camel-ai 0.2.72a5__py3-none-any.whl → 0.2.72a8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of camel-ai might be problematic. Click here for more details.
- camel/__init__.py +1 -1
- camel/agents/chat_agent.py +59 -136
- camel/memories/agent_memories.py +38 -0
- camel/memories/base.py +8 -0
- camel/models/gemini_model.py +30 -2
- camel/storages/vectordb_storages/__init__.py +1 -0
- camel/storages/vectordb_storages/surreal.py +415 -0
- camel/toolkits/__init__.py +4 -0
- camel/toolkits/human_toolkit.py +5 -1
- camel/toolkits/markitdown_toolkit.py +2 -2
- camel/toolkits/note_taking_toolkit.py +206 -26
- camel/toolkits/openai_image_toolkit.py +5 -5
- camel/toolkits/origene_mcp_toolkit.py +13 -11
- camel/toolkits/screenshot_toolkit.py +128 -0
- camel/toolkits/web_deploy_toolkit.py +1024 -0
- {camel_ai-0.2.72a5.dist-info → camel_ai-0.2.72a8.dist-info}/METADATA +3 -3
- {camel_ai-0.2.72a5.dist-info → camel_ai-0.2.72a8.dist-info}/RECORD +19 -16
- {camel_ai-0.2.72a5.dist-info → camel_ai-0.2.72a8.dist-info}/WHEEL +0 -0
- {camel_ai-0.2.72a5.dist-info → camel_ai-0.2.72a8.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,415 @@
|
|
|
1
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
3
|
+
# you may not use this file except in compliance with the License.
|
|
4
|
+
# You may obtain a copy of the License at
|
|
5
|
+
#
|
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
7
|
+
#
|
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
11
|
+
# See the License for the specific language governing permissions and
|
|
12
|
+
# limitations under the License.
|
|
13
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
|
+
import re
|
|
15
|
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
|
16
|
+
|
|
17
|
+
from camel.logger import get_logger
|
|
18
|
+
from camel.storages.vectordb_storages import (
|
|
19
|
+
BaseVectorStorage,
|
|
20
|
+
VectorDBQuery,
|
|
21
|
+
VectorDBQueryResult,
|
|
22
|
+
VectorDBStatus,
|
|
23
|
+
VectorRecord,
|
|
24
|
+
)
|
|
25
|
+
from camel.types import VectorDistance
|
|
26
|
+
from camel.utils import dependencies_required
|
|
27
|
+
|
|
28
|
+
if TYPE_CHECKING:
|
|
29
|
+
from surrealdb import Surreal # type: ignore[import-not-found]
|
|
30
|
+
|
|
31
|
+
logger = get_logger(__name__)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class SurrealStorage(BaseVectorStorage):
|
|
35
|
+
r"""An implementation of the `BaseVectorStorage` using SurrealDB,
|
|
36
|
+
a scalable, distributed database with WebSocket support, for
|
|
37
|
+
efficient vector storage and similarity search.
|
|
38
|
+
|
|
39
|
+
SurrealDB official site and documentation can be found at:
|
|
40
|
+
`SurrealDB <https://surrealdb.com>`_
|
|
41
|
+
|
|
42
|
+
Args:
|
|
43
|
+
url (str): WebSocket URL for connecting to SurrealDB
|
|
44
|
+
(default: "ws://localhost:8000/rpc").
|
|
45
|
+
table (str): Name of the table used for storing vectors
|
|
46
|
+
(default: "vector_store").
|
|
47
|
+
vector_dim (int): Dimensionality of the stored vectors.
|
|
48
|
+
distance (VectorDistance): Distance metric used for similarity
|
|
49
|
+
comparisons (default: VectorDistance.COSINE).
|
|
50
|
+
namespace (str): SurrealDB namespace to use (default: "default").
|
|
51
|
+
database (str): SurrealDB database name (default: "demo").
|
|
52
|
+
user (str): Username for authentication (default: "root").
|
|
53
|
+
password (str): Password for authentication (default: "root").
|
|
54
|
+
|
|
55
|
+
Notes:
|
|
56
|
+
- SurrealDB supports flexible schema and powerful querying capabilities
|
|
57
|
+
via SQL-like syntax over WebSocket.
|
|
58
|
+
- This implementation manages connection setup and ensures the target
|
|
59
|
+
table exists.
|
|
60
|
+
- Suitable for applications requiring distributed vector storage and
|
|
61
|
+
search with real-time updates.
|
|
62
|
+
"""
|
|
63
|
+
|
|
64
|
+
@dependencies_required('surrealdb')
|
|
65
|
+
def __init__(
|
|
66
|
+
self,
|
|
67
|
+
*,
|
|
68
|
+
url: str = "ws://localhost:8000/rpc",
|
|
69
|
+
table: str = "vector_store",
|
|
70
|
+
vector_dim: int = 786,
|
|
71
|
+
distance: VectorDistance = VectorDistance.COSINE,
|
|
72
|
+
namespace: str = "default",
|
|
73
|
+
database: str = "demo",
|
|
74
|
+
user: str = "root",
|
|
75
|
+
password: str = "root",
|
|
76
|
+
) -> None:
|
|
77
|
+
r"""Initialize SurrealStorage with connection settings and ensure
|
|
78
|
+
the target table exists.
|
|
79
|
+
|
|
80
|
+
Args:
|
|
81
|
+
url (str): WebSocket URL for connecting to SurrealDB.
|
|
82
|
+
(default: :obj:`"ws://localhost:8000/rpc"`)
|
|
83
|
+
table (str): Name of the table used for vector storage.
|
|
84
|
+
(default: :obj:`"vector_store"`)
|
|
85
|
+
vector_dim (int): Dimensionality of the stored vectors.
|
|
86
|
+
(default: :obj:`786`)
|
|
87
|
+
distance (VectorDistance): Distance metric for similarity
|
|
88
|
+
searches. (default: :obj:`VectorDistance.COSINE`)
|
|
89
|
+
namespace (str): SurrealDB namespace to use.
|
|
90
|
+
(default: :obj:`"default"`)
|
|
91
|
+
database (str): SurrealDB database name.
|
|
92
|
+
(default: :obj:`"demo"`)
|
|
93
|
+
user (str): Username for authentication.
|
|
94
|
+
(default: :obj:`"root"`)
|
|
95
|
+
password (str): Password for authentication.
|
|
96
|
+
(default: :obj:`"root"`)
|
|
97
|
+
"""
|
|
98
|
+
|
|
99
|
+
self.url = url
|
|
100
|
+
self.table = table
|
|
101
|
+
self.ns = namespace
|
|
102
|
+
self.db = database
|
|
103
|
+
self.user = user
|
|
104
|
+
self.password = password
|
|
105
|
+
self.vector_dim = vector_dim
|
|
106
|
+
self.distance = distance
|
|
107
|
+
self._check_and_create_table()
|
|
108
|
+
self._surreal_client = None
|
|
109
|
+
|
|
110
|
+
def _table_exists(self) -> bool:
|
|
111
|
+
r"""Check whether the target table exists in the database.
|
|
112
|
+
|
|
113
|
+
Returns:
|
|
114
|
+
bool: True if the table exists, False otherwise.
|
|
115
|
+
"""
|
|
116
|
+
from surrealdb import Surreal # type: ignore[import-not-found]
|
|
117
|
+
|
|
118
|
+
with Surreal(self.url) as db:
|
|
119
|
+
db.signin({"username": self.user, "password": self.password})
|
|
120
|
+
db.use(self.ns, self.db)
|
|
121
|
+
res = db.query_raw("INFO FOR DB;")
|
|
122
|
+
tables = res['result'][0]['result'].get('tables', {})
|
|
123
|
+
return self.table in tables
|
|
124
|
+
|
|
125
|
+
def _get_table_info(self) -> Dict[str, int]:
|
|
126
|
+
r"""Retrieve dimension and record count from the table metadata.
|
|
127
|
+
|
|
128
|
+
Returns:
|
|
129
|
+
Dict[str, int]: A dictionary with 'dim' and 'count' keys.
|
|
130
|
+
"""
|
|
131
|
+
from surrealdb import Surreal # type: ignore[import-not-found]
|
|
132
|
+
|
|
133
|
+
if not self._table_exists():
|
|
134
|
+
return {"dim": self.vector_dim, "count": 0}
|
|
135
|
+
with Surreal(self.url) as db:
|
|
136
|
+
db.signin({"username": self.user, "password": self.password})
|
|
137
|
+
db.use(self.ns, self.db)
|
|
138
|
+
res = db.query_raw(f"INFO FOR TABLE {self.table};")
|
|
139
|
+
|
|
140
|
+
indexes = res['result'][0]['result'].get("indexes", {})
|
|
141
|
+
|
|
142
|
+
dim = self.vector_dim
|
|
143
|
+
idx_def = indexes.get("hnsw_idx")
|
|
144
|
+
if idx_def and isinstance(idx_def, str):
|
|
145
|
+
m = re.search(r"DIMENSION\s+(\d+)", idx_def)
|
|
146
|
+
if m:
|
|
147
|
+
dim = int(m.group(1))
|
|
148
|
+
cnt = db.query_raw(f"SELECT COUNT() AS count FROM {self.table};")
|
|
149
|
+
try:
|
|
150
|
+
count = cnt['result'][0]['result'][0]['count']
|
|
151
|
+
except (KeyError, IndexError, TypeError):
|
|
152
|
+
logger.warning(
|
|
153
|
+
"Unexpected result format when counting records: %s", cnt
|
|
154
|
+
)
|
|
155
|
+
count = 0
|
|
156
|
+
|
|
157
|
+
return {"dim": dim, "count": count}
|
|
158
|
+
|
|
159
|
+
def _create_table(self):
|
|
160
|
+
r"""Define and create the vector storage table with HNSW index."""
|
|
161
|
+
from surrealdb import Surreal # type: ignore[import-not-found]
|
|
162
|
+
|
|
163
|
+
with Surreal(self.url) as db:
|
|
164
|
+
db.signin({"username": self.user, "password": self.password})
|
|
165
|
+
db.use(self.ns, self.db)
|
|
166
|
+
db.query_raw(
|
|
167
|
+
f"""DEFINE TABLE {self.table} SCHEMALESS;
|
|
168
|
+
DEFINE FIELD payload ON {self.table} TYPE object;
|
|
169
|
+
DEFINE FIELD embedding ON {self.table} TYPE array;
|
|
170
|
+
DEFINE INDEX hnsw_idx ON {self.table}
|
|
171
|
+
FIELDS embedding HNSW DIMENSION {self.vector_dim};
|
|
172
|
+
"""
|
|
173
|
+
)
|
|
174
|
+
logger.info(f"Table '{self.table}' created successfully.")
|
|
175
|
+
|
|
176
|
+
def _drop_table(self):
|
|
177
|
+
r"""Drop the vector storage table if it exists."""
|
|
178
|
+
from surrealdb import Surreal # type: ignore[import-not-found]
|
|
179
|
+
|
|
180
|
+
with Surreal(self.url) as db:
|
|
181
|
+
db.signin({"username": self.user, "password": self.password})
|
|
182
|
+
db.use(self.ns, self.db)
|
|
183
|
+
db.query_raw(f"REMOVE TABLE IF EXISTS {self.table};")
|
|
184
|
+
logger.info(f"Table '{self.table}' deleted successfully.")
|
|
185
|
+
|
|
186
|
+
def _check_and_create_table(self):
|
|
187
|
+
r"""Check if the table exists and matches the expected vector
|
|
188
|
+
dimension. If not, create a new table.
|
|
189
|
+
"""
|
|
190
|
+
if self._table_exists():
|
|
191
|
+
in_dim = self._get_table_info()["dim"]
|
|
192
|
+
if in_dim != self.vector_dim:
|
|
193
|
+
raise ValueError(
|
|
194
|
+
f"Table {self.table} exists with dimension {in_dim}, "
|
|
195
|
+
f"expected {self.vector_dim}"
|
|
196
|
+
)
|
|
197
|
+
else:
|
|
198
|
+
self._create_table()
|
|
199
|
+
|
|
200
|
+
def _validate_and_convert_records(
|
|
201
|
+
self, records: List[VectorRecord]
|
|
202
|
+
) -> List[Dict]:
|
|
203
|
+
r"""Validate and convert VectorRecord instances into
|
|
204
|
+
SurrealDB-compatible dictionaries.
|
|
205
|
+
|
|
206
|
+
Args:
|
|
207
|
+
records (List[VectorRecord]): List of vector records to insert.
|
|
208
|
+
|
|
209
|
+
Returns:
|
|
210
|
+
List[Dict]: Transformed list of dicts ready for insertion.
|
|
211
|
+
"""
|
|
212
|
+
validate_data = []
|
|
213
|
+
for record in records:
|
|
214
|
+
if len(record.vector) != self.vector_dim:
|
|
215
|
+
raise ValueError(
|
|
216
|
+
f"Vector dimension mismatch: expected {self.vector_dim}, "
|
|
217
|
+
f"got {len(record.vector)}"
|
|
218
|
+
)
|
|
219
|
+
record_dict = {
|
|
220
|
+
"payload": record.payload if record.payload else {},
|
|
221
|
+
"embedding": record.vector,
|
|
222
|
+
}
|
|
223
|
+
validate_data.append(record_dict)
|
|
224
|
+
|
|
225
|
+
return validate_data
|
|
226
|
+
|
|
227
|
+
def query(
|
|
228
|
+
self,
|
|
229
|
+
query: VectorDBQuery,
|
|
230
|
+
**kwargs: Any,
|
|
231
|
+
) -> List[VectorDBQueryResult]:
|
|
232
|
+
r"""Perform a top-k similarity search using the configured distance
|
|
233
|
+
metric.
|
|
234
|
+
|
|
235
|
+
Args:
|
|
236
|
+
query (VectorDBQuery): Query containing the query vector
|
|
237
|
+
and top_k value.
|
|
238
|
+
|
|
239
|
+
Returns:
|
|
240
|
+
List[VectorDBQueryResult]: Ranked list of matching records
|
|
241
|
+
with similarity scores.
|
|
242
|
+
"""
|
|
243
|
+
from surrealdb import Surreal # type: ignore[import-not-found]
|
|
244
|
+
|
|
245
|
+
metric = {
|
|
246
|
+
VectorDistance.COSINE: "cosine",
|
|
247
|
+
VectorDistance.EUCLIDEAN: "euclidean",
|
|
248
|
+
VectorDistance.DOT: "dot",
|
|
249
|
+
}[self.distance]
|
|
250
|
+
|
|
251
|
+
metric_func = {
|
|
252
|
+
VectorDistance.COSINE: "vector::similarity::cosine",
|
|
253
|
+
VectorDistance.EUCLIDEAN: "vector::distance::euclidean",
|
|
254
|
+
VectorDistance.DOT: "vector::dot",
|
|
255
|
+
}.get(self.distance)
|
|
256
|
+
|
|
257
|
+
if not metric_func:
|
|
258
|
+
raise ValueError(f"Unsupported distance metric: {self.distance}")
|
|
259
|
+
|
|
260
|
+
with Surreal(self.url) as db:
|
|
261
|
+
db.signin({"username": self.user, "password": self.password})
|
|
262
|
+
db.use(self.ns, self.db)
|
|
263
|
+
|
|
264
|
+
# Use parameterized query to prevent SQL injection
|
|
265
|
+
sql_query = f"""SELECT payload, embedding,
|
|
266
|
+
{metric_func}(embedding, $query_vec) AS score
|
|
267
|
+
FROM {self.table}
|
|
268
|
+
WHERE embedding <|{query.top_k},{metric}|> $query_vec
|
|
269
|
+
ORDER BY score;
|
|
270
|
+
"""
|
|
271
|
+
|
|
272
|
+
response = db.query_raw(
|
|
273
|
+
sql_query, {"query_vec": query.query_vector}
|
|
274
|
+
)
|
|
275
|
+
|
|
276
|
+
if not response.get("result") or not response["result"]:
|
|
277
|
+
return []
|
|
278
|
+
|
|
279
|
+
results = response["result"][0]
|
|
280
|
+
|
|
281
|
+
if "result" not in results:
|
|
282
|
+
return []
|
|
283
|
+
|
|
284
|
+
return [
|
|
285
|
+
VectorDBQueryResult(
|
|
286
|
+
record=VectorRecord(
|
|
287
|
+
vector=row["embedding"], payload=row.get("payload", {})
|
|
288
|
+
),
|
|
289
|
+
similarity=(
|
|
290
|
+
1.0 - row["score"]
|
|
291
|
+
if self.distance == VectorDistance.COSINE
|
|
292
|
+
else 1.0 / (1.0 + row["score"])
|
|
293
|
+
if self.distance == VectorDistance.EUCLIDEAN
|
|
294
|
+
else row["score"]
|
|
295
|
+
),
|
|
296
|
+
)
|
|
297
|
+
for row in results["result"]
|
|
298
|
+
]
|
|
299
|
+
|
|
300
|
+
def add(self, records: List[VectorRecord], **kwargs) -> None:
|
|
301
|
+
r"""Insert validated vector records into the SurrealDB table.
|
|
302
|
+
|
|
303
|
+
Args:
|
|
304
|
+
records (List[VectorRecord]): List of vector records to add.
|
|
305
|
+
"""
|
|
306
|
+
logger.info(
|
|
307
|
+
"Adding %d records to table '%s'.", len(records), self.table
|
|
308
|
+
)
|
|
309
|
+
from surrealdb import Surreal # type: ignore[import-not-found]
|
|
310
|
+
|
|
311
|
+
try:
|
|
312
|
+
with Surreal(self.url) as db:
|
|
313
|
+
db.signin({"username": self.user, "password": self.password})
|
|
314
|
+
db.use(self.ns, self.db)
|
|
315
|
+
|
|
316
|
+
validated_records = self._validate_and_convert_records(records)
|
|
317
|
+
for record in validated_records:
|
|
318
|
+
db.create(self.table, record)
|
|
319
|
+
|
|
320
|
+
logger.info(
|
|
321
|
+
"Successfully added %d records to table '%s'.",
|
|
322
|
+
len(records),
|
|
323
|
+
self.table,
|
|
324
|
+
)
|
|
325
|
+
except Exception as e:
|
|
326
|
+
logger.error(
|
|
327
|
+
"Failed to add records to table '%s': %s",
|
|
328
|
+
self.table,
|
|
329
|
+
str(e),
|
|
330
|
+
exc_info=True,
|
|
331
|
+
)
|
|
332
|
+
raise
|
|
333
|
+
|
|
334
|
+
def delete(
|
|
335
|
+
self, ids: Optional[List[str]] = None, if_all: bool = False, **kwargs
|
|
336
|
+
) -> None:
|
|
337
|
+
r"""Delete specific records by ID or clear the entire table.
|
|
338
|
+
|
|
339
|
+
Args:
|
|
340
|
+
ids (Optional[List[str]]): List of record IDs to delete.
|
|
341
|
+
if_all (bool): Whether to delete all records in the table.
|
|
342
|
+
"""
|
|
343
|
+
from surrealdb import Surreal # type: ignore[import-not-found]
|
|
344
|
+
from surrealdb.data.types.record_id import ( # type: ignore[import-not-found]
|
|
345
|
+
RecordID,
|
|
346
|
+
)
|
|
347
|
+
|
|
348
|
+
try:
|
|
349
|
+
with Surreal(self.url) as db:
|
|
350
|
+
db.signin({"username": self.user, "password": self.password})
|
|
351
|
+
db.use(self.ns, self.db)
|
|
352
|
+
|
|
353
|
+
if if_all:
|
|
354
|
+
db.delete(self.table, **kwargs)
|
|
355
|
+
logger.info(
|
|
356
|
+
f"Deleted all records from table '{self.table}'"
|
|
357
|
+
)
|
|
358
|
+
return
|
|
359
|
+
|
|
360
|
+
if not ids:
|
|
361
|
+
raise ValueError(
|
|
362
|
+
"Either `ids` must be provided or `if_all=True`"
|
|
363
|
+
)
|
|
364
|
+
|
|
365
|
+
for id_str in ids:
|
|
366
|
+
rec = RecordID(self.table, id_str)
|
|
367
|
+
db.delete(rec, **kwargs)
|
|
368
|
+
logger.info(f"Deleted record {rec}")
|
|
369
|
+
|
|
370
|
+
except Exception as e:
|
|
371
|
+
logger.exception("Error deleting records from SurrealDB")
|
|
372
|
+
raise RuntimeError(f"Failed to delete records {ids!r}") from e
|
|
373
|
+
|
|
374
|
+
def status(self) -> VectorDBStatus:
|
|
375
|
+
r"""Retrieve the status of the vector table including dimension and
|
|
376
|
+
count.
|
|
377
|
+
|
|
378
|
+
Returns:
|
|
379
|
+
VectorDBStatus: Object containing vector table metadata.
|
|
380
|
+
"""
|
|
381
|
+
status = self._get_table_info()
|
|
382
|
+
|
|
383
|
+
dim = status.get("dim")
|
|
384
|
+
count = status.get("count")
|
|
385
|
+
|
|
386
|
+
if dim is None or count is None:
|
|
387
|
+
raise ValueError("Vector dimension and count cannot be None")
|
|
388
|
+
|
|
389
|
+
return VectorDBStatus(
|
|
390
|
+
vector_dim=dim,
|
|
391
|
+
vector_count=count,
|
|
392
|
+
)
|
|
393
|
+
|
|
394
|
+
def clear(self) -> None:
|
|
395
|
+
r"""Reset the vector table by dropping and recreating it."""
|
|
396
|
+
self._drop_table()
|
|
397
|
+
self._create_table()
|
|
398
|
+
|
|
399
|
+
def load(self) -> None:
|
|
400
|
+
r"""Load the collection hosted on cloud service."""
|
|
401
|
+
# SurrealDB doesn't require explicit loading
|
|
402
|
+
raise NotImplementedError("SurrealDB does not support loading")
|
|
403
|
+
|
|
404
|
+
@property
|
|
405
|
+
def client(self) -> "Surreal":
|
|
406
|
+
r"""Provides access to the underlying SurrealDB client."""
|
|
407
|
+
if self._surreal_client is None:
|
|
408
|
+
from surrealdb import Surreal # type: ignore[import-not-found]
|
|
409
|
+
|
|
410
|
+
self._surreal_client = Surreal(self.url)
|
|
411
|
+
self._surreal_client.signin( # type: ignore[attr-defined]
|
|
412
|
+
{"username": self.user, "password": self.password}
|
|
413
|
+
)
|
|
414
|
+
self._surreal_client.use(self.ns, self.db) # type: ignore[attr-defined]
|
|
415
|
+
return self._surreal_client
|
camel/toolkits/__init__.py
CHANGED
|
@@ -85,6 +85,8 @@ from .craw4ai_toolkit import Crawl4AIToolkit
|
|
|
85
85
|
from .markitdown_toolkit import MarkItDownToolkit
|
|
86
86
|
from .note_taking_toolkit import NoteTakingToolkit
|
|
87
87
|
from .message_agent_toolkit import AgentCommunicationToolkit
|
|
88
|
+
from .web_deploy_toolkit import WebDeployToolkit
|
|
89
|
+
from .screenshot_toolkit import ScreenshotToolkit
|
|
88
90
|
|
|
89
91
|
__all__ = [
|
|
90
92
|
'BaseToolkit',
|
|
@@ -158,4 +160,6 @@ __all__ = [
|
|
|
158
160
|
'MarkItDownToolkit',
|
|
159
161
|
'NoteTakingToolkit',
|
|
160
162
|
'AgentCommunicationToolkit',
|
|
163
|
+
'WebDeployToolkit',
|
|
164
|
+
'ScreenshotToolkit',
|
|
161
165
|
]
|
camel/toolkits/human_toolkit.py
CHANGED
|
@@ -52,7 +52,7 @@ class HumanToolkit(BaseToolkit):
|
|
|
52
52
|
logger.info(f"User reply: {reply}")
|
|
53
53
|
return reply
|
|
54
54
|
|
|
55
|
-
def send_message_to_user(self, message: str) ->
|
|
55
|
+
def send_message_to_user(self, message: str) -> str:
|
|
56
56
|
r"""Use this tool to send a tidy message to the user in one short
|
|
57
57
|
sentence.
|
|
58
58
|
|
|
@@ -68,9 +68,13 @@ class HumanToolkit(BaseToolkit):
|
|
|
68
68
|
|
|
69
69
|
Args:
|
|
70
70
|
message (str): The tidy and informative message for the user.
|
|
71
|
+
|
|
72
|
+
Returns:
|
|
73
|
+
str: Confirmation that the message was successfully sent.
|
|
71
74
|
"""
|
|
72
75
|
print(f"\nAgent Message:\n{message}")
|
|
73
76
|
logger.info(f"\nAgent Message:\n{message}")
|
|
77
|
+
return f"Message successfully sent to user: '{message}'"
|
|
74
78
|
|
|
75
79
|
def get_tools(self) -> List[FunctionTool]:
|
|
76
80
|
r"""Returns a list of FunctionTool objects representing the
|
|
@@ -33,7 +33,7 @@ class MarkItDownToolkit(BaseToolkit):
|
|
|
33
33
|
):
|
|
34
34
|
super().__init__(timeout=timeout)
|
|
35
35
|
|
|
36
|
-
def
|
|
36
|
+
def read_files(self, file_paths: List[str]) -> Dict[str, str]:
|
|
37
37
|
r"""Scrapes content from a list of files and converts it to Markdown.
|
|
38
38
|
|
|
39
39
|
This function takes a list of local file paths, attempts to convert
|
|
@@ -74,5 +74,5 @@ class MarkItDownToolkit(BaseToolkit):
|
|
|
74
74
|
representing the functions in the toolkit.
|
|
75
75
|
"""
|
|
76
76
|
return [
|
|
77
|
-
FunctionTool(self.
|
|
77
|
+
FunctionTool(self.read_files),
|
|
78
78
|
]
|