camel-ai 0.2.67__py3-none-any.whl → 0.2.69a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of camel-ai might be problematic. Click here for more details.
- camel/__init__.py +1 -1
- camel/agents/chat_agent.py +170 -11
- camel/configs/vllm_config.py +2 -0
- camel/datagen/self_improving_cot.py +1 -1
- camel/environments/__init__.py +12 -0
- camel/environments/rlcards_env.py +860 -0
- camel/interpreters/docker/Dockerfile +2 -5
- camel/loaders/firecrawl_reader.py +4 -4
- camel/memories/blocks/vectordb_block.py +8 -1
- camel/memories/context_creators/score_based.py +185 -39
- camel/models/anthropic_model.py +114 -2
- camel/runtimes/configs.py +11 -11
- camel/runtimes/daytona_runtime.py +4 -4
- camel/runtimes/docker_runtime.py +6 -6
- camel/runtimes/remote_http_runtime.py +5 -5
- camel/societies/workforce/prompts.py +55 -21
- camel/societies/workforce/single_agent_worker.py +274 -14
- camel/societies/workforce/task_channel.py +9 -2
- camel/societies/workforce/utils.py +10 -2
- camel/societies/workforce/worker.py +74 -16
- camel/societies/workforce/workforce.py +90 -35
- camel/tasks/task.py +18 -12
- camel/toolkits/__init__.py +2 -0
- camel/toolkits/aci_toolkit.py +19 -19
- camel/toolkits/arxiv_toolkit.py +6 -6
- camel/toolkits/dappier_toolkit.py +5 -5
- camel/toolkits/file_write_toolkit.py +10 -10
- camel/toolkits/github_toolkit.py +3 -3
- camel/toolkits/non_visual_browser_toolkit/__init__.py +18 -0
- camel/toolkits/non_visual_browser_toolkit/actions.py +196 -0
- camel/toolkits/non_visual_browser_toolkit/agent.py +278 -0
- camel/toolkits/non_visual_browser_toolkit/browser_non_visual_toolkit.py +363 -0
- camel/toolkits/non_visual_browser_toolkit/nv_browser_session.py +175 -0
- camel/toolkits/non_visual_browser_toolkit/snapshot.js +188 -0
- camel/toolkits/non_visual_browser_toolkit/snapshot.py +164 -0
- camel/toolkits/pptx_toolkit.py +4 -4
- camel/toolkits/sympy_toolkit.py +1 -1
- camel/toolkits/task_planning_toolkit.py +3 -3
- camel/toolkits/thinking_toolkit.py +1 -1
- {camel_ai-0.2.67.dist-info → camel_ai-0.2.69a1.dist-info}/METADATA +2 -1
- {camel_ai-0.2.67.dist-info → camel_ai-0.2.69a1.dist-info}/RECORD +43 -35
- {camel_ai-0.2.67.dist-info → camel_ai-0.2.69a1.dist-info}/WHEEL +0 -0
- {camel_ai-0.2.67.dist-info → camel_ai-0.2.69a1.dist-info}/licenses/LICENSE +0 -0
|
@@ -49,17 +49,6 @@ The information returned should be concise and clear.
|
|
|
49
49
|
ASSIGN_TASK_PROMPT = TextPrompt(
|
|
50
50
|
"""You need to assign multiple tasks to worker nodes based on the information below.
|
|
51
51
|
|
|
52
|
-
Here are the tasks to be assigned:
|
|
53
|
-
==============================
|
|
54
|
-
{tasks_info}
|
|
55
|
-
==============================
|
|
56
|
-
|
|
57
|
-
Following is the information of the existing worker nodes. The format is <ID>:<description>:<additional_info>. Choose the most capable worker node ID for each task.
|
|
58
|
-
|
|
59
|
-
==============================
|
|
60
|
-
{child_nodes_info}
|
|
61
|
-
==============================
|
|
62
|
-
|
|
63
52
|
For each task, you need to:
|
|
64
53
|
1. Choose the most capable worker node ID for that task
|
|
65
54
|
2. Identify any dependencies between tasks (if task B requires results from task A, then task A is a dependency of task B)
|
|
@@ -80,24 +69,37 @@ Example valid response:
|
|
|
80
69
|
]
|
|
81
70
|
}}
|
|
82
71
|
|
|
83
|
-
|
|
72
|
+
***CRITICAL: DEPENDENCY MANAGEMENT IS YOUR IMPORTANT RESPONSIBILITY.***
|
|
73
|
+
Carefully analyze the sequence of tasks. A task's dependencies MUST include the IDs of all prior tasks whose outputs are necessary for its execution. For example, a task to 'Summarize Paper X' MUST depend on the task that 'Finds/Retrieves Paper X'. Similarly, a task that 'Compiles a report from summaries' MUST depend on all 'Summarize Paper X' tasks. **Incorrect or missing dependencies will lead to critical operational failures and an inability to complete the overall objective.** Be meticulous in defining these relationships.
|
|
84
74
|
|
|
85
75
|
Do not include any other text, explanations, justifications, or conversational filler before or after the JSON object. Return ONLY the JSON object.
|
|
76
|
+
|
|
77
|
+
Here are the tasks to be assigned:
|
|
78
|
+
==============================
|
|
79
|
+
{tasks_info}
|
|
80
|
+
==============================
|
|
81
|
+
|
|
82
|
+
Following is the information of the existing worker nodes. The format is <ID>:<description>:<additional_info>. Choose the most capable worker node ID for each task.
|
|
83
|
+
|
|
84
|
+
==============================
|
|
85
|
+
{child_nodes_info}
|
|
86
|
+
==============================
|
|
86
87
|
"""
|
|
87
88
|
)
|
|
88
89
|
|
|
89
90
|
PROCESS_TASK_PROMPT = TextPrompt(
|
|
90
91
|
"""You need to process one given task.
|
|
91
|
-
|
|
92
|
+
|
|
93
|
+
Please keep in mind the task you are going to process, the content of the task that you need to do is:
|
|
92
94
|
|
|
93
95
|
==============================
|
|
94
|
-
{
|
|
96
|
+
{content}
|
|
95
97
|
==============================
|
|
96
98
|
|
|
97
|
-
|
|
99
|
+
Here are results of some prerequisite tasks that you can refer to:
|
|
98
100
|
|
|
99
101
|
==============================
|
|
100
|
-
{
|
|
102
|
+
{dependency_tasks_info}
|
|
101
103
|
==============================
|
|
102
104
|
|
|
103
105
|
Here are some additional information about the task:
|
|
@@ -182,11 +184,43 @@ Now you should summarize the scenario and return the result of the task.
|
|
|
182
184
|
"""
|
|
183
185
|
)
|
|
184
186
|
|
|
185
|
-
WF_TASK_DECOMPOSE_PROMPT = r"""You need to decompose the given task into subtasks according to the workers available in the group, following these important principles:
|
|
187
|
+
WF_TASK_DECOMPOSE_PROMPT = r"""You need to decompose the given task into subtasks according to the workers available in the group, following these important principles to maximize efficiency and parallelism:
|
|
188
|
+
|
|
189
|
+
1. **Strategic Grouping for Sequential Work**:
|
|
190
|
+
* If a series of steps must be done in order *and* can be handled by the same worker type, group them into a single subtask to maintain flow and minimize handoffs.
|
|
191
|
+
|
|
192
|
+
2. **Aggressive Parallelization**:
|
|
193
|
+
* **Across Different Worker Specializations**: If distinct phases of the overall task require different types of workers (e.g., research by a 'SearchAgent', then content creation by a 'DocumentAgent'), define these as separate subtasks.
|
|
194
|
+
* **Within a Single Phase (Data/Task Parallelism)**: If a phase involves repetitive operations on multiple items (e.g., processing 10 documents, fetching 5 web pages, analyzing 3 datasets):
|
|
195
|
+
* Decompose this into parallel subtasks, one for each item or a small batch of items.
|
|
196
|
+
* This applies even if the same type of worker handles these parallel subtasks. The goal is to leverage multiple available workers or allow concurrent processing.
|
|
197
|
+
|
|
198
|
+
3. **Subtask Design for Efficiency**:
|
|
199
|
+
* **Actionable and Well-Defined**: Each subtask should have a clear, achievable goal.
|
|
200
|
+
* **Balanced Granularity**: Make subtasks large enough to be meaningful but small enough to enable parallelism and quick feedback. Avoid overly large subtasks that hide parallel opportunities.
|
|
201
|
+
* **Consider Dependencies**: While you list tasks sequentially, think about the true dependencies. The workforce manager will handle execution based on these implied dependencies and worker availability.
|
|
202
|
+
|
|
203
|
+
These principles aim to reduce overall completion time by maximizing concurrent work and effectively utilizing all available worker capabilities.
|
|
204
|
+
|
|
205
|
+
**EXAMPLE FORMAT ONLY** (DO NOT use this example content for actual task decomposition):
|
|
206
|
+
|
|
207
|
+
If given a hypothetical task requiring research, analysis, and reporting with multiple items to process, you should decompose it to maximize parallelism:
|
|
208
|
+
|
|
209
|
+
* Poor decomposition (monolithic):
|
|
210
|
+
`<tasks><task>Do all research, analysis, and write final report.</task></tasks>`
|
|
211
|
+
|
|
212
|
+
* Better decomposition (parallel structure):
|
|
213
|
+
```
|
|
214
|
+
<tasks>
|
|
215
|
+
<task>Subtask 1 (ResearchAgent): Gather initial data and resources.</task>
|
|
216
|
+
<task>Subtask 2.1 (AnalysisAgent): Analyze Item A from Subtask 1 results.</task>
|
|
217
|
+
<task>Subtask 2.2 (AnalysisAgent): Analyze Item B from Subtask 1 results.</task>
|
|
218
|
+
<task>Subtask 2.N (AnalysisAgent): Analyze Item N from Subtask 1 results.</task>
|
|
219
|
+
<task>Subtask 3 (ReportAgent): Compile all analyses into final report.</task>
|
|
220
|
+
</tasks>
|
|
221
|
+
```
|
|
186
222
|
|
|
187
|
-
|
|
188
|
-
2. Only decompose tasks that can be handled in parallel and require different types of workers
|
|
189
|
-
3. This ensures efficient execution by minimizing context switching between workers
|
|
223
|
+
**END OF FORMAT EXAMPLE** - Now apply this structure to your actual task below.
|
|
190
224
|
|
|
191
225
|
The content of the task is:
|
|
192
226
|
|
|
@@ -207,7 +241,7 @@ Following are the available workers, given in the format <ID>: <description>.
|
|
|
207
241
|
{child_nodes_info}
|
|
208
242
|
==============================
|
|
209
243
|
|
|
210
|
-
You must return the subtasks
|
|
244
|
+
You must return the subtasks as a list of individual subtasks within <tasks> tags. If your decomposition, following the principles and detailed example above (e.g., for summarizing multiple papers), results in several parallelizable actions, EACH of those actions must be represented as a separate <task> entry. For instance, the general format is:
|
|
211
245
|
|
|
212
246
|
<tasks>
|
|
213
247
|
<task>Subtask 1</task>
|
|
@@ -13,9 +13,12 @@
|
|
|
13
13
|
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
14
|
from __future__ import annotations
|
|
15
15
|
|
|
16
|
+
import asyncio
|
|
16
17
|
import datetime
|
|
17
18
|
import json
|
|
18
|
-
|
|
19
|
+
import time
|
|
20
|
+
from collections import deque
|
|
21
|
+
from typing import Any, List, Optional
|
|
19
22
|
|
|
20
23
|
from colorama import Fore
|
|
21
24
|
|
|
@@ -26,36 +29,237 @@ from camel.societies.workforce.worker import Worker
|
|
|
26
29
|
from camel.tasks.task import Task, TaskState, validate_task_content
|
|
27
30
|
|
|
28
31
|
|
|
32
|
+
class AgentPool:
|
|
33
|
+
r"""A pool of agent instances for efficient reuse.
|
|
34
|
+
|
|
35
|
+
This pool manages a collection of pre-cloned agents. It supports
|
|
36
|
+
auto-scaling based ondemand and intelligent reuse of existing agents.
|
|
37
|
+
|
|
38
|
+
Args:
|
|
39
|
+
base_agent (ChatAgent): The base agent to clone from.
|
|
40
|
+
initial_size (int): Initial number of agents in the pool.
|
|
41
|
+
(default: :obj:`1`)
|
|
42
|
+
max_size (int): Maximum number of agents in the pool.
|
|
43
|
+
(default: :obj:`10`)
|
|
44
|
+
auto_scale (bool): Whether to automatically scale the pool size.
|
|
45
|
+
(default: :obj:`True`)
|
|
46
|
+
scale_factor (float): Factor by which to scale the pool when needed.
|
|
47
|
+
(default: :obj:`1.5`)
|
|
48
|
+
idle_timeout (float): Time in seconds after which idle agents are
|
|
49
|
+
removed. (default: :obj:`180.0`)
|
|
50
|
+
"""
|
|
51
|
+
|
|
52
|
+
def __init__(
|
|
53
|
+
self,
|
|
54
|
+
base_agent: ChatAgent,
|
|
55
|
+
initial_size: int = 1,
|
|
56
|
+
max_size: int = 10,
|
|
57
|
+
auto_scale: bool = True,
|
|
58
|
+
scale_factor: float = 1.5,
|
|
59
|
+
idle_timeout: float = 180.0, # 3 minutes
|
|
60
|
+
):
|
|
61
|
+
self.base_agent = base_agent
|
|
62
|
+
self.max_size = max_size
|
|
63
|
+
self.auto_scale = auto_scale
|
|
64
|
+
self.scale_factor = scale_factor
|
|
65
|
+
self.idle_timeout = idle_timeout
|
|
66
|
+
|
|
67
|
+
# Pool management
|
|
68
|
+
self._available_agents: deque = deque()
|
|
69
|
+
self._in_use_agents: set = set()
|
|
70
|
+
self._agent_last_used: dict = {}
|
|
71
|
+
self._lock = asyncio.Lock()
|
|
72
|
+
|
|
73
|
+
# Statistics
|
|
74
|
+
self._total_borrows = 0
|
|
75
|
+
self._total_clones_created = 0
|
|
76
|
+
self._pool_hits = 0
|
|
77
|
+
|
|
78
|
+
# Initialize pool
|
|
79
|
+
self._initialize_pool(initial_size)
|
|
80
|
+
|
|
81
|
+
def _initialize_pool(self, size: int) -> None:
|
|
82
|
+
r"""Initialize the pool with the specified number of agents."""
|
|
83
|
+
for _ in range(min(size, self.max_size)):
|
|
84
|
+
agent = self._create_fresh_agent()
|
|
85
|
+
self._available_agents.append(agent)
|
|
86
|
+
|
|
87
|
+
def _create_fresh_agent(self) -> ChatAgent:
|
|
88
|
+
r"""Create a fresh agent instance."""
|
|
89
|
+
agent = self.base_agent.clone(with_memory=False)
|
|
90
|
+
self._total_clones_created += 1
|
|
91
|
+
return agent
|
|
92
|
+
|
|
93
|
+
async def get_agent(self) -> ChatAgent:
|
|
94
|
+
r"""Get an agent from the pool, creating one if necessary."""
|
|
95
|
+
async with self._lock:
|
|
96
|
+
self._total_borrows += 1
|
|
97
|
+
|
|
98
|
+
# Try to get from available agents first
|
|
99
|
+
if self._available_agents:
|
|
100
|
+
agent = self._available_agents.popleft()
|
|
101
|
+
self._in_use_agents.add(id(agent))
|
|
102
|
+
self._pool_hits += 1
|
|
103
|
+
|
|
104
|
+
# Reset the agent state
|
|
105
|
+
agent.reset()
|
|
106
|
+
return agent
|
|
107
|
+
|
|
108
|
+
# Check if we can create new agents
|
|
109
|
+
total_agents = len(self._available_agents) + len(
|
|
110
|
+
self._in_use_agents
|
|
111
|
+
)
|
|
112
|
+
if total_agents < self.max_size:
|
|
113
|
+
agent = self._create_fresh_agent()
|
|
114
|
+
self._in_use_agents.add(id(agent))
|
|
115
|
+
return agent
|
|
116
|
+
|
|
117
|
+
# Pool exhausted, wait and retry or create temporary agent
|
|
118
|
+
if self.auto_scale:
|
|
119
|
+
# Create a temporary agent that won't be returned to pool
|
|
120
|
+
return self._create_fresh_agent()
|
|
121
|
+
else:
|
|
122
|
+
# Wait for an agent to become available
|
|
123
|
+
while not self._available_agents:
|
|
124
|
+
await asyncio.sleep(0.1)
|
|
125
|
+
|
|
126
|
+
agent = self._available_agents.popleft()
|
|
127
|
+
self._in_use_agents.add(id(agent))
|
|
128
|
+
agent.reset()
|
|
129
|
+
return agent
|
|
130
|
+
|
|
131
|
+
async def return_agent(self, agent: ChatAgent) -> None:
|
|
132
|
+
r"""Return an agent to the pool."""
|
|
133
|
+
async with self._lock:
|
|
134
|
+
agent_id = id(agent)
|
|
135
|
+
|
|
136
|
+
if agent_id in self._in_use_agents:
|
|
137
|
+
self._in_use_agents.remove(agent_id)
|
|
138
|
+
|
|
139
|
+
# Only return to pool if we're under max size
|
|
140
|
+
if len(self._available_agents) < self.max_size:
|
|
141
|
+
# Reset agent state before returning to pool
|
|
142
|
+
agent.reset()
|
|
143
|
+
self._available_agents.append(agent)
|
|
144
|
+
self._agent_last_used[agent_id] = time.time()
|
|
145
|
+
|
|
146
|
+
async def cleanup_idle_agents(self) -> None:
|
|
147
|
+
r"""Remove idle agents from the pool to free memory."""
|
|
148
|
+
if not self.auto_scale:
|
|
149
|
+
return
|
|
150
|
+
|
|
151
|
+
async with self._lock:
|
|
152
|
+
current_time = time.time()
|
|
153
|
+
agents_to_remove = []
|
|
154
|
+
|
|
155
|
+
for agent in list(self._available_agents):
|
|
156
|
+
agent_id = id(agent)
|
|
157
|
+
last_used = self._agent_last_used.get(agent_id, current_time)
|
|
158
|
+
|
|
159
|
+
if current_time - last_used > self.idle_timeout:
|
|
160
|
+
agents_to_remove.append(agent)
|
|
161
|
+
|
|
162
|
+
for agent in agents_to_remove:
|
|
163
|
+
self._available_agents.remove(agent)
|
|
164
|
+
agent_id = id(agent)
|
|
165
|
+
self._agent_last_used.pop(agent_id, None)
|
|
166
|
+
|
|
167
|
+
def get_stats(self) -> dict:
|
|
168
|
+
r"""Get pool statistics."""
|
|
169
|
+
return {
|
|
170
|
+
"available_agents": len(self._available_agents),
|
|
171
|
+
"in_use_agents": len(self._in_use_agents),
|
|
172
|
+
"total_borrows": self._total_borrows,
|
|
173
|
+
"total_clones_created": self._total_clones_created,
|
|
174
|
+
"pool_hits": self._pool_hits,
|
|
175
|
+
"hit_rate": self._pool_hits / max(self._total_borrows, 1),
|
|
176
|
+
}
|
|
177
|
+
|
|
178
|
+
|
|
29
179
|
class SingleAgentWorker(Worker):
|
|
30
180
|
r"""A worker node that consists of a single agent.
|
|
31
181
|
|
|
32
182
|
Args:
|
|
33
183
|
description (str): Description of the node.
|
|
34
184
|
worker (ChatAgent): Worker of the node. A single agent.
|
|
185
|
+
use_agent_pool (bool): Whether to use agent pool for efficiency.
|
|
186
|
+
(default: :obj:`True`)
|
|
187
|
+
pool_initial_size (int): Initial size of the agent pool.
|
|
188
|
+
(default: :obj:`1`)
|
|
189
|
+
pool_max_size (int): Maximum size of the agent pool.
|
|
190
|
+
(default: :obj:`10`)
|
|
191
|
+
auto_scale_pool (bool): Whether to auto-scale the agent pool.
|
|
192
|
+
(default: :obj:`True`)
|
|
35
193
|
"""
|
|
36
194
|
|
|
37
195
|
def __init__(
|
|
38
196
|
self,
|
|
39
197
|
description: str,
|
|
40
198
|
worker: ChatAgent,
|
|
199
|
+
use_agent_pool: bool = True,
|
|
200
|
+
pool_initial_size: int = 1,
|
|
201
|
+
pool_max_size: int = 10,
|
|
202
|
+
auto_scale_pool: bool = True,
|
|
41
203
|
) -> None:
|
|
42
204
|
node_id = worker.agent_id
|
|
43
|
-
super().__init__(
|
|
205
|
+
super().__init__(
|
|
206
|
+
description,
|
|
207
|
+
node_id=node_id,
|
|
208
|
+
)
|
|
44
209
|
self.worker = worker
|
|
210
|
+
self.use_agent_pool = use_agent_pool
|
|
211
|
+
|
|
212
|
+
self.agent_pool: Optional[AgentPool] = None
|
|
213
|
+
self._cleanup_task: Optional[asyncio.Task] = None
|
|
214
|
+
# Initialize agent pool if enabled
|
|
215
|
+
if self.use_agent_pool:
|
|
216
|
+
self.agent_pool = AgentPool(
|
|
217
|
+
base_agent=worker,
|
|
218
|
+
initial_size=pool_initial_size,
|
|
219
|
+
max_size=pool_max_size,
|
|
220
|
+
auto_scale=auto_scale_pool,
|
|
221
|
+
)
|
|
45
222
|
|
|
46
223
|
def reset(self) -> Any:
|
|
47
224
|
r"""Resets the worker to its initial state."""
|
|
48
225
|
super().reset()
|
|
49
226
|
self.worker.reset()
|
|
50
227
|
|
|
228
|
+
# Reset agent pool if it exists
|
|
229
|
+
if self.agent_pool:
|
|
230
|
+
# Stop cleanup task
|
|
231
|
+
if self._cleanup_task and not self._cleanup_task.done():
|
|
232
|
+
self._cleanup_task.cancel()
|
|
233
|
+
|
|
234
|
+
# Reinitialize pool
|
|
235
|
+
self.agent_pool = AgentPool(
|
|
236
|
+
base_agent=self.worker,
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
async def _get_worker_agent(self) -> ChatAgent:
|
|
240
|
+
r"""Get a worker agent, either from pool or by cloning."""
|
|
241
|
+
if self.use_agent_pool and self.agent_pool:
|
|
242
|
+
return await self.agent_pool.get_agent()
|
|
243
|
+
else:
|
|
244
|
+
# Fallback to original cloning approach
|
|
245
|
+
return self.worker.clone(with_memory=False)
|
|
246
|
+
|
|
247
|
+
async def _return_worker_agent(self, agent: ChatAgent) -> None:
|
|
248
|
+
r"""Return a worker agent to the pool if pooling is enabled."""
|
|
249
|
+
if self.use_agent_pool and self.agent_pool:
|
|
250
|
+
await self.agent_pool.return_agent(agent)
|
|
251
|
+
# If not using pool, agent will be garbage collected
|
|
252
|
+
|
|
51
253
|
async def _process_task(
|
|
52
254
|
self, task: Task, dependencies: List[Task]
|
|
53
255
|
) -> TaskState:
|
|
54
|
-
r"""Processes a task with its dependencies
|
|
256
|
+
r"""Processes a task with its dependencies using an efficient agent
|
|
257
|
+
management system.
|
|
55
258
|
|
|
56
259
|
This method asynchronously processes a given task, considering its
|
|
57
|
-
dependencies, by sending a generated prompt to a worker.
|
|
58
|
-
|
|
260
|
+
dependencies, by sending a generated prompt to a worker agent.
|
|
261
|
+
Uses an agent pool for efficiency when enabled, or falls back to
|
|
262
|
+
cloning when pool is disabled.
|
|
59
263
|
|
|
60
264
|
Args:
|
|
61
265
|
task (Task): The task to process, which includes necessary details
|
|
@@ -66,14 +270,18 @@ class SingleAgentWorker(Worker):
|
|
|
66
270
|
TaskState: `TaskState.DONE` if processed successfully, otherwise
|
|
67
271
|
`TaskState.FAILED`.
|
|
68
272
|
"""
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
dependency_tasks_info=dependency_tasks_info,
|
|
73
|
-
additional_info=task.additional_info,
|
|
74
|
-
)
|
|
273
|
+
# Get agent efficiently (from pool or by cloning)
|
|
274
|
+
worker_agent = await self._get_worker_agent()
|
|
275
|
+
|
|
75
276
|
try:
|
|
76
|
-
|
|
277
|
+
dependency_tasks_info = self._get_dep_tasks_info(dependencies)
|
|
278
|
+
prompt = PROCESS_TASK_PROMPT.format(
|
|
279
|
+
content=task.content,
|
|
280
|
+
dependency_tasks_info=dependency_tasks_info,
|
|
281
|
+
additional_info=task.additional_info,
|
|
282
|
+
)
|
|
283
|
+
|
|
284
|
+
response = await worker_agent.astep(
|
|
77
285
|
prompt, response_format=TaskResult
|
|
78
286
|
)
|
|
79
287
|
except Exception as e:
|
|
@@ -82,6 +290,16 @@ class SingleAgentWorker(Worker):
|
|
|
82
290
|
f"\n{e}{Fore.RESET}"
|
|
83
291
|
)
|
|
84
292
|
return TaskState.FAILED
|
|
293
|
+
finally:
|
|
294
|
+
# Return agent to pool or let it be garbage collected
|
|
295
|
+
await self._return_worker_agent(worker_agent)
|
|
296
|
+
|
|
297
|
+
# Get actual token usage from the agent that processed this task
|
|
298
|
+
try:
|
|
299
|
+
_, total_token_count = worker_agent.memory.get_context()
|
|
300
|
+
except Exception:
|
|
301
|
+
# Fallback if memory context unavailable
|
|
302
|
+
total_token_count = 0
|
|
85
303
|
|
|
86
304
|
# Populate additional_info with worker attempt details
|
|
87
305
|
if task.additional_info is None:
|
|
@@ -90,14 +308,20 @@ class SingleAgentWorker(Worker):
|
|
|
90
308
|
# Create worker attempt details with descriptive keys
|
|
91
309
|
worker_attempt_details = {
|
|
92
310
|
"agent_id": getattr(
|
|
311
|
+
worker_agent, "agent_id", worker_agent.role_name
|
|
312
|
+
),
|
|
313
|
+
"original_worker_id": getattr(
|
|
93
314
|
self.worker, "agent_id", self.worker.role_name
|
|
94
315
|
),
|
|
95
316
|
"timestamp": str(datetime.datetime.now()),
|
|
96
317
|
"description": f"Attempt by "
|
|
97
|
-
f"{getattr(
|
|
318
|
+
f"{getattr(worker_agent, 'agent_id', worker_agent.role_name)} "
|
|
319
|
+
f"(from pool/clone of "
|
|
320
|
+
f"{getattr(self.worker, 'agent_id', self.worker.role_name)}) "
|
|
98
321
|
f"to process task {task.content}",
|
|
99
322
|
"response_content": response.msg.content,
|
|
100
|
-
"tool_calls": response.info
|
|
323
|
+
"tool_calls": response.info.get("tool_calls"),
|
|
324
|
+
"total_token_count": total_token_count,
|
|
101
325
|
}
|
|
102
326
|
|
|
103
327
|
# Store the worker attempt in additional_info
|
|
@@ -105,6 +329,11 @@ class SingleAgentWorker(Worker):
|
|
|
105
329
|
task.additional_info["worker_attempts"] = []
|
|
106
330
|
task.additional_info["worker_attempts"].append(worker_attempt_details)
|
|
107
331
|
|
|
332
|
+
# Store the actual token usage for this specific task
|
|
333
|
+
task.additional_info["token_usage"] = {
|
|
334
|
+
"total_tokens": total_token_count
|
|
335
|
+
}
|
|
336
|
+
|
|
108
337
|
print(f"======\n{Fore.GREEN}Reply from {self}:{Fore.RESET}")
|
|
109
338
|
|
|
110
339
|
result_dict = json.loads(response.msg.content)
|
|
@@ -127,3 +356,34 @@ class SingleAgentWorker(Worker):
|
|
|
127
356
|
|
|
128
357
|
task.result = task_result.content
|
|
129
358
|
return TaskState.DONE
|
|
359
|
+
|
|
360
|
+
async def _listen_to_channel(self):
|
|
361
|
+
r"""Override to start cleanup task when pool is enabled."""
|
|
362
|
+
# Start cleanup task for agent pool
|
|
363
|
+
if self.use_agent_pool and self.agent_pool:
|
|
364
|
+
self._cleanup_task = asyncio.create_task(self._periodic_cleanup())
|
|
365
|
+
|
|
366
|
+
# Call parent implementation
|
|
367
|
+
await super()._listen_to_channel()
|
|
368
|
+
|
|
369
|
+
# Stop cleanup task
|
|
370
|
+
if self._cleanup_task and not self._cleanup_task.done():
|
|
371
|
+
self._cleanup_task.cancel()
|
|
372
|
+
|
|
373
|
+
async def _periodic_cleanup(self):
|
|
374
|
+
r"""Periodically clean up idle agents from the pool."""
|
|
375
|
+
while True:
|
|
376
|
+
try:
|
|
377
|
+
await asyncio.sleep(60) # Cleanup every minute
|
|
378
|
+
if self.agent_pool:
|
|
379
|
+
await self.agent_pool.cleanup_idle_agents()
|
|
380
|
+
except asyncio.CancelledError:
|
|
381
|
+
break
|
|
382
|
+
except Exception as e:
|
|
383
|
+
print(f"Error in pool cleanup: {e}")
|
|
384
|
+
|
|
385
|
+
def get_pool_stats(self) -> Optional[dict]:
|
|
386
|
+
r"""Get agent pool statistics if pool is enabled."""
|
|
387
|
+
if self.use_agent_pool and self.agent_pool:
|
|
388
|
+
return self.agent_pool.get_stats()
|
|
389
|
+
return None
|
|
@@ -23,6 +23,8 @@ class PacketStatus(Enum):
|
|
|
23
23
|
states:
|
|
24
24
|
|
|
25
25
|
- ``SENT``: The packet has been sent to a worker.
|
|
26
|
+
- ``PROCESSING``: The packet has been claimed by a worker and is being
|
|
27
|
+
processed.
|
|
26
28
|
- ``RETURNED``: The packet has been returned by the worker, meaning that
|
|
27
29
|
the status of the task inside has been updated.
|
|
28
30
|
- ``ARCHIVED``: The packet has been archived, meaning that the content of
|
|
@@ -31,6 +33,7 @@ class PacketStatus(Enum):
|
|
|
31
33
|
"""
|
|
32
34
|
|
|
33
35
|
SENT = "SENT"
|
|
36
|
+
PROCESSING = "PROCESSING"
|
|
34
37
|
RETURNED = "RETURNED"
|
|
35
38
|
ARCHIVED = "ARCHIVED"
|
|
36
39
|
|
|
@@ -97,8 +100,9 @@ class TaskChannel:
|
|
|
97
100
|
await self._condition.wait()
|
|
98
101
|
|
|
99
102
|
async def get_assigned_task_by_assignee(self, assignee_id: str) -> Task:
|
|
100
|
-
r"""
|
|
101
|
-
assignee.
|
|
103
|
+
r"""Atomically get and claim a task from the channel that has been
|
|
104
|
+
assigned to the assignee. This prevents race conditions where multiple
|
|
105
|
+
concurrent calls might retrieve the same task.
|
|
102
106
|
"""
|
|
103
107
|
async with self._condition:
|
|
104
108
|
while True:
|
|
@@ -107,6 +111,9 @@ class TaskChannel:
|
|
|
107
111
|
packet.status == PacketStatus.SENT
|
|
108
112
|
and packet.assignee_id == assignee_id
|
|
109
113
|
):
|
|
114
|
+
# Atomically claim the task by changing its status
|
|
115
|
+
packet.status = PacketStatus.PROCESSING
|
|
116
|
+
self._condition.notify_all()
|
|
110
117
|
return packet.task
|
|
111
118
|
await self._condition.wait()
|
|
112
119
|
|
|
@@ -50,7 +50,8 @@ class TaskAssignment(BaseModel):
|
|
|
50
50
|
)
|
|
51
51
|
dependencies: List[str] = Field(
|
|
52
52
|
default_factory=list,
|
|
53
|
-
description="List of task IDs that must complete before this task."
|
|
53
|
+
description="List of task IDs that must complete before this task. "
|
|
54
|
+
"This is critical for the task decomposition and execution.",
|
|
54
55
|
)
|
|
55
56
|
|
|
56
57
|
|
|
@@ -156,7 +157,14 @@ def check_if_running(
|
|
|
156
157
|
)
|
|
157
158
|
return None
|
|
158
159
|
else:
|
|
159
|
-
raise
|
|
160
|
+
raise (
|
|
161
|
+
last_exception
|
|
162
|
+
if last_exception
|
|
163
|
+
else RuntimeError(
|
|
164
|
+
f"Unexpected failure in {func.__name__} "
|
|
165
|
+
"with no exception captured."
|
|
166
|
+
)
|
|
167
|
+
)
|
|
160
168
|
|
|
161
169
|
return wrapper
|
|
162
170
|
|
|
@@ -13,9 +13,10 @@
|
|
|
13
13
|
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
14
|
from __future__ import annotations
|
|
15
15
|
|
|
16
|
+
import asyncio
|
|
16
17
|
import logging
|
|
17
18
|
from abc import ABC, abstractmethod
|
|
18
|
-
from typing import List, Optional
|
|
19
|
+
from typing import List, Optional, Set
|
|
19
20
|
|
|
20
21
|
from colorama import Fore
|
|
21
22
|
|
|
@@ -43,6 +44,7 @@ class Worker(BaseNode, ABC):
|
|
|
43
44
|
node_id: Optional[str] = None,
|
|
44
45
|
) -> None:
|
|
45
46
|
super().__init__(description, node_id=node_id)
|
|
47
|
+
self._active_task_ids: Set[str] = set()
|
|
46
48
|
|
|
47
49
|
def __repr__(self):
|
|
48
50
|
return f"Worker node {self.node_id} ({self.description})"
|
|
@@ -60,7 +62,7 @@ class Worker(BaseNode, ABC):
|
|
|
60
62
|
pass
|
|
61
63
|
|
|
62
64
|
async def _get_assigned_task(self) -> Task:
|
|
63
|
-
r"""Get
|
|
65
|
+
r"""Get a task assigned to this node from the channel."""
|
|
64
66
|
return await self._channel.get_assigned_task_by_assignee(self.node_id)
|
|
65
67
|
|
|
66
68
|
@staticmethod
|
|
@@ -77,20 +79,10 @@ class Worker(BaseNode, ABC):
|
|
|
77
79
|
def set_channel(self, channel: TaskChannel):
|
|
78
80
|
self._channel = channel
|
|
79
81
|
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
This method should be run in an event loop, as it will run
|
|
86
|
-
indefinitely.
|
|
87
|
-
"""
|
|
88
|
-
self._running = True
|
|
89
|
-
logger.info(f"{self} started.")
|
|
90
|
-
|
|
91
|
-
while True:
|
|
92
|
-
# Get the earliest task assigned to this node
|
|
93
|
-
task = await self._get_assigned_task()
|
|
82
|
+
async def _process_single_task(self, task: Task) -> None:
|
|
83
|
+
r"""Process a single task and handle its completion/failure."""
|
|
84
|
+
try:
|
|
85
|
+
self._active_task_ids.add(task.id)
|
|
94
86
|
print(
|
|
95
87
|
f"{Fore.YELLOW}{self} get task {task.id}: {task.content}"
|
|
96
88
|
f"{Fore.RESET}"
|
|
@@ -109,6 +101,72 @@ class Worker(BaseNode, ABC):
|
|
|
109
101
|
task.set_state(task_state)
|
|
110
102
|
|
|
111
103
|
await self._channel.return_task(task.id)
|
|
104
|
+
except Exception as e:
|
|
105
|
+
logger.error(f"Error processing task {task.id}: {e}")
|
|
106
|
+
task.set_state(TaskState.FAILED)
|
|
107
|
+
await self._channel.return_task(task.id)
|
|
108
|
+
finally:
|
|
109
|
+
self._active_task_ids.discard(task.id)
|
|
110
|
+
|
|
111
|
+
@check_if_running(False)
|
|
112
|
+
async def _listen_to_channel(self):
|
|
113
|
+
r"""Continuously listen to the channel and process assigned tasks.
|
|
114
|
+
|
|
115
|
+
This method supports parallel task execution without artificial limits.
|
|
116
|
+
"""
|
|
117
|
+
self._running = True
|
|
118
|
+
logger.info(f"{self} started.")
|
|
119
|
+
|
|
120
|
+
# Keep track of running task coroutines
|
|
121
|
+
running_tasks: Set[asyncio.Task] = set()
|
|
122
|
+
|
|
123
|
+
while self._running:
|
|
124
|
+
try:
|
|
125
|
+
# Clean up completed tasks
|
|
126
|
+
completed_tasks = [t for t in running_tasks if t.done()]
|
|
127
|
+
for completed_task in completed_tasks:
|
|
128
|
+
running_tasks.remove(completed_task)
|
|
129
|
+
# Check for exceptions in completed tasks
|
|
130
|
+
try:
|
|
131
|
+
await completed_task
|
|
132
|
+
except Exception as e:
|
|
133
|
+
logger.error(f"Task processing failed: {e}")
|
|
134
|
+
|
|
135
|
+
# Try to get a new task (with short timeout to avoid blocking)
|
|
136
|
+
try:
|
|
137
|
+
task = await asyncio.wait_for(
|
|
138
|
+
self._get_assigned_task(), timeout=1.0
|
|
139
|
+
)
|
|
140
|
+
|
|
141
|
+
# Create and start processing task
|
|
142
|
+
task_coroutine = asyncio.create_task(
|
|
143
|
+
self._process_single_task(task)
|
|
144
|
+
)
|
|
145
|
+
running_tasks.add(task_coroutine)
|
|
146
|
+
|
|
147
|
+
except asyncio.TimeoutError:
|
|
148
|
+
# No tasks available, continue loop
|
|
149
|
+
if not running_tasks:
|
|
150
|
+
# No tasks running and none available, short sleep
|
|
151
|
+
await asyncio.sleep(0.1)
|
|
152
|
+
continue
|
|
153
|
+
|
|
154
|
+
except Exception as e:
|
|
155
|
+
logger.error(
|
|
156
|
+
f"Error in worker {self.node_id} listen loop: {e}"
|
|
157
|
+
)
|
|
158
|
+
await asyncio.sleep(0.1)
|
|
159
|
+
continue
|
|
160
|
+
|
|
161
|
+
# Wait for all remaining tasks to complete when stopping
|
|
162
|
+
if running_tasks:
|
|
163
|
+
logger.info(
|
|
164
|
+
f"{self} stopping, waiting for {len(running_tasks)} "
|
|
165
|
+
f"tasks to complete..."
|
|
166
|
+
)
|
|
167
|
+
await asyncio.gather(*running_tasks, return_exceptions=True)
|
|
168
|
+
|
|
169
|
+
logger.info(f"{self} stopped.")
|
|
112
170
|
|
|
113
171
|
@check_if_running(False)
|
|
114
172
|
async def start(self):
|