.94 974.17 319.29 974.17 319.27 999.16 305.61 999.16 305.61 1024.15 319.28"/>
194
+ <polygon class="cls-9" points="999.16 332.94 999.16 360.27 974.17 346.61 974.17 319.29 999.16 332.94"/>
195
+ </g>
196
+ <g id="basic_s-5" data-name="basic_s">
197
+ <polygon class="cls-8" points="1099.13 278.13 1099.13 278.17 1074.14 291.79 1049.14 278.14 1049.14 278.13 1074.14 264.46 1074.14 264.46 1099.13 278.13"/>
198
+ <polygon class="cls-5" points="1099.13 250.83 1099.13 278.12 1086.76 284.89 1086.75 284.89 1075.95 290.8 1074.14 291.79 1074.13 291.79 1074.13 264.45 1074.14 264.45 1074.26 264.38 1086.75 257.57 1086.76 257.57 1099.13 250.83"/>
199
+ <polygon class="cls-16" points="1099.13 250.79 1099.13 250.83 1074.14 264.45 1049.14 250.8 1049.14 250.79 1074.14 237.12 1074.14 237.12 1099.13 250.79"/>
200
+ <polygon class="cls-9" points="1074.14 264.45 1074.14 291.79 1049.14 278.12 1049.14 250.8 1074.14 264.45"/>
201
+ </g>
202
+ <g id="basic_s-6" data-name="basic_s">
203
+ <polygon class="cls-8" points="1099.13 250.75 1099.13 250.79 1074.14 264.42 1049.14 250.77 1049.14 250.75 1074.14 237.09 1074.14 237.09 1099.13 250.75"/>
204
+ <polygon class="cls-5" points="1099.13 223.45 1099.13 250.75 1086.76 257.51 1086.75 257.51 1075.95 263.42 1074.14 264.41 1074.13 264.41 1074.13 237.08 1074.14 237.08 1074.26 237.01 1086.75 230.2 1086.76 230.2 1099.13 223.45"/>
205
+ <polygon class="cls-16" points="1099.13 223.41 1099.13 223.45 1074.14 237.08 1049.14 223.43 1049.14 223.41 1074.14 209.75 1074.14 209.75 1099.13 223.41"/>
206
+ <polygon class="cls-9" points="1074.14 237.08 1074.14 264.41 1049.14 250.75 1049.14 223.43 1074.14 237.08"/>
207
+ </g>
208
+ <g id="basic_s-7" data-name="basic_s">
209
+ <polygon class="cls-8" points="1074.13 264.42 1074.13 264.45 1049.14 278.08 1024.15 264.43 1024.15 264.41 1049.14 250.75 1049.14 250.75 1074.13 264.42"/>
210
+ <polygon class="cls-5" points="1074.13 237.12 1074.13 264.41 1061.76 271.18 1061.76 271.18 1050.95 277.09 1049.14 278.08 1049.14 278.08 1049.14 250.74 1049.14 250.74 1049.26 250.67 1061.76 243.86 1061.76 243.86 1074.13 237.12"/>
211
+ <polygon class="cls-16" points="1074.13 237.08 1074.13 237.12 1049.14 250.74 1024.15 237.09 1024.15 237.08 1049.14 223.41 1049.14 223.41 1074.13 237.08"/>
212
+ <polygon class="cls-9" points="1049.14 250.74 1049.14 278.07 1024.15 264.41 1024.15 237.09 1049.14 250.74"/>
213
+ </g>
214
+ <g id="basic_s-8" data-name="basic_s">
215
+ <polygon class="cls-8" points="1049.14 278.1 1049.14 278.14 1024.15 291.77 999.16 278.11 999.16 278.1 1024.15 264.44 1024.15 264.43 1049.14 278.1"/>
216
+ <polygon class="cls-5" points="1049.15 250.8 1049.15 278.1 1036.78 284.86 1036.77 284.86 1025.97 290.77 1024.16 291.76 1024.15 291.76 1024.15 264.43 1024.16 264.43 1024.28 264.36 1036.77 257.55 1036.78 257.55 1049.15 250.8"/>
217
+ <polygon class="cls-16" points="1049.14 250.76 1049.14 250.8 1024.15 264.43 999.16 250.78 999.16 250.76 1024.15 237.1 1024.15 237.1 1049.14 250.76"/>
218
+ <polygon class="cls-9" points="1024.15 264.43 1024.15 291.76 999.16 278.09 999.16 250.78 1024.15 264.43"/>
219
+ </g>
220
+ <g id="basic_s-9" data-name="basic_s">
221
+ <polygon class="cls-8" points="1024.15 291.74 1024.15 291.78 999.16 305.41 974.17 291.76 974.17 291.74 999.16 278.08 999.16 278.08 1024.15 291.74"/>
222
+ <polygon class="cls-5" points="1024.15 264.44 1024.15 291.74 1011.78 298.5 1011.78 298.5 1000.97 304.41 999.16 305.4 999.16 305.4 999.16 278.07 999.16 278.07 999.28 278 1011.78 271.19 1011.78 271.19 1024.15 264.44"/>
223
+ <polygon class="cls-16" points="1024.15 264.41 1024.15 264.44 999.16 278.07 974.17 264.42 974.17 264.4 999.16 250.74 999.16 250.74 1024.15 264.41"/>
224
+ <polygon class="cls-9" points="999.16 278.07 999.16 305.4 974.17 291.74 974.17 264.42 999.16 278.07"/>
225
+ </g>
226
+ <g id="basic_s-10" data-name="basic_s">
227
+ <polygon class="cls-8" points="1024.15 264.5 1024.15 264.53 999.16 278.16 974.17 264.51 974.17 264.49 999.16 250.83 999.16 250.83 1024.15 264.5"/>
228
+ <polygon class="cls-5" points="1024.15 237.2 1024.15 264.49 1011.78 271.26 1011.78 271.26 1000.97 277.17 999.16 278.16 999.16 278.16 999.16 250.82 999.16 250.82 999.28 250.75 1011.78 243.94 1011.78 243.94 1024.15 237.2"/>
229
+ <polygon class="cls-16" points="1024.15 237.16 1024.15 237.2 999.16 250.82 974.17 237.17 974.17 237.16 999.16 223.49 999.16 223.49 1024.15 237.16"/>
230
+ <polygon class="cls-9" points="999.16 250.82 999.16 278.16 974.17 264.49 974.17 237.17 999.16 250.82"/>
231
+ </g>
232
+ <g id="basic_s-11" data-name="basic_s">
233
+ <polygon class="cls-8" points="1099.31 196.55 1099.31 196.58 1074.32 210.21 1049.32 196.56 1049.32 196.54 1074.32 182.88 1074.32 182.88 1099.31 196.55"/>
234
+ <polygon class="cls-5" points="1099.31 169.25 1099.31 196.54 1086.94 203.31 1086.93 203.31 1076.13 209.22 1074.32 210.21 1074.31 210.21 1074.31 182.87 1074.32 182.87 1074.44 182.8 1086.93 175.99 1086.94 175.99 1099.31 169.25"/>
235
+ <polygon class="cls-16" points="1099.31 169.21 1099.31 169.25 1074.32 182.87 1049.33 169.22 1049.33 169.21 1074.32 155.54 1074.32 155.54 1099.31 169.21"/>
236
+ <polygon class="cls-9" points="1074.32 182.87 1074.32 210.21 1049.33 196.54 1049.33 169.22 1074.32 182.87"/>
237
+ </g>
238
+ <g id="basic_s-12" data-name="basic_s">
239
+ <polygon class="cls-8" points="1074.32 210.17 1074.32 210.21 1049.33 223.83 1024.34 210.18 1024.34 210.17 1049.33 196.5 1049.33 196.5 1074.32 210.17"/>
240
+ <polygon class="cls-5" points="1074.32 182.87 1074.32 210.16 1061.95 216.93 1061.95 216.93 1051.14 222.84 1049.33 223.83 1049.33 223.83 1049.33 196.49 1049.33 196.49 1049.45 196.42 1061.95 189.61 1061.95 189.61 1074.32 182.87"/>
241
+ <polygon class="cls-16" points="1074.32 182.83 1074.32 182.87 1049.33 196.49 1024.34 182.84 1024.34 182.83 1049.33 169.16 1049.33 169.16 1074.32 182.83"/>
242
+ <polygon class="cls-9" points="1049.33 196.49 1049.33 223.83 1024.34 210.16 1024.34 182.84 1049.33 196.49"/>
243
+ </g>
244
+ <g id="basic_s-13" data-name="basic_s">
245
+ <polygon class="cls-8" points="1049.32 223.84 1049.32 223.87 1024.33 237.5 999.34 223.85 999.34 223.83 1024.33 210.17 1024.33 210.17 1049.32 223.84"/>
246
+ <polygon class="cls-5" points="1049.33 196.54 1049.33 223.83 1036.96 230.6 1036.95 230.6 1026.15 236.51 1024.34 237.5 1024.33 237.5 1024.33 210.16 1024.34 210.16 1024.46 210.09 1036.95 203.28 1036.96 203.28 1049.33 196.54"/>
247
+ <polygon class="cls-16" points="1049.33 196.5 1049.33 196.54 1024.33 210.16 999.34 196.51 999.34 196.5 1024.33 182.83 1024.34 182.83 1049.33 196.5"/>
248
+ <polygon class="cls-9" points="1024.33 210.16 1024.33 237.49 999.34 223.83 999.34 196.51 1024.33 210.16"/>
249
+ </g>
250
+ <g id="basic_s-14" data-name="basic_s">
251
+ <polygon class="cls-8" points="1024.34 237.51 1024.34 237.54 999.34 251.17 974.35 237.52 974.35 237.5 999.34 223.84 999.35 223.84 1024.34 237.51"/>
252
+ <polygon class="cls-5" points="1024.34 210.2 1024.34 237.5 1011.97 244.26 1011.96 244.26 1001.16 250.17 999.35 251.16 999.34 251.16 999.34 223.83 999.35 223.83 999.47 223.76 1011.96 216.95 1011.97 216.95 1024.34 210.2"/>
253
+ <polygon class="cls-16" points="1024.34 210.17 1024.34 210.21 999.35 223.83 974.35 210.18 974.35 210.17 999.35 196.5 999.35 196.5 1024.34 210.17"/>
254
+ <polygon class="cls-9" points="999.35 223.83 999.35 251.16 974.35 237.5 974.35 210.18 999.35 223.83"/>
255
+ </g>
256
+ </g>
257
+ <g>
258
+ <g class="cls-21">
259
+ <g class="cls-20">
260
+ <image width="230" height="136" transform="translate(694.68 -.39) scale(.48)" xlink:href=""/>
261
+ </g>
262
+ </g>
263
+ <polygon class="cls-2" points="799.99 32.33 799.99 32.41 750.01 59.66 700.02 32.36 700.02 32.33 750.01 5 750.01 5 799.99 32.33"/>
264
+ </g>
265
+ <g id="N2">
266
+ <g id="basic_N2">
267
+ <polygon class="cls-11" points="849.94 223.16 849.94 277.75 825.2 291.28 825.19 291.28 803.58 303.1 799.96 305.08 799.95 305.08 799.95 250.41 799.96 250.41 800.2 250.27 825.19 236.65 825.2 236.65 849.94 223.16"/>
268
+ <polygon class="cls-18" points="849.94 223.08 849.94 223.16 799.96 250.41 749.97 223.11 749.97 223.08 799.96 195.75 799.96 195.75 849.94 223.08"/>
269
+ <polygon class="cls-14" points="799.96 250.41 799.96 305.08 749.97 277.75 749.97 223.11 799.96 250.41"/>
270
+ </g>
271
+ <g id="basic_N2-2" data-name="basic_N2">
272
+ <polygon class="cls-11" points="849.94 168.6 849.94 223.19 825.2 236.72 825.19 236.72 803.58 248.54 799.96 250.52 799.95 250.52 799.95 195.85 799.96 195.85 800.2 195.71 825.19 182.09 825.2 182.09 849.94 168.6"/>
273
+ <polygon class="cls-18" points="849.94 168.52 849.94 168.6 799.96 195.85 749.97 168.55 749.97 168.52 799.96 141.19 799.96 141.19 849.94 168.52"/>
274
+ <polygon class="cls-14" points="799.96 195.85 799.96 250.52 749.97 223.18 749.97 168.55 799.96 195.85"/>
275
+ </g>
276
+ <g id="basic_N2-3" data-name="basic_N2">
277
+ <polygon class="cls-11" points="849.94 113.93 849.94 168.52 825.2 182.05 825.19 182.05 803.58 193.87 799.96 195.85 799.95 195.85 799.95 141.18 799.96 141.18 800.2 141.04 825.19 127.42 825.2 127.42 849.94 113.93"/>
278
+ <polygon class="cls-18" points="849.94 113.86 849.94 113.94 799.96 141.19 749.97 113.88 749.97 113.86 799.96 86.53 799.96 86.53 849.94 113.86"/>
279
+ <polygon class="cls-14" points="799.96 141.19 799.96 195.85 749.97 168.52 749.97 113.88 799.96 141.19"/>
280
+ </g>
281
+ <g id="basic_N2-4" data-name="basic_N2">
282
+ <polygon class="cls-11" points="849.95 59.72 849.95 114.31 825.21 127.84 825.2 127.84 803.59 139.66 799.97 141.64 799.96 141.64 799.96 86.97 799.97 86.97 800.21 86.83 825.2 73.21 825.21 73.21 849.95 59.72"/>
283
+ <polygon class="cls-18" points="849.94 59.64 849.94 59.72 799.96 86.98 749.98 59.67 749.98 59.64 799.96 32.31 799.96 32.31 849.94 59.64"/>
284
+ <polygon class="cls-14" points="799.96 86.98 799.96 141.64 749.98 114.31 749.98 59.67 799.96 86.98"/>
285
+ </g>
286
+ <g id="basic_N2-5" data-name="basic_N2">
287
+ <polygon class="cls-14" points="949.91 223.33 949.91 277.92 925.17 291.45 925.16 291.45 903.55 303.27 899.93 305.25 899.92 305.25 899.92 250.58 899.93 250.58 900.17 250.44 925.16 236.82 925.17 236.82 949.91 223.33"/>
288
+ <polygon class="cls-18" points="949.91 223.26 949.91 223.33 899.93 250.59 849.94 223.28 849.94 223.25 899.93 195.93 899.93 195.92 949.91 223.26"/>
289
+ <polygon class="cls-14" points="899.93 250.59 899.93 305.25 849.94 277.92 849.94 223.28 899.93 250.59"/>
290
+ </g>
291
+ <g id="basic_N2-6" data-name="basic_N2">
292
+ <polygon class="cls-11" points="899.93 141.59 899.93 196.18 875.19 209.71 875.18 209.71 853.57 221.53 849.95 223.51 849.94 223.51 849.94 168.84 849.95 168.84 850.19 168.7 875.18 155.08 875.19 155.08 899.93 141.59"/>
293
+ <polygon class="cls-18" points="899.93 141.52 899.93 141.59 849.94 168.85 799.96 141.54 799.96 141.52 849.94 114.19 849.95 114.18 899.93 141.52"/>
294
+ <polygon class="cls-14" points="849.94 168.85 849.94 223.51 799.96 196.18 799.96 141.54 849.94 168.85"/>
295
+ </g>
296
+ <g id="basic_N2-7" data-name="basic_N2">
297
+ <polygon class="cls-11" points="999.9 305.29 999.9 359.88 975.16 373.41 975.15 373.41 953.54 385.23 949.92 387.21 949.91 387.21 949.91 332.54 949.92 332.54 950.16 332.4 975.15 318.78 975.16 318.78 999.9 305.29"/>
298
+ <polygon class="cls-18" points="999.89 305.22 999.89 305.29 949.91 332.55 899.93 305.24 899.93 305.22 949.91 277.89 949.91 277.88 999.89 305.22"/>
299
+ <polygon class="cls-14" points="949.91 332.55 949.91 387.21 899.93 359.88 899.93 305.24 949.91 332.55"/>
300
+ </g>
301
+ <g id="basic_N2-8" data-name="basic_N2">
302
+ <polygon class="cls-11" points="999.9 250.58 999.9 305.17 975.16 318.7 975.15 318.7 953.54 330.52 949.92 332.5 949.91 332.5 949.91 277.83 949.92 277.83 950.16 277.69 975.15 264.07 975.16 264.07 999.9 250.58"/>
303
+ <polygon class="cls-11" points="999.9 250.51 999.9 250.58 949.91 277.84 899.93 250.53 899.93 250.5 949.91 223.18 949.92 223.17 999.9 250.51"/>
304
+ <polygon class="cls-14" points="949.91 277.84 949.91 332.5 899.93 305.17 899.93 250.53 949.91 277.84"/>
305
+ </g>
306
+ <g id="basic_N2-9" data-name="basic_N2">
307
+ <polygon class="cls-11" points="999.9 195.92 999.9 250.51 975.16 264.04 975.15 264.04 953.54 275.86 949.92 277.84 949.91 277.84 949.91 223.17 949.92 223.17 950.16 223.03 975.15 209.41 975.16 209.41 999.9 195.92"/>
308
+ <polygon class="cls-18" points="999.9 195.84 999.9 195.92 949.91 223.17 899.93 195.87 899.93 195.84 949.91 168.51 949.92 168.51 999.9 195.84"/>
309
+ <polygon class="cls-14" points="949.91 223.17 949.91 277.84 899.93 250.5 899.93 195.87 949.91 223.17"/>
310
+ </g>
311
+ <g id="basic_N2-10" data-name="basic_N2">
312
+ <polygon class="cls-11" points="999.91 141.73 999.91 196.32 975.17 209.85 975.16 209.85 953.55 221.67 949.93 223.65 949.92 223.65 949.92 168.98 949.93 168.98 950.17 168.84 975.16 155.22 975.17 155.22 999.91 141.73"/>
313
+ <polygon class="cls-18" points="999.91 141.66 999.91 141.73 949.93 168.99 899.94 141.68 899.94 141.65 949.93 114.33 949.93 114.32 999.91 141.66"/>
314
+ <polygon class="cls-14" points="949.93 168.99 949.93 223.65 899.94 196.32 899.94 141.68 949.93 168.99"/>
315
+ </g>
316
+ </g>
317
+ <g id="N1">
318
+ <g id="basic_N1">
319
+ <polygon class="cls-13" points="750.04 223.12 750.04 277.71 725.3 291.24 725.29 291.24 703.68 303.06 700.06 305.04 700.05 305.04 700.05 250.37 700.06 250.37 700.3 250.23 725.29 236.61 725.3 236.61 750.04 223.12"/>
320
+ <polygon class="cls-15" points="750.04 223.04 750.04 223.12 700.06 250.37 650.07 223.07 650.07 223.04 700.06 195.71 700.06 195.71 750.04 223.04"/>
321
+ <polygon class="cls-3" points="700.06 250.37 700.06 305.04 650.07 277.7 650.07 223.07 700.06 250.37"/>
322
+ </g>
323
+ <g id="basic_N1-2" data-name="basic_N1">
324
+ <polygon class="cls-13" points="750.04 168.6 750.04 223.19 725.3 236.72 725.29 236.72 703.68 248.54 700.06 250.52 700.05 250.52 700.05 195.85 700.06 195.85 700.3 195.71 725.29 182.09 725.3 182.09 750.04 168.6"/>
325
+ <polygon class="cls-15" points="750.04 168.52 750.04 168.6 700.06 195.85 650.08 168.55 650.08 168.52 700.06 141.19 700.06 141.19 750.04 168.52"/>
326
+ <polygon class="cls-3" points="700.06 195.85 700.06 250.51 650.08 223.18 650.08 168.55 700.06 195.85"/>
327
+ </g>
328
+ <g id="basic_N1-3" data-name="basic_N1">
329
+ <polygon class="cls-13" points="750.03 113.89 750.03 168.48 725.29 182.01 725.28 182.01 703.67 193.83 700.05 195.81 700.04 195.81 700.04 141.14 700.05 141.14 700.29 141 725.28 127.38 725.29 127.38 750.03 113.89"/>
330
+ <polygon class="cls-15" points="750.03 113.81 750.03 113.89 700.05 141.14 650.06 113.84 650.06 113.81 700.05 86.48 700.05 86.48 750.03 113.81"/>
331
+ <polygon class="cls-3" points="700.05 141.14 700.05 195.8 650.06 168.47 650.06 113.84 700.05 141.14"/>
332
+ </g>
333
+ <g id="basic_N1-4" data-name="basic_N1">
334
+ <polygon class="cls-13" points="750.02 59.73 750.02 114.32 725.28 127.85 725.27 127.85 703.66 139.67 700.04 141.65 700.03 141.65 700.03 86.98 700.04 86.98 700.28 86.84 725.27 73.22 725.28 73.22 750.02 59.73"/>
335
+ <polygon class="cls-15" points="750.02 59.66 750.02 59.73 700.04 86.99 650.05 59.68 650.05 59.65 700.04 32.33 700.04 32.32 750.02 59.66"/>
336
+ <polygon class="cls-3" points="700.04 86.99 700.04 141.65 650.05 114.32 650.05 59.68 700.04 86.99"/>
337
+ </g>
338
+ <g id="basic_N1-5" data-name="basic_N1">
339
+ <polygon class="cls-13" points="700.14 195.83 700.14 250.42 675.4 263.95 675.39 263.95 653.78 275.77 650.16 277.75 650.15 277.75 650.15 223.08 650.16 223.08 650.4 222.94 675.39 209.32 675.4 209.32 700.14 195.83"/>
340
+ <polygon class="cls-15" points="700.14 195.75 700.14 195.83 650.16 223.08 600.17 195.78 600.17 195.75 650.16 168.42 650.16 168.42 700.14 195.75"/>
341
+ <polygon class="cls-3" points="650.16 223.08 650.16 277.75 600.17 250.41 600.17 195.78 650.16 223.08"/>
342
+ </g>
343
+ <g id="basic_N1-6" data-name="basic_N1">
344
+ <polygon class="cls-13" points="650.3 168.68 650.3 223.27 625.56 236.8 625.55 236.8 603.94 248.62 600.32 250.6 600.31 250.6 600.31 195.93 600.32 195.93 600.56 195.79 625.55 182.17 625.56 182.17 650.3 168.68"/>
345
+ <polygon class="cls-15" points="650.3 168.61 650.3 168.69 600.32 195.94 550.33 168.63 550.33 168.61 600.32 141.28 600.32 141.28 650.3 168.61"/>
346
+ <polygon class="cls-3" points="600.32 195.94 600.32 250.6 550.33 223.27 550.33 168.63 600.32 195.94"/>
347
+ </g>
348
+ <g id="basic_N1-7" data-name="basic_N1">
349
+ <polygon class="cls-13" points="600.32 304.95 600.32 359.54 575.58 373.07 575.57 373.07 553.96 384.89 550.34 386.87 550.33 386.87 550.33 332.2 550.34 332.2 550.58 332.06 575.57 318.44 575.58 318.44 600.32 304.95"/>
350
+ <polygon class="cls-15" points="600.32 304.88 600.32 304.95 550.33 332.21 500.35 304.9 500.35 304.87 550.33 277.54 550.34 277.54 600.32 304.88"/>
351
+ <polygon class="cls-3" points="550.33 332.21 550.33 386.87 500.35 359.54 500.35 304.9 550.33 332.21"/>
352
+ </g>
353
+ <g id="basic_N1-8" data-name="basic_N1">
354
+ <polygon class="cls-13" points="600.32 250.29 600.32 304.88 575.58 318.41 575.57 318.41 553.96 330.23 550.34 332.21 550.33 332.21 550.33 277.54 550.34 277.54 550.58 277.4 575.57 263.78 575.58 263.78 600.32 250.29"/>
355
+ <polygon class="cls-15" points="600.32 250.21 600.32 250.29 550.33 277.54 500.35 250.24 500.35 250.21 550.33 222.88 550.34 222.88 600.32 250.21"/>
356
+ <polygon class="cls-3" points="550.33 277.54 550.33 332.2 500.35 304.87 500.35 250.24 550.33 277.54"/>
357
+ </g>
358
+ <g id="basic_N1-9" data-name="basic_N1">
359
+ <polygon class="cls-13" points="600.31 195.7 600.31 250.29 575.57 263.82 575.56 263.82 553.95 275.64 550.33 277.62 550.32 277.62 550.32 222.95 550.33 222.95 550.57 222.81 575.56 209.19 575.57 209.19 600.31 195.7"/>
360
+ <polygon class="cls-15" points="600.31 195.62 600.31 195.7 550.33 222.95 500.34 195.65 500.34 195.62 550.33 168.29 550.33 168.29 600.31 195.62"/>
361
+ <polygon class="cls-3" points="550.33 222.95 550.33 277.62 500.34 250.28 500.34 195.65 550.33 222.95"/>
362
+ </g>
363
+ <g id="basic_N1-10" data-name="basic_N1">
364
+ <polygon class="cls-13" points="600.31 141.03 600.31 195.62 575.57 209.15 575.56 209.15 553.95 220.97 550.33 222.95 550.32 222.95 550.32 168.28 550.33 168.28 550.57 168.14 575.56 154.52 575.57 154.52 600.31 141.03"/>
365
+ <polygon class="cls-15" points="600.31 140.96 600.31 141.03 550.33 168.29 500.34 140.98 500.34 140.96 550.33 113.63 550.33 113.63 600.31 140.96"/>
366
+ <polygon class="cls-3" points="550.33 168.29 550.33 222.95 500.34 195.62 500.34 140.98 550.33 168.29"/>
367
+ </g>
368
+ </g>
369
+ </svg>
@@ -206,6 +206,9 @@ class AnalysisPage(QWidget):
206
206
  self.run_btn.setText("运行分析" if is_zh else "Run Analysis")
207
207
  self.stop_btn.setText("停止" if is_zh else "Stop")
208
208
  self.logs_label.setText("日志" if is_zh else "Logs")
209
+ self.analysis_mode.setToolTip(
210
+ "选择分析模块" if is_zh else "Select an analysis mode to run."
211
+ )
209
212
 
210
213
  if self._last_state is not None:
211
214
  self._update_info(self._last_state)
@@ -216,6 +219,10 @@ class AnalysisPage(QWidget):
216
219
  else "Mode=— | preset=— | preprocess=— | spike_main_shape=—"
217
220
  )
218
221
 
222
+ for mode in self._modes.values():
223
+ if hasattr(mode, "apply_language"):
224
+ mode.apply_language(self._lang)
225
+
219
226
  def load_state(self, state) -> None:
220
227
  self._last_state = state
221
228
  self._update_info(state)
@@ -317,6 +317,35 @@ class PreprocessPage(QWidget):
317
317
  self.stop_btn.setText("停止" if is_zh else "Stop")
318
318
  self.logs_label.setText("日志" if is_zh else "Logs")
319
319
 
320
+ self.input_mode.setToolTip(
321
+ "仅支持 ASA .npz 输入" if is_zh else "Only ASA .npz input is supported in this GUI."
322
+ )
323
+ self.preprocess_method.setToolTip(
324
+ "嵌入会生成稠密矩阵供 TDA/FR 使用"
325
+ if is_zh
326
+ else "Embedding builds a dense spike matrix for TDA/FR."
327
+ )
328
+ self.embed_res.setToolTip(
329
+ "时间分箱分辨率(与 t 单位一致)。" if is_zh else "Time bin resolution (same unit as t)."
330
+ )
331
+ self.embed_dt.setToolTip(
332
+ "时间步长(与 t 单位一致)。" if is_zh else "Time step (same unit as t)."
333
+ )
334
+ self.embed_sigma.setToolTip(
335
+ "高斯平滑尺度,越大越平滑。" if is_zh else "Gaussian smoothing scale."
336
+ )
337
+ self.embed_smooth.setToolTip("是否启用平滑。" if is_zh else "Enable smoothing.")
338
+ self.embed_speed_filter.setToolTip(
339
+ "过滤低速时间点(常见于 grid 数据)。"
340
+ if is_zh
341
+ else "Remove low-speed samples (common for grid data)."
342
+ )
343
+ self.embed_min_speed.setToolTip(
344
+ "速度阈值(与 t/x/y 单位一致)。"
345
+ if is_zh
346
+ else "Speed threshold (same unit as t/x/y)."
347
+ )
348
+
320
349
  def _show_help(self) -> None:
321
350
  lang = str(QSettings("canns", "asa_gui").value("lang", "en"))
322
351
  title = (
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: canns
3
- Version: 0.14.0
3
+ Version: 0.14.2
4
4
  Summary: A Python Library for Continuous Attractor Neural Networks
5
5
  Project-URL: Repository, https://github.com/routhleck/canns
6
6
  Author-email: Sichao He <sichaohe@outlook.com>
@@ -77,7 +77,7 @@ CANNs is a Python library built on top of brainpy with performance‑critical mo
77
77
  - **Task-first API** – `canns.task.tracking` and `canns.task.open_loop_navigation` generate smooth tracking inputs, population coding stimuli, or import experimental trajectories.
78
78
  - **Rich analysis suite** – `canns.analyzer` covers energy landscapes, tuning curves, spike embeddings, UMAP/TDA helpers, and theta-sweep animations.
79
79
  - **Unified training** – `canns.trainer.HebbianTrainer` implements generic Hebbian learning and prediction, layered on the abstract `Trainer` base.
80
- - **Pipeline workspace** – the ASA TUI (Attractor Structure Analyzer) provides an end-to-end analysis workflow (TDA → decode → CohoMap/CohoSpace/FR/FRM) for interactive runs.
80
+ - **Pipeline workspace** – the ASA GUI (Attractor Structure Analyzer) provides an end-to-end analysis workflow (TDA → decode → CohoMap/CohoSpace/FR/FRM) with interactive visualization, help tips, and bilingual UI.
81
81
  - **Extensible foundations** – base classes (`BasicModel`, `Task`, `Trainer`, `Pipeline`) keep custom components consistent with the built-in ecosystem.
82
82
 
83
83
  ## Visual Gallery
@@ -128,6 +128,9 @@ pip install canns
128
128
  pip install canns[cuda12]
129
129
  pip install canns[tpu]
130
130
 
131
+ # GUI (recommended for pipeline usage)
132
+ pip install canns[gui]
133
+
131
134
  ```
132
135
 
133
136
  ## Quick Start
@@ -156,20 +159,30 @@ def step(t, stimulus):
156
159
 
157
160
  us, inputs = bm.for_loop(
158
161
  step,
159
- (
160
- task.run_steps,
161
- task.data,
162
- )
162
+ task.run_steps,
163
+ task.data,
163
164
  )
164
165
  ```
165
166
 
166
- For the ASA pipeline, run the TUI via `python -m canns.pipeline.asa` (or the `canns-tui` entrypoint) and point it at your ASA `.npz` inputs.
167
+ For the ASA pipeline, the recommended entrypoint is the GUI:
168
+
169
+ ```bash
170
+ canns-gui
171
+ # or
172
+ python -m canns.pipeline.asa_gui
173
+ ```
174
+
175
+ > Note: ASA TUI (`python -m canns.pipeline.asa` / `canns-tui`) is a legacy interface kept for transition.
167
176
 
168
177
  ## Documentation & Notebooks
169
178
 
170
179
  - [Quick Start Guide](https://routhleck.com/canns/en/notebooks/01_quick_start.html) – condensed tour of the library layout.
171
180
  - [Design Philosophy](https://routhleck.com/canns/en/notebooks/00_design_philosophy.html) – detailed design rationale for each module.
172
181
  - Interactive launchers: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/routhleck/canns/HEAD?filepath=docs%2Fen%2Fnotebooks) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/routhleck/canns/blob/master/docs/en/notebooks/)
182
+ - Tutorials (Chinese, online):
183
+ - [ASA GUI end-to-end](https://routhleck.com/canns/zh/3_full_detail_tutorials/04_pipeline/03_asa_gui.html)
184
+ - [ASA pipeline principles & parameters](https://routhleck.com/canns/zh/3_full_detail_tutorials/02_data_analysis/01_asa_pipeline.html)
185
+ - [Cell classification](https://routhleck.com/canns/zh/3_full_detail_tutorials/02_data_analysis/04_cell_classification.html)
173
186
 
174
187
  ## Development Workflow
175
188
 
@@ -81,21 +81,21 @@ canns/pipeline/asa/screens.py,sha256=DbqidxmoKe4KzSLuxuriVv1PIVFn5Z-PfScVfjrIiEA
81
81
  canns/pipeline/asa/state.py,sha256=XukidfcFIOmm9ttT226FOTYR5hv2VAY8_DZt7V1Ml2g,6955
82
82
  canns/pipeline/asa/styles.tcss,sha256=eaXI3rQeWdBYmWdLJMMiSO6acHtreLRVKKoIHb2-dBk,3349
83
83
  canns/pipeline/asa/widgets.py,sha256=3vPGGQWP9V5FwuwqykCVp7dzAHdpcFkDqib0DtIw-lQ,8087
84
- canns/pipeline/asa_gui/__init__.py,sha256=tkomNZgnipnsIf7BzP8rNZ4JLTVS-RZNPM7Et20Y4mI,1953
84
+ canns/pipeline/asa_gui/__init__.py,sha256=38gJUuQGfZ5gTJOJfYx8gJuy_bF69Qdpi1HNEYDKaH8,2250
85
85
  canns/pipeline/asa_gui/__main__.py,sha256=2UOQtIE5oXkcq9HcuY13M3Jk6-uaDu8A0VJfvr203ck,134
86
86
  canns/pipeline/asa_gui/app.py,sha256=Wd-tVGNPE1mQ0S9bET-cyjfj5UWsTIFFHOQRu0lngBs,833
87
- canns/pipeline/asa_gui/main_window.py,sha256=rZpqAXCY5KyrVQRmOzogX-8SaA-Xep7KyzJq34TIoA4,6927
87
+ canns/pipeline/asa_gui/main_window.py,sha256=kQp8DTmp7SuYVCglh5lVja7DyQ7hAOxPgCEUmjKHgbk,7019
88
88
  canns/pipeline/asa_gui/analysis_modes/__init__.py,sha256=m5tra-3lOcKi09HV3WxvTnDuF5lgV92C_fHH_4V87zw,990
89
- canns/pipeline/asa_gui/analysis_modes/base.py,sha256=-xuzrr5-XItZldl7DUYfeLLvvXi-i7wpzk1IkTaPAzQ,1220
89
+ canns/pipeline/asa_gui/analysis_modes/base.py,sha256=SqZhsD6umV0ecHGca5FcCx7G2eeskE8HZToRBc3Y5AA,1335
90
90
  canns/pipeline/asa_gui/analysis_modes/batch_mode.py,sha256=sua3cD6G4vTGT7fUSrdvYNwldA3KZ1O4MCCsSOX4knc,531
91
- canns/pipeline/asa_gui/analysis_modes/cohomap_mode.py,sha256=RCZv2TZ7_BmaQZFFradsLlumB7MgfiMENxWjxGFZB8Q,1748
92
- canns/pipeline/asa_gui/analysis_modes/cohospace_mode.py,sha256=HBb7nrdfKz8hY5QkY8YhKVWxtvRyyneFo6fN7dumVSw,7115
93
- canns/pipeline/asa_gui/analysis_modes/decode_mode.py,sha256=wPuuoXA2eQt_tv4Nh57cBNvzrW87cqRlKS6ckVgt280,1586
94
- canns/pipeline/asa_gui/analysis_modes/fr_mode.py,sha256=mS6FpLBwJB-ugYKgPBsVP6X4cKMlw6S0gsT5Q8qTNls,2928
95
- canns/pipeline/asa_gui/analysis_modes/frm_mode.py,sha256=OYl0CkUjqy2azu_T7mFWJ58lSTaFCsFFfBhmg1nRebE,3038
96
- canns/pipeline/asa_gui/analysis_modes/gridscore_mode.py,sha256=xcq-HLJxqYFu5Nck9cLN6Rp2g8eUDjSGI8_3AkEXNYg,4321
97
- canns/pipeline/asa_gui/analysis_modes/pathcompare_mode.py,sha256=5aZpClyO813tXQsbUuBchR2uNHyjQXQeNEINNaZyfrM,6877
98
- canns/pipeline/asa_gui/analysis_modes/tda_mode.py,sha256=jNlRwpzsYIKUKFqRyjDVChoJib7h_5iz2te-mK7Qf1I,4119
91
+ canns/pipeline/asa_gui/analysis_modes/cohomap_mode.py,sha256=kIB9zzh_hmhxSXFrv8FLabFLkOp_FhBOs1t_2gPass4,2360
92
+ canns/pipeline/asa_gui/analysis_modes/cohospace_mode.py,sha256=yfLpw0-Q9oMiCIJg-ca_v93__OgXfrGeEFd9DsOc0a4,9368
93
+ canns/pipeline/asa_gui/analysis_modes/decode_mode.py,sha256=uEe3lfWAA0pqmCXzNpaA3A1nrDedTN43_f1R_ssg_A8,2304
94
+ canns/pipeline/asa_gui/analysis_modes/fr_mode.py,sha256=xzx1RhGVDbx6huEtEHGfUqWgRN_C6Sf-Ycj9BzIgTRY,3961
95
+ canns/pipeline/asa_gui/analysis_modes/frm_mode.py,sha256=8rgh_P7dxYJfx2TxrhD00Ja6tK0q6NboqwZ7n0Sw_2U,3992
96
+ canns/pipeline/asa_gui/analysis_modes/gridscore_mode.py,sha256=XC-O2lMx3NPxUkSoZo_69g7B_yFAYUnKIPKLj9-gKM4,5712
97
+ canns/pipeline/asa_gui/analysis_modes/pathcompare_mode.py,sha256=ODG6hxtRNj5CxeJgfr1JiX6AuokyBrPVBvTTJnd5SPw,9600
98
+ canns/pipeline/asa_gui/analysis_modes/tda_mode.py,sha256=xnsWv_zfstzYPf_nLbQkCNHxxhYRznz4m-73ClaBQKs,6094
99
99
  canns/pipeline/asa_gui/controllers/__init__.py,sha256=RuQz960T4kEuQsBI_cjS0cQgFyqAdblLXy_dDoLPbTE,198
100
100
  canns/pipeline/asa_gui/controllers/analysis_controller.py,sha256=8cKs-RYHh_NflP7xeS0u0_y9WsZ268H1Wyp-wHZC97I,1769
101
101
  canns/pipeline/asa_gui/controllers/preprocess_controller.py,sha256=uNZifNGadYPxAVyWnfonOs5pwCgxwB1nrBGqvv8Y3hU,2825
@@ -108,9 +108,11 @@ canns/pipeline/asa_gui/models/__init__.py,sha256=Pr5wfeu_iA8bh2ob9tfWQcWmzWydYjM
108
108
  canns/pipeline/asa_gui/models/config.py,sha256=oDAeNlReKJEITc8B5AT9xxQl3Ug1yaGs6DrzSJcABXc,314
109
109
  canns/pipeline/asa_gui/models/job.py,sha256=_HdhJIzdH9OSKrRpcl3WCS4O04Bvur5uT9yb9oOWBuE,852
110
110
  canns/pipeline/asa_gui/models/presets.py,sha256=zEtR1_35ovSuGa3xMOvZoVDJJUK0rSi8OOlfkQWFvFE,519
111
- canns/pipeline/asa_gui/resources/__init__.py,sha256=t2gkV9PuOV_HVRqR7qzBOA4ADBlyTEnVHy-0jQlWJTA,432
112
- canns/pipeline/asa_gui/resources/dark.qss,sha256=s9Uhyod7aLwIC5QqYOVIKN7NofcXbV1ESZk-j98YMY4,2990
113
- canns/pipeline/asa_gui/resources/light.qss,sha256=B8rU85VrYMKf8QasvRiR-tCypov7pzIOFr7lcL81mcw,2883
111
+ canns/pipeline/asa_gui/resources/__init__.py,sha256=xaC4dS2THCTTKOF6MDHMOGGPni9Nnjmeqj7fCaoxzwI,575
112
+ canns/pipeline/asa_gui/resources/dark.qss,sha256=xqlPIFtnKKfBJbcL-kZ-qwFKTl9ADEU2mN7PDJiT7SE,3132
113
+ canns/pipeline/asa_gui/resources/light.qss,sha256=PuFpiWoU3qfGczTWlSjkHGDpMr3Jh0x6SZ0hdCvg_b4,3025
114
+ canns/pipeline/asa_gui/resources/logo.ico,sha256=V54_QvIzs6TK1K28zX915taioAM1gPESAKRCRPAjR4U,125806
115
+ canns/pipeline/asa_gui/resources/logo.svg,sha256=UQqbGRtnROO2BdN3XMkovdBqWew69Z9Sr7SUof2_n3o,48323
114
116
  canns/pipeline/asa_gui/resources/styles.qss,sha256=MaWWGn3f9yvOYpgdgy8VyITWk5vGGPut2H_rnQM4-EU,2188
115
117
  canns/pipeline/asa_gui/utils/__init__.py,sha256=UDPlNIUi5Jl16YiQbmOWz7TTTjFFJn_nDwDuYleAlKM,35
116
118
  canns/pipeline/asa_gui/utils/formatters.py,sha256=w9MP0mGior_hxPqGhjNCXxwNbItgnaCDTdxJ1zUPGgk,347
@@ -119,8 +121,8 @@ canns/pipeline/asa_gui/utils/validators.py,sha256=x5Tw2Pk434vlfQKBYgUOJPL6MLw0Oh
119
121
  canns/pipeline/asa_gui/views/__init__.py,sha256=ThoLlMw7bKxA7lkv_AvIR1mbpaoM0vkIxVP1p7mlzQM,28
120
122
  canns/pipeline/asa_gui/views/help_content.py,sha256=kL7MSwc9v3gHLz86Apiy64xbwymt9r7sPEjz5ka6EB0,8452
121
123
  canns/pipeline/asa_gui/views/pages/__init__.py,sha256=xB7VTY_hKfoCNMGeWZbV3gHG9ErrzmwqW30UlUkbqgE,161
122
- canns/pipeline/asa_gui/views/pages/analysis_page.py,sha256=CNt-ZXaWuHa1gOkTgBpZYYsrklW0L8WS74PL_9NnlZ4,22538
123
- canns/pipeline/asa_gui/views/pages/preprocess_page.py,sha256=N7IwQCNtqd30cV81S2AgejWJKIJ2aD9IVHVWSFa26dA,19472
124
+ canns/pipeline/asa_gui/views/pages/analysis_page.py,sha256=X6PGW_cgvAiNFqUpsS2TuVWl258Q6Q90C9NEQT1TetQ,22807
125
+ canns/pipeline/asa_gui/views/pages/preprocess_page.py,sha256=ds8BHq4a9nsu3aAoojFR_jegO2RXNVYdgf3BnIxIG7M,20762
124
126
  canns/pipeline/asa_gui/views/panels/__init__.py,sha256=Spqmc0Sjh38cgr42gszmiogZQFFOLN1yL7ekSpVJCrE,36
125
127
  canns/pipeline/asa_gui/views/widgets/__init__.py,sha256=xaTYXw99OL8ye1cpfoKgSwqC7c2B6lrLLsYHRB16m64,481
126
128
  canns/pipeline/asa_gui/views/widgets/artifacts_tab.py,sha256=U_fuOCfSmkDhx3G97aod-8UPSIFVz_MrsU4b_ik_5qE,1431
@@ -156,8 +158,8 @@ canns/trainer/utils.py,sha256=ZdoLiRqFLfKXsWi0KX3wGUp0OqFikwiou8dPf3xvFhE,2847
156
158
  canns/typing/__init__.py,sha256=mXySdfmD8fA56WqZTb1Nj-ZovcejwLzNjuk6PRfTwmA,156
157
159
  canns/utils/__init__.py,sha256=OMyZ5jqZAIUS2Jr0qcnvvrx6YM-BZ1EJy5uZYeA3HC0,366
158
160
  canns/utils/benchmark.py,sha256=oJ7nvbvnQMh4_MZh7z160NPLp-197X0rEnmnLHYlev4,1361
159
- canns-0.14.0.dist-info/METADATA,sha256=ZU3RhccxC_TpCagJoT_ML-icvE2CcayxlrV-oMygYhE,9163
160
- canns-0.14.0.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
161
- canns-0.14.0.dist-info/entry_points.txt,sha256=57YF2HZp_BG3GeGB8L0m3wR1sSfNyMXF1q4CKEjce6U,164
162
- canns-0.14.0.dist-info/licenses/LICENSE,sha256=u6NJ1N-QSnf5yTwSk5UvFAdU2yKD0jxG0Xa91n1cPO4,11306
163
- canns-0.14.0.dist-info/RECORD,,
161
+ canns-0.14.2.dist-info/METADATA,sha256=QfJB-3QkIfsgIgwtY9jTYbzmvitph_jYNSGM1IDuvHg,9751
162
+ canns-0.14.2.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
163
+ canns-0.14.2.dist-info/entry_points.txt,sha256=57YF2HZp_BG3GeGB8L0m3wR1sSfNyMXF1q4CKEjce6U,164
164
+ canns-0.14.2.dist-info/licenses/LICENSE,sha256=u6NJ1N-QSnf5yTwSk5UvFAdU2yKD0jxG0Xa91n1cPO4,11306
165
+ canns-0.14.2.dist-info/RECORD,,
File without changes