camel-ai 0.2.71a11__py3-none-any.whl → 0.2.72__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of camel-ai might be problematic. Click here for more details.
- camel/__init__.py +1 -1
- camel/agents/chat_agent.py +261 -489
- camel/memories/agent_memories.py +39 -0
- camel/memories/base.py +8 -0
- camel/models/gemini_model.py +30 -2
- camel/models/moonshot_model.py +36 -4
- camel/models/openai_model.py +29 -15
- camel/societies/workforce/prompts.py +25 -15
- camel/societies/workforce/role_playing_worker.py +1 -1
- camel/societies/workforce/single_agent_worker.py +9 -7
- camel/societies/workforce/worker.py +1 -1
- camel/societies/workforce/workforce.py +97 -34
- camel/storages/vectordb_storages/__init__.py +1 -0
- camel/storages/vectordb_storages/surreal.py +415 -0
- camel/tasks/task.py +9 -5
- camel/toolkits/__init__.py +10 -1
- camel/toolkits/base.py +57 -1
- camel/toolkits/human_toolkit.py +5 -1
- camel/toolkits/hybrid_browser_toolkit/config_loader.py +127 -414
- camel/toolkits/hybrid_browser_toolkit/hybrid_browser_toolkit.py +783 -1626
- camel/toolkits/hybrid_browser_toolkit/ws_wrapper.py +489 -0
- camel/toolkits/markitdown_toolkit.py +2 -2
- camel/toolkits/message_integration.py +592 -0
- camel/toolkits/note_taking_toolkit.py +195 -26
- camel/toolkits/openai_image_toolkit.py +5 -5
- camel/toolkits/origene_mcp_toolkit.py +97 -0
- camel/toolkits/screenshot_toolkit.py +213 -0
- camel/toolkits/search_toolkit.py +161 -79
- camel/toolkits/terminal_toolkit.py +379 -165
- camel/toolkits/video_analysis_toolkit.py +13 -13
- camel/toolkits/video_download_toolkit.py +11 -11
- camel/toolkits/web_deploy_toolkit.py +1024 -0
- camel/types/enums.py +6 -3
- camel/types/unified_model_type.py +16 -4
- camel/utils/mcp_client.py +8 -0
- camel/utils/tool_result.py +1 -1
- {camel_ai-0.2.71a11.dist-info → camel_ai-0.2.72.dist-info}/METADATA +6 -3
- {camel_ai-0.2.71a11.dist-info → camel_ai-0.2.72.dist-info}/RECORD +40 -40
- camel/toolkits/hybrid_browser_toolkit/actions.py +0 -417
- camel/toolkits/hybrid_browser_toolkit/agent.py +0 -311
- camel/toolkits/hybrid_browser_toolkit/browser_session.py +0 -739
- camel/toolkits/hybrid_browser_toolkit/snapshot.py +0 -227
- camel/toolkits/hybrid_browser_toolkit/stealth_script.js +0 -0
- camel/toolkits/hybrid_browser_toolkit/unified_analyzer.js +0 -1002
- {camel_ai-0.2.71a11.dist-info → camel_ai-0.2.72.dist-info}/WHEEL +0 -0
- {camel_ai-0.2.71a11.dist-info → camel_ai-0.2.72.dist-info}/licenses/LICENSE +0 -0
camel/agents/chat_agent.py
CHANGED
|
@@ -74,7 +74,7 @@ from camel.models import (
|
|
|
74
74
|
from camel.prompts import TextPrompt
|
|
75
75
|
from camel.responses import ChatAgentResponse
|
|
76
76
|
from camel.storages import JsonStorage
|
|
77
|
-
from camel.toolkits import FunctionTool
|
|
77
|
+
from camel.toolkits import FunctionTool, RegisteredAgentToolkit
|
|
78
78
|
from camel.types import (
|
|
79
79
|
ChatCompletion,
|
|
80
80
|
ChatCompletionChunk,
|
|
@@ -89,7 +89,6 @@ from camel.utils import (
|
|
|
89
89
|
model_from_json_schema,
|
|
90
90
|
)
|
|
91
91
|
from camel.utils.commons import dependencies_required
|
|
92
|
-
from camel.utils.tool_result import ToolResult
|
|
93
92
|
|
|
94
93
|
if TYPE_CHECKING:
|
|
95
94
|
from camel.terminators import ResponseTerminator
|
|
@@ -348,6 +347,13 @@ class ChatAgent(BaseAgent):
|
|
|
348
347
|
tools (Optional[List[Union[FunctionTool, Callable]]], optional): List
|
|
349
348
|
of available :obj:`FunctionTool` or :obj:`Callable`. (default:
|
|
350
349
|
:obj:`None`)
|
|
350
|
+
toolkits_to_register_agent (Optional[List[RegisteredAgentToolkit]],
|
|
351
|
+
optional): List of toolkit instances that inherit from
|
|
352
|
+
:obj:`RegisteredAgentToolkit`. The agent will register itself with
|
|
353
|
+
these toolkits, allowing them to access the agent instance. Note:
|
|
354
|
+
This does NOT add the toolkit's tools to the agent. To use tools
|
|
355
|
+
from these toolkits, pass them explicitly via the `tools`
|
|
356
|
+
parameter. (default: :obj:`None`)
|
|
351
357
|
external_tools (Optional[List[Union[FunctionTool, Callable,
|
|
352
358
|
Dict[str, Any]]]], optional): List of external tools
|
|
353
359
|
(:obj:`FunctionTool` or :obj:`Callable` or :obj:`Dict[str, Any]`)
|
|
@@ -375,6 +381,11 @@ class ChatAgent(BaseAgent):
|
|
|
375
381
|
pause_event (Optional[asyncio.Event]): Event to signal pause of the
|
|
376
382
|
agent's operation. When clear, the agent will pause its execution.
|
|
377
383
|
(default: :obj:`None`)
|
|
384
|
+
prune_tool_calls_from_memory (bool): Whether to clean tool
|
|
385
|
+
call messages from memory after response generation to save token
|
|
386
|
+
usage. When enabled, removes FUNCTION/TOOL role messages and
|
|
387
|
+
ASSISTANT messages with tool_calls after each step.
|
|
388
|
+
(default: :obj:`False`)
|
|
378
389
|
"""
|
|
379
390
|
|
|
380
391
|
def __init__(
|
|
@@ -400,6 +411,9 @@ class ChatAgent(BaseAgent):
|
|
|
400
411
|
token_limit: Optional[int] = None,
|
|
401
412
|
output_language: Optional[str] = None,
|
|
402
413
|
tools: Optional[List[Union[FunctionTool, Callable]]] = None,
|
|
414
|
+
toolkits_to_register_agent: Optional[
|
|
415
|
+
List[RegisteredAgentToolkit]
|
|
416
|
+
] = None,
|
|
403
417
|
external_tools: Optional[
|
|
404
418
|
List[Union[FunctionTool, Callable, Dict[str, Any]]]
|
|
405
419
|
] = None,
|
|
@@ -411,6 +425,7 @@ class ChatAgent(BaseAgent):
|
|
|
411
425
|
tool_execution_timeout: Optional[float] = None,
|
|
412
426
|
mask_tool_output: bool = False,
|
|
413
427
|
pause_event: Optional[asyncio.Event] = None,
|
|
428
|
+
prune_tool_calls_from_memory: bool = False,
|
|
414
429
|
) -> None:
|
|
415
430
|
if isinstance(model, ModelManager):
|
|
416
431
|
self.model_backend = model
|
|
@@ -432,7 +447,7 @@ class ChatAgent(BaseAgent):
|
|
|
432
447
|
token_limit or self.model_backend.token_limit,
|
|
433
448
|
)
|
|
434
449
|
|
|
435
|
-
self.
|
|
450
|
+
self._memory: AgentMemory = memory or ChatHistoryMemory(
|
|
436
451
|
context_creator,
|
|
437
452
|
window_size=message_window_size,
|
|
438
453
|
agent_id=self.agent_id,
|
|
@@ -440,7 +455,7 @@ class ChatAgent(BaseAgent):
|
|
|
440
455
|
|
|
441
456
|
# So we don't have to pass agent_id when we define memory
|
|
442
457
|
if memory is not None:
|
|
443
|
-
|
|
458
|
+
self._memory.agent_id = self.agent_id
|
|
444
459
|
|
|
445
460
|
# Set up system message and initialize messages
|
|
446
461
|
self._original_system_message = (
|
|
@@ -473,6 +488,12 @@ class ChatAgent(BaseAgent):
|
|
|
473
488
|
]
|
|
474
489
|
}
|
|
475
490
|
|
|
491
|
+
# Register agent with toolkits that have RegisteredAgentToolkit mixin
|
|
492
|
+
if toolkits_to_register_agent:
|
|
493
|
+
for toolkit in toolkits_to_register_agent:
|
|
494
|
+
if isinstance(toolkit, RegisteredAgentToolkit):
|
|
495
|
+
toolkit.register_agent(self)
|
|
496
|
+
|
|
476
497
|
self._external_tool_schemas = {
|
|
477
498
|
tool_schema["function"]["name"]: tool_schema
|
|
478
499
|
for tool_schema in [
|
|
@@ -488,17 +509,13 @@ class ChatAgent(BaseAgent):
|
|
|
488
509
|
self.tool_execution_timeout = tool_execution_timeout
|
|
489
510
|
self.mask_tool_output = mask_tool_output
|
|
490
511
|
self._secure_result_store: Dict[str, Any] = {}
|
|
491
|
-
self._pending_images: List[str] = []
|
|
492
|
-
self._image_retry_count: Dict[str, int] = {}
|
|
493
|
-
# Store images to attach to next user message
|
|
494
512
|
self.pause_event = pause_event
|
|
513
|
+
self.prune_tool_calls_from_memory = prune_tool_calls_from_memory
|
|
495
514
|
|
|
496
515
|
def reset(self):
|
|
497
516
|
r"""Resets the :obj:`ChatAgent` to its initial state."""
|
|
498
517
|
self.terminated = False
|
|
499
518
|
self.init_messages()
|
|
500
|
-
self._pending_images = []
|
|
501
|
-
self._image_retry_count = {}
|
|
502
519
|
for terminator in self.response_terminators:
|
|
503
520
|
terminator.reset()
|
|
504
521
|
|
|
@@ -663,6 +680,25 @@ class ChatAgent(BaseAgent):
|
|
|
663
680
|
)
|
|
664
681
|
self.init_messages()
|
|
665
682
|
|
|
683
|
+
@property
|
|
684
|
+
def memory(self) -> AgentMemory:
|
|
685
|
+
r"""Returns the agent memory."""
|
|
686
|
+
return self._memory
|
|
687
|
+
|
|
688
|
+
@memory.setter
|
|
689
|
+
def memory(self, value: AgentMemory) -> None:
|
|
690
|
+
r"""Set the agent memory.
|
|
691
|
+
|
|
692
|
+
When setting a new memory, the system message is automatically
|
|
693
|
+
re-added to ensure it's not lost.
|
|
694
|
+
|
|
695
|
+
Args:
|
|
696
|
+
value (AgentMemory): The new agent memory to use.
|
|
697
|
+
"""
|
|
698
|
+
self._memory = value
|
|
699
|
+
# Ensure the new memory has the system message
|
|
700
|
+
self.init_messages()
|
|
701
|
+
|
|
666
702
|
def _get_full_tool_schemas(self) -> List[Dict[str, Any]]:
|
|
667
703
|
r"""Returns a list of tool schemas of all tools, including internal
|
|
668
704
|
and external tools.
|
|
@@ -1236,7 +1272,7 @@ class ChatAgent(BaseAgent):
|
|
|
1236
1272
|
if not message.parsed:
|
|
1237
1273
|
logger.warning(
|
|
1238
1274
|
f"Failed to parse JSON from response: "
|
|
1239
|
-
f"{content
|
|
1275
|
+
f"{content}"
|
|
1240
1276
|
)
|
|
1241
1277
|
|
|
1242
1278
|
except Exception as e:
|
|
@@ -1264,7 +1300,11 @@ class ChatAgent(BaseAgent):
|
|
|
1264
1300
|
openai_message: OpenAIMessage = {"role": "user", "content": prompt}
|
|
1265
1301
|
# Explicitly set the tools to empty list to avoid calling tools
|
|
1266
1302
|
response = self._get_model_response(
|
|
1267
|
-
[openai_message],
|
|
1303
|
+
openai_messages=[openai_message],
|
|
1304
|
+
num_tokens=0,
|
|
1305
|
+
response_format=response_format,
|
|
1306
|
+
tool_schemas=[],
|
|
1307
|
+
prev_num_openai_messages=0,
|
|
1268
1308
|
)
|
|
1269
1309
|
message.content = response.output_messages[0].content
|
|
1270
1310
|
if not self._try_format_message(message, response_format):
|
|
@@ -1292,7 +1332,11 @@ class ChatAgent(BaseAgent):
|
|
|
1292
1332
|
prompt = SIMPLE_FORMAT_PROMPT.format(content=message.content)
|
|
1293
1333
|
openai_message: OpenAIMessage = {"role": "user", "content": prompt}
|
|
1294
1334
|
response = await self._aget_model_response(
|
|
1295
|
-
[openai_message],
|
|
1335
|
+
openai_messages=[openai_message],
|
|
1336
|
+
num_tokens=0,
|
|
1337
|
+
response_format=response_format,
|
|
1338
|
+
tool_schemas=[],
|
|
1339
|
+
prev_num_openai_messages=0,
|
|
1296
1340
|
)
|
|
1297
1341
|
message.content = response.output_messages[0].content
|
|
1298
1342
|
self._try_format_message(message, response_format)
|
|
@@ -1352,16 +1396,6 @@ class ChatAgent(BaseAgent):
|
|
|
1352
1396
|
role_name="User", content=input_message
|
|
1353
1397
|
)
|
|
1354
1398
|
|
|
1355
|
-
# Attach any pending images from previous tool calls
|
|
1356
|
-
image_list = self._process_pending_images()
|
|
1357
|
-
if image_list:
|
|
1358
|
-
# Create new message with images attached
|
|
1359
|
-
input_message = BaseMessage.make_user_message(
|
|
1360
|
-
role_name="User",
|
|
1361
|
-
content=input_message.content,
|
|
1362
|
-
image_list=image_list,
|
|
1363
|
-
)
|
|
1364
|
-
|
|
1365
1399
|
# Add user input to memory
|
|
1366
1400
|
self.update_memory(input_message, OpenAIBackendRole.USER)
|
|
1367
1401
|
|
|
@@ -1374,7 +1408,8 @@ class ChatAgent(BaseAgent):
|
|
|
1374
1408
|
|
|
1375
1409
|
# Initialize token usage tracker
|
|
1376
1410
|
step_token_usage = self._create_token_usage_tracker()
|
|
1377
|
-
iteration_count = 0
|
|
1411
|
+
iteration_count: int = 0
|
|
1412
|
+
prev_num_openai_messages: int = 0
|
|
1378
1413
|
|
|
1379
1414
|
while True:
|
|
1380
1415
|
if self.pause_event is not None and not self.pause_event.is_set():
|
|
@@ -1391,10 +1426,13 @@ class ChatAgent(BaseAgent):
|
|
|
1391
1426
|
# Get response from model backend
|
|
1392
1427
|
response = self._get_model_response(
|
|
1393
1428
|
openai_messages,
|
|
1394
|
-
|
|
1395
|
-
|
|
1396
|
-
|
|
1429
|
+
num_tokens=num_tokens,
|
|
1430
|
+
current_iteration=iteration_count,
|
|
1431
|
+
response_format=response_format,
|
|
1432
|
+
tool_schemas=self._get_full_tool_schemas(),
|
|
1433
|
+
prev_num_openai_messages=prev_num_openai_messages,
|
|
1397
1434
|
)
|
|
1435
|
+
prev_num_openai_messages = len(openai_messages)
|
|
1398
1436
|
iteration_count += 1
|
|
1399
1437
|
|
|
1400
1438
|
# Accumulate API token usage
|
|
@@ -1405,6 +1443,9 @@ class ChatAgent(BaseAgent):
|
|
|
1405
1443
|
# Terminate Agent if stop_event is set
|
|
1406
1444
|
if self.stop_event and self.stop_event.is_set():
|
|
1407
1445
|
# Use the _step_terminate to terminate the agent with reason
|
|
1446
|
+
logger.info(
|
|
1447
|
+
f"Termination triggered at iteration " f"{iteration_count}"
|
|
1448
|
+
)
|
|
1408
1449
|
return self._step_terminate(
|
|
1409
1450
|
accumulated_context_tokens,
|
|
1410
1451
|
tool_call_records,
|
|
@@ -1439,6 +1480,7 @@ class ChatAgent(BaseAgent):
|
|
|
1439
1480
|
self.max_iteration is not None
|
|
1440
1481
|
and iteration_count >= self.max_iteration
|
|
1441
1482
|
):
|
|
1483
|
+
logger.info(f"Max iteration reached: {iteration_count}")
|
|
1442
1484
|
break
|
|
1443
1485
|
|
|
1444
1486
|
# If we're still here, continue the loop
|
|
@@ -1456,6 +1498,10 @@ class ChatAgent(BaseAgent):
|
|
|
1456
1498
|
|
|
1457
1499
|
self._record_final_output(response.output_messages)
|
|
1458
1500
|
|
|
1501
|
+
# Clean tool call messages from memory after response generation
|
|
1502
|
+
if self.prune_tool_calls_from_memory and tool_call_records:
|
|
1503
|
+
self.memory.clean_tool_calls()
|
|
1504
|
+
|
|
1459
1505
|
return self._convert_to_chatagent_response(
|
|
1460
1506
|
response,
|
|
1461
1507
|
tool_call_records,
|
|
@@ -1544,16 +1590,6 @@ class ChatAgent(BaseAgent):
|
|
|
1544
1590
|
role_name="User", content=input_message
|
|
1545
1591
|
)
|
|
1546
1592
|
|
|
1547
|
-
# Attach any pending images from previous tool calls
|
|
1548
|
-
image_list = self._process_pending_images()
|
|
1549
|
-
if image_list:
|
|
1550
|
-
# Create new message with images attached
|
|
1551
|
-
input_message = BaseMessage.make_user_message(
|
|
1552
|
-
role_name="User",
|
|
1553
|
-
content=input_message.content,
|
|
1554
|
-
image_list=image_list,
|
|
1555
|
-
)
|
|
1556
|
-
|
|
1557
1593
|
self.update_memory(input_message, OpenAIBackendRole.USER)
|
|
1558
1594
|
|
|
1559
1595
|
tool_call_records: List[ToolCallingRecord] = []
|
|
@@ -1564,7 +1600,8 @@ class ChatAgent(BaseAgent):
|
|
|
1564
1600
|
|
|
1565
1601
|
# Initialize token usage tracker
|
|
1566
1602
|
step_token_usage = self._create_token_usage_tracker()
|
|
1567
|
-
iteration_count = 0
|
|
1603
|
+
iteration_count: int = 0
|
|
1604
|
+
prev_num_openai_messages: int = 0
|
|
1568
1605
|
while True:
|
|
1569
1606
|
if self.pause_event is not None and not self.pause_event.is_set():
|
|
1570
1607
|
await self.pause_event.wait()
|
|
@@ -1578,10 +1615,13 @@ class ChatAgent(BaseAgent):
|
|
|
1578
1615
|
|
|
1579
1616
|
response = await self._aget_model_response(
|
|
1580
1617
|
openai_messages,
|
|
1581
|
-
|
|
1582
|
-
|
|
1583
|
-
|
|
1618
|
+
num_tokens=num_tokens,
|
|
1619
|
+
current_iteration=iteration_count,
|
|
1620
|
+
response_format=response_format,
|
|
1621
|
+
tool_schemas=self._get_full_tool_schemas(),
|
|
1622
|
+
prev_num_openai_messages=prev_num_openai_messages,
|
|
1584
1623
|
)
|
|
1624
|
+
prev_num_openai_messages = len(openai_messages)
|
|
1585
1625
|
iteration_count += 1
|
|
1586
1626
|
|
|
1587
1627
|
# Accumulate API token usage
|
|
@@ -1592,6 +1632,9 @@ class ChatAgent(BaseAgent):
|
|
|
1592
1632
|
# Terminate Agent if stop_event is set
|
|
1593
1633
|
if self.stop_event and self.stop_event.is_set():
|
|
1594
1634
|
# Use the _step_terminate to terminate the agent with reason
|
|
1635
|
+
logger.info(
|
|
1636
|
+
f"Termination triggered at iteration " f"{iteration_count}"
|
|
1637
|
+
)
|
|
1595
1638
|
return self._step_terminate(
|
|
1596
1639
|
accumulated_context_tokens,
|
|
1597
1640
|
tool_call_records,
|
|
@@ -1600,7 +1643,6 @@ class ChatAgent(BaseAgent):
|
|
|
1600
1643
|
|
|
1601
1644
|
if tool_call_requests := response.tool_call_requests:
|
|
1602
1645
|
# Process all tool calls
|
|
1603
|
-
new_images_from_tools = []
|
|
1604
1646
|
for tool_call_request in tool_call_requests:
|
|
1605
1647
|
if (
|
|
1606
1648
|
tool_call_request.tool_name
|
|
@@ -1620,72 +1662,10 @@ class ChatAgent(BaseAgent):
|
|
|
1620
1662
|
)
|
|
1621
1663
|
tool_call_records.append(tool_call_record)
|
|
1622
1664
|
|
|
1623
|
-
# Check if this tool call produced images
|
|
1624
|
-
if (
|
|
1625
|
-
hasattr(tool_call_record, 'images')
|
|
1626
|
-
and tool_call_record.images
|
|
1627
|
-
):
|
|
1628
|
-
new_images_from_tools.extend(
|
|
1629
|
-
tool_call_record.images
|
|
1630
|
-
)
|
|
1631
|
-
|
|
1632
1665
|
# If we found an external tool call, break the loop
|
|
1633
1666
|
if external_tool_call_requests:
|
|
1634
1667
|
break
|
|
1635
1668
|
|
|
1636
|
-
# If tools produced images
|
|
1637
|
-
# send them to the model as a user message
|
|
1638
|
-
if new_images_from_tools:
|
|
1639
|
-
# Convert base64 images to PIL Images
|
|
1640
|
-
image_list = []
|
|
1641
|
-
for img_data in new_images_from_tools:
|
|
1642
|
-
try:
|
|
1643
|
-
import base64
|
|
1644
|
-
import io
|
|
1645
|
-
|
|
1646
|
-
from PIL import Image
|
|
1647
|
-
|
|
1648
|
-
# Extract base64 data from data URL format
|
|
1649
|
-
if img_data.startswith("data:image"):
|
|
1650
|
-
# Format:
|
|
1651
|
-
# "..."
|
|
1652
|
-
base64_data = img_data.split(',', 1)[1]
|
|
1653
|
-
else:
|
|
1654
|
-
# Raw base64 data
|
|
1655
|
-
base64_data = img_data
|
|
1656
|
-
|
|
1657
|
-
# Decode and create PIL Image
|
|
1658
|
-
image_bytes = base64.b64decode(base64_data)
|
|
1659
|
-
pil_image = Image.open(io.BytesIO(image_bytes))
|
|
1660
|
-
# Convert to ensure proper
|
|
1661
|
-
# Image.Image type for compatibility
|
|
1662
|
-
pil_image_tool_result: Image.Image = (
|
|
1663
|
-
pil_image.convert('RGB')
|
|
1664
|
-
)
|
|
1665
|
-
image_list.append(pil_image_tool_result)
|
|
1666
|
-
|
|
1667
|
-
except Exception as e:
|
|
1668
|
-
logger.warning(
|
|
1669
|
-
f"Failed to convert "
|
|
1670
|
-
f"base64 image to PIL for immediate use: {e}"
|
|
1671
|
-
)
|
|
1672
|
-
continue
|
|
1673
|
-
|
|
1674
|
-
# If we have valid images
|
|
1675
|
-
# create a user message with images
|
|
1676
|
-
if image_list:
|
|
1677
|
-
# Create a user message with images
|
|
1678
|
-
# to provide visual context immediately
|
|
1679
|
-
image_message = BaseMessage.make_user_message(
|
|
1680
|
-
role_name="User",
|
|
1681
|
-
content="[Visual content from tool execution - please analyze and continue]", # noqa: E501
|
|
1682
|
-
image_list=image_list,
|
|
1683
|
-
)
|
|
1684
|
-
|
|
1685
|
-
self.update_memory(
|
|
1686
|
-
image_message, OpenAIBackendRole.USER
|
|
1687
|
-
)
|
|
1688
|
-
|
|
1689
1669
|
if (
|
|
1690
1670
|
self.max_iteration is not None
|
|
1691
1671
|
and iteration_count >= self.max_iteration
|
|
@@ -1707,6 +1687,10 @@ class ChatAgent(BaseAgent):
|
|
|
1707
1687
|
|
|
1708
1688
|
self._record_final_output(response.output_messages)
|
|
1709
1689
|
|
|
1690
|
+
# Clean tool call messages from memory after response generation
|
|
1691
|
+
if self.prune_tool_calls_from_memory and tool_call_records:
|
|
1692
|
+
self.memory.clean_tool_calls()
|
|
1693
|
+
|
|
1710
1694
|
return self._convert_to_chatagent_response(
|
|
1711
1695
|
response,
|
|
1712
1696
|
tool_call_records,
|
|
@@ -1772,69 +1756,6 @@ class ChatAgent(BaseAgent):
|
|
|
1772
1756
|
info=info,
|
|
1773
1757
|
)
|
|
1774
1758
|
|
|
1775
|
-
def _process_pending_images(self) -> List:
|
|
1776
|
-
r"""Process pending images with retry logic and return PIL Image list.
|
|
1777
|
-
|
|
1778
|
-
Returns:
|
|
1779
|
-
List: List of successfully converted PIL Images.
|
|
1780
|
-
"""
|
|
1781
|
-
if not self._pending_images:
|
|
1782
|
-
return []
|
|
1783
|
-
|
|
1784
|
-
image_list = []
|
|
1785
|
-
successfully_processed = []
|
|
1786
|
-
failed_images = []
|
|
1787
|
-
|
|
1788
|
-
for img_data in self._pending_images:
|
|
1789
|
-
# Track retry count
|
|
1790
|
-
retry_count = self._image_retry_count.get(img_data, 0)
|
|
1791
|
-
|
|
1792
|
-
# Remove images that have failed too many times (max 3 attempts)
|
|
1793
|
-
if retry_count >= 3:
|
|
1794
|
-
failed_images.append(img_data)
|
|
1795
|
-
logger.warning(
|
|
1796
|
-
f"Removing image after {retry_count} failed attempts"
|
|
1797
|
-
)
|
|
1798
|
-
continue
|
|
1799
|
-
|
|
1800
|
-
try:
|
|
1801
|
-
import base64
|
|
1802
|
-
import io
|
|
1803
|
-
|
|
1804
|
-
from PIL import Image
|
|
1805
|
-
|
|
1806
|
-
# Extract base64 data from data URL format
|
|
1807
|
-
if img_data.startswith("data:image"):
|
|
1808
|
-
# Format: "..."
|
|
1809
|
-
base64_data = img_data.split(',', 1)[1]
|
|
1810
|
-
else:
|
|
1811
|
-
# Raw base64 data
|
|
1812
|
-
base64_data = img_data
|
|
1813
|
-
|
|
1814
|
-
# Decode and create PIL Image
|
|
1815
|
-
image_bytes = base64.b64decode(base64_data)
|
|
1816
|
-
pil_image = Image.open(io.BytesIO(image_bytes))
|
|
1817
|
-
pil_image_converted: Image.Image = pil_image.convert('RGB')
|
|
1818
|
-
image_list.append(pil_image_converted)
|
|
1819
|
-
successfully_processed.append(img_data)
|
|
1820
|
-
|
|
1821
|
-
except Exception as e:
|
|
1822
|
-
# Increment retry count for failed conversion
|
|
1823
|
-
self._image_retry_count[img_data] = retry_count + 1
|
|
1824
|
-
logger.warning(
|
|
1825
|
-
f"Failed to convert base64 image to PIL "
|
|
1826
|
-
f"(attempt {retry_count + 1}/3): {e}"
|
|
1827
|
-
)
|
|
1828
|
-
continue
|
|
1829
|
-
|
|
1830
|
-
# Clean up processed and failed images
|
|
1831
|
-
for img in successfully_processed + failed_images:
|
|
1832
|
-
self._pending_images.remove(img)
|
|
1833
|
-
# Clean up retry count for processed/removed images
|
|
1834
|
-
self._image_retry_count.pop(img, None)
|
|
1835
|
-
|
|
1836
|
-
return image_list
|
|
1837
|
-
|
|
1838
1759
|
def _record_final_output(self, output_messages: List[BaseMessage]) -> None:
|
|
1839
1760
|
r"""Log final messages or warnings about multiple responses."""
|
|
1840
1761
|
if len(output_messages) == 1:
|
|
@@ -1845,69 +1766,32 @@ class ChatAgent(BaseAgent):
|
|
|
1845
1766
|
"selected message manually using `record_message()`."
|
|
1846
1767
|
)
|
|
1847
1768
|
|
|
1848
|
-
|
|
1849
|
-
r"""Check if the exception is likely related to vision/image is not
|
|
1850
|
-
supported by the model."""
|
|
1851
|
-
# TODO: more robust vision error detection
|
|
1852
|
-
error_msg = str(exc).lower()
|
|
1853
|
-
vision_keywords = [
|
|
1854
|
-
'vision',
|
|
1855
|
-
'image',
|
|
1856
|
-
'multimodal',
|
|
1857
|
-
'unsupported',
|
|
1858
|
-
'invalid content type',
|
|
1859
|
-
'image_url',
|
|
1860
|
-
'visual',
|
|
1861
|
-
]
|
|
1862
|
-
return any(keyword in error_msg for keyword in vision_keywords)
|
|
1863
|
-
|
|
1864
|
-
def _has_images(self, messages: List[OpenAIMessage]) -> bool:
|
|
1865
|
-
r"""Check if any message contains images."""
|
|
1866
|
-
for msg in messages:
|
|
1867
|
-
content = msg.get('content')
|
|
1868
|
-
if isinstance(content, list):
|
|
1869
|
-
for item in content:
|
|
1870
|
-
if (
|
|
1871
|
-
isinstance(item, dict)
|
|
1872
|
-
and item.get('type') == 'image_url'
|
|
1873
|
-
):
|
|
1874
|
-
return True
|
|
1875
|
-
return False
|
|
1876
|
-
|
|
1877
|
-
def _strip_images_from_messages(
|
|
1878
|
-
self, messages: List[OpenAIMessage]
|
|
1879
|
-
) -> List[OpenAIMessage]:
|
|
1880
|
-
r"""Remove images from messages, keeping only text content."""
|
|
1881
|
-
stripped_messages = []
|
|
1882
|
-
for msg in messages:
|
|
1883
|
-
content = msg.get('content')
|
|
1884
|
-
if isinstance(content, list):
|
|
1885
|
-
# Extract only text content from multimodal messages
|
|
1886
|
-
text_content = ""
|
|
1887
|
-
for item in content:
|
|
1888
|
-
if isinstance(item, dict) and item.get('type') == 'text':
|
|
1889
|
-
text_content += item.get('text', '')
|
|
1890
|
-
|
|
1891
|
-
# Create new message with only text content
|
|
1892
|
-
new_msg = msg.copy()
|
|
1893
|
-
new_msg['content'] = (
|
|
1894
|
-
text_content
|
|
1895
|
-
or "[Image content removed - model doesn't support vision]"
|
|
1896
|
-
)
|
|
1897
|
-
stripped_messages.append(new_msg)
|
|
1898
|
-
else:
|
|
1899
|
-
# Regular text message, keep as is
|
|
1900
|
-
stripped_messages.append(msg)
|
|
1901
|
-
return stripped_messages
|
|
1902
|
-
|
|
1769
|
+
@observe()
|
|
1903
1770
|
def _get_model_response(
|
|
1904
1771
|
self,
|
|
1905
1772
|
openai_messages: List[OpenAIMessage],
|
|
1906
1773
|
num_tokens: int,
|
|
1774
|
+
current_iteration: int = 0,
|
|
1907
1775
|
response_format: Optional[Type[BaseModel]] = None,
|
|
1908
1776
|
tool_schemas: Optional[List[Dict[str, Any]]] = None,
|
|
1777
|
+
prev_num_openai_messages: int = 0,
|
|
1909
1778
|
) -> ModelResponse:
|
|
1910
|
-
r"""Internal function for agent step model response.
|
|
1779
|
+
r"""Internal function for agent step model response.
|
|
1780
|
+
Args:
|
|
1781
|
+
openai_messages (List[OpenAIMessage]): The OpenAI
|
|
1782
|
+
messages to process.
|
|
1783
|
+
num_tokens (int): The number of tokens in the context.
|
|
1784
|
+
current_iteration (int): The current iteration of the step.
|
|
1785
|
+
response_format (Optional[Type[BaseModel]]): The response
|
|
1786
|
+
format to use.
|
|
1787
|
+
tool_schemas (Optional[List[Dict[str, Any]]]): The tool
|
|
1788
|
+
schemas to use.
|
|
1789
|
+
prev_num_openai_messages (int): The number of openai messages
|
|
1790
|
+
logged in the previous iteration.
|
|
1791
|
+
|
|
1792
|
+
Returns:
|
|
1793
|
+
ModelResponse: The model response.
|
|
1794
|
+
"""
|
|
1911
1795
|
|
|
1912
1796
|
response = None
|
|
1913
1797
|
try:
|
|
@@ -1915,33 +1799,13 @@ class ChatAgent(BaseAgent):
|
|
|
1915
1799
|
openai_messages, response_format, tool_schemas or None
|
|
1916
1800
|
)
|
|
1917
1801
|
except Exception as exc:
|
|
1918
|
-
|
|
1919
|
-
|
|
1920
|
-
|
|
1921
|
-
|
|
1922
|
-
|
|
1923
|
-
|
|
1924
|
-
|
|
1925
|
-
try:
|
|
1926
|
-
stripped_messages = self._strip_images_from_messages(
|
|
1927
|
-
openai_messages
|
|
1928
|
-
)
|
|
1929
|
-
response = self.model_backend.run(
|
|
1930
|
-
stripped_messages,
|
|
1931
|
-
response_format,
|
|
1932
|
-
tool_schemas or None,
|
|
1933
|
-
)
|
|
1934
|
-
except Exception:
|
|
1935
|
-
pass # Fall through to original error handling
|
|
1936
|
-
|
|
1937
|
-
if not response:
|
|
1938
|
-
logger.error(
|
|
1939
|
-
f"An error occurred while running model "
|
|
1940
|
-
f"{self.model_backend.model_type}, "
|
|
1941
|
-
f"index: {self.model_backend.current_model_index}",
|
|
1942
|
-
exc_info=exc,
|
|
1943
|
-
)
|
|
1944
|
-
error_info = str(exc)
|
|
1802
|
+
logger.error(
|
|
1803
|
+
f"An error occurred while running model "
|
|
1804
|
+
f"{self.model_backend.model_type}, "
|
|
1805
|
+
f"index: {self.model_backend.current_model_index}",
|
|
1806
|
+
exc_info=exc,
|
|
1807
|
+
)
|
|
1808
|
+
error_info = str(exc)
|
|
1945
1809
|
|
|
1946
1810
|
if not response and self.model_backend.num_models > 1:
|
|
1947
1811
|
raise ModelProcessingError(
|
|
@@ -1955,11 +1819,12 @@ class ChatAgent(BaseAgent):
|
|
|
1955
1819
|
)
|
|
1956
1820
|
|
|
1957
1821
|
sanitized_messages = self._sanitize_messages_for_logging(
|
|
1958
|
-
openai_messages
|
|
1822
|
+
openai_messages, prev_num_openai_messages
|
|
1959
1823
|
)
|
|
1960
1824
|
logger.info(
|
|
1961
1825
|
f"Model {self.model_backend.model_type}, "
|
|
1962
1826
|
f"index {self.model_backend.current_model_index}, "
|
|
1827
|
+
f"iteration {current_iteration}, "
|
|
1963
1828
|
f"processed these messages: {sanitized_messages}"
|
|
1964
1829
|
)
|
|
1965
1830
|
if not isinstance(response, ChatCompletion):
|
|
@@ -1973,10 +1838,27 @@ class ChatAgent(BaseAgent):
|
|
|
1973
1838
|
self,
|
|
1974
1839
|
openai_messages: List[OpenAIMessage],
|
|
1975
1840
|
num_tokens: int,
|
|
1841
|
+
current_iteration: int = 0,
|
|
1976
1842
|
response_format: Optional[Type[BaseModel]] = None,
|
|
1977
1843
|
tool_schemas: Optional[List[Dict[str, Any]]] = None,
|
|
1844
|
+
prev_num_openai_messages: int = 0,
|
|
1978
1845
|
) -> ModelResponse:
|
|
1979
|
-
r"""Internal function for agent step model response.
|
|
1846
|
+
r"""Internal function for agent async step model response.
|
|
1847
|
+
Args:
|
|
1848
|
+
openai_messages (List[OpenAIMessage]): The OpenAI messages
|
|
1849
|
+
to process.
|
|
1850
|
+
num_tokens (int): The number of tokens in the context.
|
|
1851
|
+
current_iteration (int): The current iteration of the step.
|
|
1852
|
+
response_format (Optional[Type[BaseModel]]): The response
|
|
1853
|
+
format to use.
|
|
1854
|
+
tool_schemas (Optional[List[Dict[str, Any]]]): The tool schemas
|
|
1855
|
+
to use.
|
|
1856
|
+
prev_num_openai_messages (int): The number of openai messages
|
|
1857
|
+
logged in the previous iteration.
|
|
1858
|
+
|
|
1859
|
+
Returns:
|
|
1860
|
+
ModelResponse: The model response.
|
|
1861
|
+
"""
|
|
1980
1862
|
|
|
1981
1863
|
response = None
|
|
1982
1864
|
try:
|
|
@@ -1984,33 +1866,13 @@ class ChatAgent(BaseAgent):
|
|
|
1984
1866
|
openai_messages, response_format, tool_schemas or None
|
|
1985
1867
|
)
|
|
1986
1868
|
except Exception as exc:
|
|
1987
|
-
|
|
1988
|
-
|
|
1989
|
-
|
|
1990
|
-
|
|
1991
|
-
|
|
1992
|
-
|
|
1993
|
-
|
|
1994
|
-
try:
|
|
1995
|
-
stripped_messages = self._strip_images_from_messages(
|
|
1996
|
-
openai_messages
|
|
1997
|
-
)
|
|
1998
|
-
response = await self.model_backend.arun(
|
|
1999
|
-
stripped_messages,
|
|
2000
|
-
response_format,
|
|
2001
|
-
tool_schemas or None,
|
|
2002
|
-
)
|
|
2003
|
-
except Exception:
|
|
2004
|
-
pass # Fall through to original error handling
|
|
2005
|
-
|
|
2006
|
-
if not response:
|
|
2007
|
-
logger.error(
|
|
2008
|
-
f"An error occurred while running model "
|
|
2009
|
-
f"{self.model_backend.model_type}, "
|
|
2010
|
-
f"index: {self.model_backend.current_model_index}",
|
|
2011
|
-
exc_info=exc,
|
|
2012
|
-
)
|
|
2013
|
-
error_info = str(exc)
|
|
1869
|
+
logger.error(
|
|
1870
|
+
f"An error occurred while running model "
|
|
1871
|
+
f"{self.model_backend.model_type}, "
|
|
1872
|
+
f"index: {self.model_backend.current_model_index}",
|
|
1873
|
+
exc_info=exc,
|
|
1874
|
+
)
|
|
1875
|
+
error_info = str(exc)
|
|
2014
1876
|
|
|
2015
1877
|
if not response and self.model_backend.num_models > 1:
|
|
2016
1878
|
raise ModelProcessingError(
|
|
@@ -2024,11 +1886,12 @@ class ChatAgent(BaseAgent):
|
|
|
2024
1886
|
)
|
|
2025
1887
|
|
|
2026
1888
|
sanitized_messages = self._sanitize_messages_for_logging(
|
|
2027
|
-
openai_messages
|
|
1889
|
+
openai_messages, prev_num_openai_messages
|
|
2028
1890
|
)
|
|
2029
1891
|
logger.info(
|
|
2030
1892
|
f"Model {self.model_backend.model_type}, "
|
|
2031
1893
|
f"index {self.model_backend.current_model_index}, "
|
|
1894
|
+
f"iteration {current_iteration}, "
|
|
2032
1895
|
f"processed these messages: {sanitized_messages}"
|
|
2033
1896
|
)
|
|
2034
1897
|
if not isinstance(response, ChatCompletion):
|
|
@@ -2038,12 +1901,16 @@ class ChatAgent(BaseAgent):
|
|
|
2038
1901
|
)
|
|
2039
1902
|
return self._handle_batch_response(response)
|
|
2040
1903
|
|
|
2041
|
-
def _sanitize_messages_for_logging(
|
|
1904
|
+
def _sanitize_messages_for_logging(
|
|
1905
|
+
self, messages, prev_num_openai_messages: int
|
|
1906
|
+
):
|
|
2042
1907
|
r"""Sanitize OpenAI messages for logging by replacing base64 image
|
|
2043
1908
|
data with a simple message and a link to view the image.
|
|
2044
1909
|
|
|
2045
1910
|
Args:
|
|
2046
1911
|
messages (List[OpenAIMessage]): The OpenAI messages to sanitize.
|
|
1912
|
+
prev_num_openai_messages (int): The number of openai messages
|
|
1913
|
+
logged in the previous iteration.
|
|
2047
1914
|
|
|
2048
1915
|
Returns:
|
|
2049
1916
|
List[OpenAIMessage]: The sanitized OpenAI messages.
|
|
@@ -2056,7 +1923,7 @@ class ChatAgent(BaseAgent):
|
|
|
2056
1923
|
# Create a copy of messages for logging to avoid modifying the
|
|
2057
1924
|
# original messages
|
|
2058
1925
|
sanitized_messages = []
|
|
2059
|
-
for msg in messages:
|
|
1926
|
+
for msg in messages[prev_num_openai_messages:]:
|
|
2060
1927
|
if isinstance(msg, dict):
|
|
2061
1928
|
sanitized_msg = msg.copy()
|
|
2062
1929
|
# Check if content is a list (multimodal content with images)
|
|
@@ -2339,6 +2206,7 @@ class ChatAgent(BaseAgent):
|
|
|
2339
2206
|
info=info,
|
|
2340
2207
|
)
|
|
2341
2208
|
|
|
2209
|
+
@observe()
|
|
2342
2210
|
def _execute_tool(
|
|
2343
2211
|
self,
|
|
2344
2212
|
tool_call_request: ToolCallRequest,
|
|
@@ -2373,28 +2241,12 @@ class ChatAgent(BaseAgent):
|
|
|
2373
2241
|
error_msg = f"Error executing tool '{func_name}': {e!s}"
|
|
2374
2242
|
result = f"Tool execution failed: {error_msg}"
|
|
2375
2243
|
mask_flag = False
|
|
2376
|
-
|
|
2244
|
+
logger.warning(f"{error_msg} with result: {result}")
|
|
2377
2245
|
|
|
2378
|
-
|
|
2379
|
-
images_to_attach = None
|
|
2380
|
-
if isinstance(result, ToolResult):
|
|
2381
|
-
images_to_attach = result.images
|
|
2382
|
-
result = str(result) # Use string representation for storage
|
|
2383
|
-
|
|
2384
|
-
tool_record = self._record_tool_calling(
|
|
2246
|
+
return self._record_tool_calling(
|
|
2385
2247
|
func_name, args, result, tool_call_id, mask_output=mask_flag
|
|
2386
2248
|
)
|
|
2387
2249
|
|
|
2388
|
-
# Store images for later attachment to next user message
|
|
2389
|
-
if images_to_attach:
|
|
2390
|
-
tool_record.images = images_to_attach
|
|
2391
|
-
# Add images with duplicate prevention
|
|
2392
|
-
for img in images_to_attach:
|
|
2393
|
-
if img not in self._pending_images:
|
|
2394
|
-
self._pending_images.append(img)
|
|
2395
|
-
|
|
2396
|
-
return tool_record
|
|
2397
|
-
|
|
2398
2250
|
async def _aexecute_tool(
|
|
2399
2251
|
self,
|
|
2400
2252
|
tool_call_request: ToolCallRequest,
|
|
@@ -2434,26 +2286,7 @@ class ChatAgent(BaseAgent):
|
|
|
2434
2286
|
error_msg = f"Error executing async tool '{func_name}': {e!s}"
|
|
2435
2287
|
result = f"Tool execution failed: {error_msg}"
|
|
2436
2288
|
logging.warning(error_msg)
|
|
2437
|
-
|
|
2438
|
-
# Check if result is a ToolResult with images
|
|
2439
|
-
images_to_attach = None
|
|
2440
|
-
if isinstance(result, ToolResult):
|
|
2441
|
-
images_to_attach = result.images
|
|
2442
|
-
result = str(result) # Use string representation for storage
|
|
2443
|
-
|
|
2444
|
-
tool_record = self._record_tool_calling(
|
|
2445
|
-
func_name, args, result, tool_call_id
|
|
2446
|
-
)
|
|
2447
|
-
|
|
2448
|
-
# Store images for later attachment to next user message
|
|
2449
|
-
if images_to_attach:
|
|
2450
|
-
tool_record.images = images_to_attach
|
|
2451
|
-
# Add images with duplicate prevention
|
|
2452
|
-
for img in images_to_attach:
|
|
2453
|
-
if img not in self._pending_images:
|
|
2454
|
-
self._pending_images.append(img)
|
|
2455
|
-
|
|
2456
|
-
return tool_record
|
|
2289
|
+
return self._record_tool_calling(func_name, args, result, tool_call_id)
|
|
2457
2290
|
|
|
2458
2291
|
def _record_tool_calling(
|
|
2459
2292
|
self,
|
|
@@ -2594,6 +2427,9 @@ class ChatAgent(BaseAgent):
|
|
|
2594
2427
|
while True:
|
|
2595
2428
|
# Check termination condition
|
|
2596
2429
|
if self.stop_event and self.stop_event.is_set():
|
|
2430
|
+
logger.info(
|
|
2431
|
+
f"Termination triggered at iteration " f"{iteration_count}"
|
|
2432
|
+
)
|
|
2597
2433
|
yield self._step_terminate(
|
|
2598
2434
|
num_tokens, tool_call_records, "termination_triggered"
|
|
2599
2435
|
)
|
|
@@ -2825,21 +2661,13 @@ class ChatAgent(BaseAgent):
|
|
|
2825
2661
|
status_response
|
|
2826
2662
|
) in self._execute_tools_sync_with_status_accumulator(
|
|
2827
2663
|
accumulated_tool_calls,
|
|
2828
|
-
content_accumulator,
|
|
2829
|
-
step_token_usage,
|
|
2830
2664
|
tool_call_records,
|
|
2831
2665
|
):
|
|
2832
2666
|
yield status_response
|
|
2833
2667
|
|
|
2834
|
-
#
|
|
2668
|
+
# Log sending status instead of adding to content
|
|
2835
2669
|
if tool_call_records:
|
|
2836
|
-
|
|
2837
|
-
content_accumulator,
|
|
2838
|
-
"\n------\n\nSending back result to model\n\n",
|
|
2839
|
-
"tool_sending",
|
|
2840
|
-
step_token_usage,
|
|
2841
|
-
)
|
|
2842
|
-
yield sending_status
|
|
2670
|
+
logger.info("Sending back result to model")
|
|
2843
2671
|
|
|
2844
2672
|
# Record final message only if we have content AND no tool
|
|
2845
2673
|
# calls. If there are tool calls, _record_tool_calling
|
|
@@ -2937,15 +2765,13 @@ class ChatAgent(BaseAgent):
|
|
|
2937
2765
|
def _execute_tools_sync_with_status_accumulator(
|
|
2938
2766
|
self,
|
|
2939
2767
|
accumulated_tool_calls: Dict[str, Any],
|
|
2940
|
-
content_accumulator: StreamContentAccumulator,
|
|
2941
|
-
step_token_usage: Dict[str, int],
|
|
2942
2768
|
tool_call_records: List[ToolCallingRecord],
|
|
2943
2769
|
) -> Generator[ChatAgentResponse, None, None]:
|
|
2944
2770
|
r"""Execute multiple tools synchronously with
|
|
2945
2771
|
proper content accumulation, using threads+queue for
|
|
2946
2772
|
non-blocking status streaming."""
|
|
2947
2773
|
|
|
2948
|
-
def tool_worker(
|
|
2774
|
+
def tool_worker(result_queue, tool_call_data):
|
|
2949
2775
|
try:
|
|
2950
2776
|
tool_call_record = self._execute_tool_from_stream_data(
|
|
2951
2777
|
tool_call_data
|
|
@@ -2981,36 +2807,22 @@ class ChatAgent(BaseAgent):
|
|
|
2981
2807
|
)
|
|
2982
2808
|
thread.start()
|
|
2983
2809
|
|
|
2984
|
-
|
|
2985
|
-
|
|
2986
|
-
f"with arguments
|
|
2987
|
-
)
|
|
2988
|
-
status_status = self._create_tool_status_response_with_accumulator(
|
|
2989
|
-
content_accumulator,
|
|
2990
|
-
status_message,
|
|
2991
|
-
"tool_calling",
|
|
2992
|
-
step_token_usage,
|
|
2810
|
+
# Log debug info instead of adding to content
|
|
2811
|
+
logger.info(
|
|
2812
|
+
f"Calling function: {function_name} with arguments: {args}"
|
|
2993
2813
|
)
|
|
2994
|
-
|
|
2814
|
+
|
|
2995
2815
|
# wait for tool thread to finish with optional timeout
|
|
2996
2816
|
thread.join(self.tool_execution_timeout)
|
|
2997
2817
|
|
|
2998
2818
|
# If timeout occurred, mark as error and continue
|
|
2999
2819
|
if thread.is_alive():
|
|
3000
|
-
|
|
3001
|
-
|
|
3002
|
-
f"{
|
|
3003
|
-
|
|
3004
|
-
timeout_status = (
|
|
3005
|
-
self._create_tool_status_response_with_accumulator(
|
|
3006
|
-
content_accumulator,
|
|
3007
|
-
timeout_msg,
|
|
3008
|
-
"tool_timeout",
|
|
3009
|
-
step_token_usage,
|
|
3010
|
-
)
|
|
2820
|
+
# Log timeout info instead of adding to content
|
|
2821
|
+
logger.warning(
|
|
2822
|
+
f"Function '{function_name}' timed out after "
|
|
2823
|
+
f"{self.tool_execution_timeout} seconds"
|
|
3011
2824
|
)
|
|
3012
|
-
|
|
3013
|
-
logger.error(timeout_msg.strip())
|
|
2825
|
+
|
|
3014
2826
|
# Detach thread (it may still finish later). Skip recording.
|
|
3015
2827
|
continue
|
|
3016
2828
|
|
|
@@ -3020,23 +2832,17 @@ class ChatAgent(BaseAgent):
|
|
|
3020
2832
|
tool_call_records.append(tool_call_record)
|
|
3021
2833
|
raw_result = tool_call_record.result
|
|
3022
2834
|
result_str = str(raw_result)
|
|
3023
|
-
|
|
3024
|
-
|
|
3025
|
-
)
|
|
3026
|
-
output_status = (
|
|
3027
|
-
self._create_tool_status_response_with_accumulator(
|
|
3028
|
-
content_accumulator,
|
|
3029
|
-
status_message,
|
|
3030
|
-
"tool_output",
|
|
3031
|
-
step_token_usage,
|
|
3032
|
-
[tool_call_record],
|
|
3033
|
-
)
|
|
3034
|
-
)
|
|
3035
|
-
yield output_status
|
|
2835
|
+
|
|
2836
|
+
# Log debug info instead of adding to content
|
|
2837
|
+
logger.info(f"Function output: {result_str}")
|
|
3036
2838
|
else:
|
|
3037
2839
|
# Error already logged
|
|
3038
2840
|
continue
|
|
3039
2841
|
|
|
2842
|
+
# Ensure this function remains a generator (required by type signature)
|
|
2843
|
+
return
|
|
2844
|
+
yield # This line is never reached but makes this a generator function
|
|
2845
|
+
|
|
3040
2846
|
def _execute_tool_from_stream_data(
|
|
3041
2847
|
self, tool_call_data: Dict[str, Any]
|
|
3042
2848
|
) -> Optional[ToolCallingRecord]:
|
|
@@ -3229,11 +3035,20 @@ class ChatAgent(BaseAgent):
|
|
|
3229
3035
|
return
|
|
3230
3036
|
|
|
3231
3037
|
# Start async streaming response
|
|
3038
|
+
last_response = None
|
|
3232
3039
|
async for response in self._astream_response(
|
|
3233
3040
|
openai_messages, num_tokens, response_format
|
|
3234
3041
|
):
|
|
3042
|
+
last_response = response
|
|
3235
3043
|
yield response
|
|
3236
3044
|
|
|
3045
|
+
# Clean tool call messages from memory after response generation
|
|
3046
|
+
if self.prune_tool_calls_from_memory and last_response:
|
|
3047
|
+
# Extract tool_calls from the last response info
|
|
3048
|
+
tool_calls = last_response.info.get("tool_calls", [])
|
|
3049
|
+
if tool_calls:
|
|
3050
|
+
self.memory.clean_tool_calls()
|
|
3051
|
+
|
|
3237
3052
|
async def _astream_response(
|
|
3238
3053
|
self,
|
|
3239
3054
|
openai_messages: List[OpenAIMessage],
|
|
@@ -3252,6 +3067,9 @@ class ChatAgent(BaseAgent):
|
|
|
3252
3067
|
while True:
|
|
3253
3068
|
# Check termination condition
|
|
3254
3069
|
if self.stop_event and self.stop_event.is_set():
|
|
3070
|
+
logger.info(
|
|
3071
|
+
f"Termination triggered at iteration " f"{iteration_count}"
|
|
3072
|
+
)
|
|
3255
3073
|
yield self._step_terminate(
|
|
3256
3074
|
num_tokens, tool_call_records, "termination_triggered"
|
|
3257
3075
|
)
|
|
@@ -3540,15 +3358,9 @@ class ChatAgent(BaseAgent):
|
|
|
3540
3358
|
):
|
|
3541
3359
|
yield status_response
|
|
3542
3360
|
|
|
3543
|
-
#
|
|
3361
|
+
# Log sending status instead of adding to content
|
|
3544
3362
|
if tool_call_records:
|
|
3545
|
-
|
|
3546
|
-
content_accumulator,
|
|
3547
|
-
"\n------\n\nSending back result to model\n\n",
|
|
3548
|
-
"tool_sending",
|
|
3549
|
-
step_token_usage,
|
|
3550
|
-
)
|
|
3551
|
-
yield sending_status
|
|
3363
|
+
logger.info("Sending back result to model")
|
|
3552
3364
|
|
|
3553
3365
|
# Record final message only if we have content AND no tool
|
|
3554
3366
|
# calls. If there are tool calls, _record_tool_calling
|
|
@@ -3595,21 +3407,10 @@ class ChatAgent(BaseAgent):
|
|
|
3595
3407
|
except json.JSONDecodeError:
|
|
3596
3408
|
args = tool_call_data['function']['arguments']
|
|
3597
3409
|
|
|
3598
|
-
|
|
3599
|
-
|
|
3600
|
-
f"with arguments
|
|
3601
|
-
)
|
|
3602
|
-
|
|
3603
|
-
# Immediately yield "Calling function" status
|
|
3604
|
-
calling_status = (
|
|
3605
|
-
self._create_tool_status_response_with_accumulator(
|
|
3606
|
-
content_accumulator,
|
|
3607
|
-
status_message,
|
|
3608
|
-
"tool_calling",
|
|
3609
|
-
step_token_usage,
|
|
3610
|
-
)
|
|
3410
|
+
# Log debug info instead of adding to content
|
|
3411
|
+
logger.info(
|
|
3412
|
+
f"Calling function: {function_name} with arguments: {args}"
|
|
3611
3413
|
)
|
|
3612
|
-
yield calling_status
|
|
3613
3414
|
|
|
3614
3415
|
# Start tool execution asynchronously (non-blocking)
|
|
3615
3416
|
if self.tool_execution_timeout is not None:
|
|
@@ -3642,80 +3443,25 @@ class ChatAgent(BaseAgent):
|
|
|
3642
3443
|
# Create output status message
|
|
3643
3444
|
raw_result = tool_call_record.result
|
|
3644
3445
|
result_str = str(raw_result)
|
|
3645
|
-
status_message = (
|
|
3646
|
-
f"\nFunction output: {result_str}\n---------\n"
|
|
3647
|
-
)
|
|
3648
3446
|
|
|
3649
|
-
#
|
|
3650
|
-
|
|
3651
|
-
output_status = (
|
|
3652
|
-
self._create_tool_status_response_with_accumulator(
|
|
3653
|
-
content_accumulator,
|
|
3654
|
-
status_message,
|
|
3655
|
-
"tool_output",
|
|
3656
|
-
step_token_usage,
|
|
3657
|
-
[tool_call_record],
|
|
3658
|
-
)
|
|
3659
|
-
)
|
|
3660
|
-
yield output_status
|
|
3447
|
+
# Log debug info instead of adding to content
|
|
3448
|
+
logger.info(f"Function output: {result_str}")
|
|
3661
3449
|
|
|
3662
3450
|
except Exception as e:
|
|
3663
3451
|
if isinstance(e, asyncio.TimeoutError):
|
|
3664
|
-
|
|
3665
|
-
|
|
3666
|
-
f"
|
|
3667
|
-
f"
|
|
3668
|
-
)
|
|
3669
|
-
timeout_status = (
|
|
3670
|
-
self._create_tool_status_response_with_accumulator(
|
|
3671
|
-
content_accumulator,
|
|
3672
|
-
timeout_msg,
|
|
3673
|
-
"tool_timeout",
|
|
3674
|
-
step_token_usage,
|
|
3675
|
-
)
|
|
3452
|
+
# Log timeout info instead of adding to content
|
|
3453
|
+
logger.warning(
|
|
3454
|
+
f"Function timed out after "
|
|
3455
|
+
f"{self.tool_execution_timeout} seconds"
|
|
3676
3456
|
)
|
|
3677
|
-
yield timeout_status
|
|
3678
|
-
logger.error("Async tool execution timeout")
|
|
3679
3457
|
else:
|
|
3680
3458
|
logger.error(f"Error in async tool execution: {e}")
|
|
3681
3459
|
continue
|
|
3682
3460
|
|
|
3683
|
-
|
|
3684
|
-
|
|
3685
|
-
|
|
3686
|
-
|
|
3687
|
-
status_type: str,
|
|
3688
|
-
step_token_usage: Dict[str, int],
|
|
3689
|
-
tool_calls: Optional[List[ToolCallingRecord]] = None,
|
|
3690
|
-
) -> ChatAgentResponse:
|
|
3691
|
-
r"""Create a tool status response using content accumulator."""
|
|
3692
|
-
|
|
3693
|
-
# Add this status message to accumulator and get full content
|
|
3694
|
-
accumulator.add_tool_status(status_message)
|
|
3695
|
-
full_content = accumulator.get_full_content()
|
|
3696
|
-
|
|
3697
|
-
message = BaseMessage(
|
|
3698
|
-
role_name=self.role_name,
|
|
3699
|
-
role_type=self.role_type,
|
|
3700
|
-
meta_dict={},
|
|
3701
|
-
content=full_content,
|
|
3702
|
-
)
|
|
3703
|
-
|
|
3704
|
-
return ChatAgentResponse(
|
|
3705
|
-
msgs=[message],
|
|
3706
|
-
terminated=False,
|
|
3707
|
-
info={
|
|
3708
|
-
"id": "",
|
|
3709
|
-
"usage": step_token_usage.copy(),
|
|
3710
|
-
"finish_reasons": [status_type],
|
|
3711
|
-
"num_tokens": self._get_token_count(full_content),
|
|
3712
|
-
"tool_calls": tool_calls or [],
|
|
3713
|
-
"external_tool_requests": None,
|
|
3714
|
-
"streaming": True,
|
|
3715
|
-
"tool_status": status_type,
|
|
3716
|
-
"partial": True,
|
|
3717
|
-
},
|
|
3718
|
-
)
|
|
3461
|
+
# Ensure this function remains an async generator
|
|
3462
|
+
return
|
|
3463
|
+
# This line is never reached but makes this an async generator function
|
|
3464
|
+
yield
|
|
3719
3465
|
|
|
3720
3466
|
def _create_streaming_response_with_accumulator(
|
|
3721
3467
|
self,
|
|
@@ -3806,6 +3552,9 @@ class ChatAgent(BaseAgent):
|
|
|
3806
3552
|
# To avoid duplicated system memory.
|
|
3807
3553
|
system_message = None if with_memory else self._original_system_message
|
|
3808
3554
|
|
|
3555
|
+
# Clone tools and collect toolkits that need registration
|
|
3556
|
+
cloned_tools, toolkits_to_register = self._clone_tools()
|
|
3557
|
+
|
|
3809
3558
|
new_agent = ChatAgent(
|
|
3810
3559
|
system_message=system_message,
|
|
3811
3560
|
model=self.model_backend.models, # Pass the existing model_backend
|
|
@@ -3815,7 +3564,8 @@ class ChatAgent(BaseAgent):
|
|
|
3815
3564
|
self.memory.get_context_creator(), "token_limit", None
|
|
3816
3565
|
),
|
|
3817
3566
|
output_language=self._output_language,
|
|
3818
|
-
tools=
|
|
3567
|
+
tools=cloned_tools,
|
|
3568
|
+
toolkits_to_register_agent=toolkits_to_register,
|
|
3819
3569
|
external_tools=[
|
|
3820
3570
|
schema for schema in self._external_tool_schemas.values()
|
|
3821
3571
|
],
|
|
@@ -3827,6 +3577,7 @@ class ChatAgent(BaseAgent):
|
|
|
3827
3577
|
stop_event=self.stop_event,
|
|
3828
3578
|
tool_execution_timeout=self.tool_execution_timeout,
|
|
3829
3579
|
pause_event=self.pause_event,
|
|
3580
|
+
prune_tool_calls_from_memory=self.prune_tool_calls_from_memory,
|
|
3830
3581
|
)
|
|
3831
3582
|
|
|
3832
3583
|
# Copy memory if requested
|
|
@@ -3839,55 +3590,76 @@ class ChatAgent(BaseAgent):
|
|
|
3839
3590
|
|
|
3840
3591
|
return new_agent
|
|
3841
3592
|
|
|
3842
|
-
def _clone_tools(
|
|
3843
|
-
|
|
3844
|
-
|
|
3593
|
+
def _clone_tools(
|
|
3594
|
+
self,
|
|
3595
|
+
) -> Tuple[
|
|
3596
|
+
List[Union[FunctionTool, Callable]], List[RegisteredAgentToolkit]
|
|
3597
|
+
]:
|
|
3598
|
+
r"""Clone tools and return toolkits that need agent registration.
|
|
3599
|
+
|
|
3600
|
+
This method handles stateful toolkits by cloning them if they have
|
|
3601
|
+
a clone_for_new_session method, and collecting RegisteredAgentToolkit
|
|
3602
|
+
instances for later registration.
|
|
3603
|
+
|
|
3604
|
+
Returns:
|
|
3605
|
+
Tuple containing:
|
|
3606
|
+
- List of cloned tools/functions
|
|
3607
|
+
- List of RegisteredAgentToolkit instances need registration
|
|
3608
|
+
"""
|
|
3845
3609
|
cloned_tools = []
|
|
3846
|
-
|
|
3610
|
+
toolkits_to_register = []
|
|
3611
|
+
cloned_toolkits = {}
|
|
3612
|
+
# Cache for cloned toolkits by original toolkit id
|
|
3847
3613
|
|
|
3848
3614
|
for tool in self._internal_tools.values():
|
|
3849
|
-
# Check if this is a
|
|
3850
|
-
if (
|
|
3851
|
-
hasattr(tool.func, '__self__')
|
|
3852
|
-
and tool.func.__self__.__class__.__name__
|
|
3853
|
-
== 'HybridBrowserToolkit'
|
|
3854
|
-
):
|
|
3615
|
+
# Check if this tool is a method bound to a toolkit instance
|
|
3616
|
+
if hasattr(tool.func, '__self__'):
|
|
3855
3617
|
toolkit_instance = tool.func.__self__
|
|
3856
3618
|
toolkit_id = id(toolkit_instance)
|
|
3857
3619
|
|
|
3858
|
-
|
|
3859
|
-
|
|
3860
|
-
|
|
3861
|
-
|
|
3620
|
+
if toolkit_id not in cloned_toolkits:
|
|
3621
|
+
# Check if the toolkit has a clone method
|
|
3622
|
+
if hasattr(toolkit_instance, 'clone_for_new_session'):
|
|
3623
|
+
try:
|
|
3624
|
+
import uuid
|
|
3862
3625
|
|
|
3863
|
-
|
|
3864
|
-
|
|
3865
|
-
|
|
3866
|
-
|
|
3867
|
-
|
|
3868
|
-
|
|
3869
|
-
|
|
3870
|
-
|
|
3871
|
-
|
|
3872
|
-
|
|
3873
|
-
|
|
3874
|
-
|
|
3626
|
+
new_session_id = str(uuid.uuid4())[:8]
|
|
3627
|
+
new_toolkit = (
|
|
3628
|
+
toolkit_instance.clone_for_new_session(
|
|
3629
|
+
new_session_id
|
|
3630
|
+
)
|
|
3631
|
+
)
|
|
3632
|
+
|
|
3633
|
+
# If this is a RegisteredAgentToolkit,
|
|
3634
|
+
# add it to registration list
|
|
3635
|
+
if isinstance(new_toolkit, RegisteredAgentToolkit):
|
|
3636
|
+
toolkits_to_register.append(new_toolkit)
|
|
3637
|
+
|
|
3638
|
+
cloned_toolkits[toolkit_id] = new_toolkit
|
|
3639
|
+
except Exception as e:
|
|
3640
|
+
logger.warning(
|
|
3641
|
+
f"Failed to clone toolkit {toolkit_instance.__class__.__name__}: {e}" # noqa:E501
|
|
3642
|
+
)
|
|
3643
|
+
# Use original toolkit if cloning fails
|
|
3644
|
+
cloned_toolkits[toolkit_id] = toolkit_instance
|
|
3645
|
+
else:
|
|
3646
|
+
# Toolkit doesn't support cloning, use original
|
|
3647
|
+
cloned_toolkits[toolkit_id] = toolkit_instance
|
|
3875
3648
|
|
|
3876
|
-
# Get the
|
|
3877
|
-
|
|
3649
|
+
# Get the method from the cloned (or original) toolkit
|
|
3650
|
+
toolkit = cloned_toolkits[toolkit_id]
|
|
3878
3651
|
method_name = tool.func.__name__
|
|
3879
|
-
if hasattr(
|
|
3880
|
-
new_method = getattr(
|
|
3652
|
+
if hasattr(toolkit, method_name):
|
|
3653
|
+
new_method = getattr(toolkit, method_name)
|
|
3881
3654
|
cloned_tools.append(new_method)
|
|
3882
3655
|
else:
|
|
3883
3656
|
# Fallback to original function
|
|
3884
3657
|
cloned_tools.append(tool.func)
|
|
3885
3658
|
else:
|
|
3886
|
-
#
|
|
3887
|
-
# just use the original function
|
|
3659
|
+
# Not a toolkit method, just use the original function
|
|
3888
3660
|
cloned_tools.append(tool.func)
|
|
3889
3661
|
|
|
3890
|
-
return cloned_tools
|
|
3662
|
+
return cloned_tools, toolkits_to_register
|
|
3891
3663
|
|
|
3892
3664
|
def __repr__(self) -> str:
|
|
3893
3665
|
r"""Returns a string representation of the :obj:`ChatAgent`.
|