camel-ai 0.2.59__py3-none-any.whl → 0.2.61__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of camel-ai might be problematic. Click here for more details.
- camel/__init__.py +1 -1
- camel/agents/chat_agent.py +158 -7
- camel/configs/anthropic_config.py +6 -5
- camel/configs/cohere_config.py +1 -1
- camel/configs/mistral_config.py +1 -1
- camel/configs/openai_config.py +3 -0
- camel/configs/reka_config.py +1 -1
- camel/configs/samba_config.py +2 -2
- camel/datagen/cot_datagen.py +29 -34
- camel/datagen/evol_instruct/scorer.py +22 -23
- camel/datagen/evol_instruct/templates.py +46 -46
- camel/datasets/static_dataset.py +144 -0
- camel/embeddings/jina_embedding.py +8 -1
- camel/embeddings/sentence_transformers_embeddings.py +2 -2
- camel/embeddings/vlm_embedding.py +9 -2
- camel/loaders/__init__.py +5 -2
- camel/loaders/chunkr_reader.py +117 -91
- camel/loaders/mistral_reader.py +148 -0
- camel/memories/blocks/chat_history_block.py +1 -2
- camel/memories/records.py +3 -0
- camel/messages/base.py +15 -3
- camel/models/azure_openai_model.py +1 -0
- camel/models/model_factory.py +2 -2
- camel/models/model_manager.py +7 -3
- camel/retrievers/bm25_retriever.py +1 -2
- camel/retrievers/hybrid_retrival.py +2 -2
- camel/societies/workforce/workforce.py +65 -24
- camel/storages/__init__.py +2 -0
- camel/storages/vectordb_storages/__init__.py +2 -0
- camel/storages/vectordb_storages/faiss.py +712 -0
- camel/storages/vectordb_storages/oceanbase.py +1 -2
- camel/toolkits/__init__.py +2 -0
- camel/toolkits/async_browser_toolkit.py +80 -524
- camel/toolkits/bohrium_toolkit.py +318 -0
- camel/toolkits/browser_toolkit.py +221 -541
- camel/toolkits/browser_toolkit_commons.py +568 -0
- camel/toolkits/dalle_toolkit.py +4 -0
- camel/toolkits/excel_toolkit.py +8 -2
- camel/toolkits/file_write_toolkit.py +76 -29
- camel/toolkits/github_toolkit.py +43 -25
- camel/toolkits/image_analysis_toolkit.py +3 -0
- camel/toolkits/jina_reranker_toolkit.py +194 -77
- camel/toolkits/mcp_toolkit.py +134 -16
- camel/toolkits/page_script.js +40 -28
- camel/toolkits/twitter_toolkit.py +6 -1
- camel/toolkits/video_analysis_toolkit.py +3 -0
- camel/toolkits/video_download_toolkit.py +3 -0
- camel/toolkits/wolfram_alpha_toolkit.py +51 -23
- camel/types/enums.py +27 -6
- camel/utils/__init__.py +2 -0
- camel/utils/commons.py +27 -0
- {camel_ai-0.2.59.dist-info → camel_ai-0.2.61.dist-info}/METADATA +17 -9
- {camel_ai-0.2.59.dist-info → camel_ai-0.2.61.dist-info}/RECORD +55 -51
- {camel_ai-0.2.59.dist-info → camel_ai-0.2.61.dist-info}/WHEEL +0 -0
- {camel_ai-0.2.59.dist-info → camel_ai-0.2.61.dist-info}/licenses/LICENSE +0 -0
camel/datasets/static_dataset.py
CHANGED
|
@@ -398,3 +398,147 @@ class StaticDataset(Dataset):
|
|
|
398
398
|
f"got {type(item).__name__}"
|
|
399
399
|
)
|
|
400
400
|
return data
|
|
401
|
+
|
|
402
|
+
def save_to_json(self, file_path: Union[str, Path]) -> None:
|
|
403
|
+
r"""Save the dataset to a local JSON file.
|
|
404
|
+
|
|
405
|
+
Args:
|
|
406
|
+
file_path (Union[str, Path]): Path to the output JSON file.
|
|
407
|
+
If a string is provided, it will be converted to a Path object.
|
|
408
|
+
|
|
409
|
+
Raises:
|
|
410
|
+
TypeError: If file_path is not a string or Path object.
|
|
411
|
+
OSError: If there's an error writing to the file.
|
|
412
|
+
"""
|
|
413
|
+
if isinstance(file_path, str):
|
|
414
|
+
file_path = Path(file_path)
|
|
415
|
+
elif not isinstance(file_path, Path):
|
|
416
|
+
raise TypeError(
|
|
417
|
+
f"Expected file_path to be a string or Path object, "
|
|
418
|
+
f"got {type(file_path).__name__}"
|
|
419
|
+
)
|
|
420
|
+
|
|
421
|
+
# Convert DataPoint objects to dictionaries
|
|
422
|
+
data_dicts = [datapoint.to_dict() for datapoint in self.data]
|
|
423
|
+
|
|
424
|
+
# Ensure the parent directory exists
|
|
425
|
+
file_path.parent.mkdir(parents=True, exist_ok=True)
|
|
426
|
+
|
|
427
|
+
try:
|
|
428
|
+
logger.debug(f"Saving dataset to {file_path}")
|
|
429
|
+
with file_path.open('w', encoding='utf-8') as f:
|
|
430
|
+
json.dump(data_dicts, f, ensure_ascii=False, indent=2)
|
|
431
|
+
logger.info(
|
|
432
|
+
f"Successfully saved {len(data_dicts)} items to {file_path}"
|
|
433
|
+
)
|
|
434
|
+
except OSError as e:
|
|
435
|
+
logger.error(f"Error saving dataset to {file_path}: {e}")
|
|
436
|
+
raise
|
|
437
|
+
|
|
438
|
+
def save_to_huggingface(
|
|
439
|
+
self,
|
|
440
|
+
dataset_name: str,
|
|
441
|
+
token: Optional[str] = None,
|
|
442
|
+
filepath: str = "records/records.json",
|
|
443
|
+
private: bool = False,
|
|
444
|
+
description: Optional[str] = None,
|
|
445
|
+
license: Optional[str] = None,
|
|
446
|
+
version: Optional[str] = None,
|
|
447
|
+
tags: Optional[List[str]] = None,
|
|
448
|
+
language: Optional[List[str]] = None,
|
|
449
|
+
task_categories: Optional[List[str]] = None,
|
|
450
|
+
authors: Optional[List[str]] = None,
|
|
451
|
+
**kwargs: Any,
|
|
452
|
+
) -> str:
|
|
453
|
+
r"""Save the dataset to the Hugging Face Hub using the project's
|
|
454
|
+
HuggingFaceDatasetManager.
|
|
455
|
+
|
|
456
|
+
Args:
|
|
457
|
+
dataset_name (str): The name of the dataset on Hugging Face Hub.
|
|
458
|
+
Should be in the format 'username/dataset_name' .
|
|
459
|
+
token (Optional[str]): The Hugging Face API token. If not provided,
|
|
460
|
+
the token will be read from the environment variable `HF_TOKEN`
|
|
461
|
+
(default: :obj:`None`)
|
|
462
|
+
filepath (str): The path in the repository where the dataset
|
|
463
|
+
will be saved. (default: :obj:`"records/records.json"`)
|
|
464
|
+
private (bool): Whether the dataset should be private.
|
|
465
|
+
(default: :obj:`False`)
|
|
466
|
+
description (Optional[str]): A description of the dataset.
|
|
467
|
+
(default: :obj:`None`)
|
|
468
|
+
license (Optional[str]): The license of the dataset.
|
|
469
|
+
(default: :obj:`None`)
|
|
470
|
+
version (Optional[str]): The version of the dataset.
|
|
471
|
+
(default: :obj:`None`)
|
|
472
|
+
tags (Optional[List[str]]): A list of tags for the dataset.
|
|
473
|
+
(default: :obj:`None`)
|
|
474
|
+
language (Optional[List[str]]): A list of languages the dataset is
|
|
475
|
+
in. (default: :obj:`None`)
|
|
476
|
+
task_categories (Optional[List[str]]): A list of task categories.
|
|
477
|
+
(default: :obj:`None`)
|
|
478
|
+
authors (Optional[List[str]]): A list of authors of the dataset.
|
|
479
|
+
(default: :obj:`None`)
|
|
480
|
+
**kwargs (Any): Additional keyword arguments to pass to the
|
|
481
|
+
Hugging Face API.
|
|
482
|
+
|
|
483
|
+
Returns:
|
|
484
|
+
str: The URL of the dataset on the Hugging Face Hub.
|
|
485
|
+
|
|
486
|
+
Raises:
|
|
487
|
+
OSError: If there's an error uploading the dataset.
|
|
488
|
+
"""
|
|
489
|
+
# lazy import to avoid heavy dependencies
|
|
490
|
+
from camel.datahubs.huggingface import HuggingFaceDatasetManager
|
|
491
|
+
from camel.datahubs.models import Record
|
|
492
|
+
|
|
493
|
+
# Initialize the HuggingFaceDatasetManager
|
|
494
|
+
manager = HuggingFaceDatasetManager(token=token)
|
|
495
|
+
|
|
496
|
+
# Convert DataPoint objects to Record objects
|
|
497
|
+
records = []
|
|
498
|
+
for datapoint in self.data:
|
|
499
|
+
datapoint_dict = datapoint.to_dict()
|
|
500
|
+
|
|
501
|
+
record_dict = {
|
|
502
|
+
"question": datapoint_dict.get("question", ""),
|
|
503
|
+
"final_answer": datapoint_dict.get("final_answer", ""),
|
|
504
|
+
"rationale": datapoint_dict.get("rationale", ""),
|
|
505
|
+
"metadata": datapoint_dict.get("metadata", {}),
|
|
506
|
+
}
|
|
507
|
+
record = Record(**record_dict)
|
|
508
|
+
records.append(record)
|
|
509
|
+
|
|
510
|
+
logger.debug(f"Creating dataset {dataset_name}")
|
|
511
|
+
try:
|
|
512
|
+
# Create the dataset
|
|
513
|
+
dataset_url = manager.create_dataset(
|
|
514
|
+
name=dataset_name, private=private, **kwargs
|
|
515
|
+
)
|
|
516
|
+
|
|
517
|
+
# Add records to the dataset
|
|
518
|
+
manager.add_records(
|
|
519
|
+
dataset_name=dataset_name,
|
|
520
|
+
records=records,
|
|
521
|
+
filepath=filepath,
|
|
522
|
+
)
|
|
523
|
+
|
|
524
|
+
# Create dataset card if description is provided
|
|
525
|
+
if description:
|
|
526
|
+
manager.create_dataset_card(
|
|
527
|
+
dataset_name=dataset_name,
|
|
528
|
+
description=description,
|
|
529
|
+
license=license,
|
|
530
|
+
version=version,
|
|
531
|
+
tags=tags,
|
|
532
|
+
authors=authors,
|
|
533
|
+
language=language,
|
|
534
|
+
task_categories=task_categories,
|
|
535
|
+
)
|
|
536
|
+
|
|
537
|
+
logger.info(
|
|
538
|
+
f"Successfully uploaded dataset to {dataset_name}, "
|
|
539
|
+
f"the url is {dataset_url}"
|
|
540
|
+
)
|
|
541
|
+
return dataset_url
|
|
542
|
+
except Exception as e:
|
|
543
|
+
logger.error(f"Error uploading dataset to Hugging Face: {e}")
|
|
544
|
+
raise
|
|
@@ -12,6 +12,9 @@
|
|
|
12
12
|
# limitations under the License.
|
|
13
13
|
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
14
|
|
|
15
|
+
# Enables postponed evaluation of annotations (for string-based type hints)
|
|
16
|
+
from __future__ import annotations
|
|
17
|
+
|
|
15
18
|
import base64
|
|
16
19
|
import io
|
|
17
20
|
import os
|
|
@@ -104,6 +107,7 @@ class JinaEmbedding(BaseEmbedding[Union[str, Image.Image]]):
|
|
|
104
107
|
ValueError: If the input type is not supported.
|
|
105
108
|
RuntimeError: If the API request fails.
|
|
106
109
|
"""
|
|
110
|
+
|
|
107
111
|
input_data = []
|
|
108
112
|
for obj in objs:
|
|
109
113
|
if isinstance(obj, str):
|
|
@@ -111,7 +115,10 @@ class JinaEmbedding(BaseEmbedding[Union[str, Image.Image]]):
|
|
|
111
115
|
input_data.append({"text": obj})
|
|
112
116
|
else:
|
|
113
117
|
input_data.append(obj) # type: ignore[arg-type]
|
|
114
|
-
elif
|
|
118
|
+
elif (
|
|
119
|
+
obj.__class__.__module__ == "PIL.Image"
|
|
120
|
+
and obj.__class__.__name__ == "Image"
|
|
121
|
+
):
|
|
115
122
|
if self.model_type != EmbeddingModelType.JINA_CLIP_V2:
|
|
116
123
|
raise ValueError(
|
|
117
124
|
f"Model {self.model_type} does not support "
|
|
@@ -15,8 +15,6 @@ from __future__ import annotations
|
|
|
15
15
|
|
|
16
16
|
from typing import Any
|
|
17
17
|
|
|
18
|
-
from numpy import ndarray
|
|
19
|
-
|
|
20
18
|
from camel.embeddings.base import BaseEmbedding
|
|
21
19
|
|
|
22
20
|
|
|
@@ -61,6 +59,8 @@ class SentenceTransformerEncoder(BaseEmbedding[str]):
|
|
|
61
59
|
list[list[float]]: A list that represents the generated embedding
|
|
62
60
|
as a list of floating-point numbers.
|
|
63
61
|
"""
|
|
62
|
+
from numpy import ndarray
|
|
63
|
+
|
|
64
64
|
if not objs:
|
|
65
65
|
raise ValueError("Input text list is empty")
|
|
66
66
|
embeddings = self.model.encode(
|
|
@@ -11,6 +11,10 @@
|
|
|
11
11
|
# See the License for the specific language governing permissions and
|
|
12
12
|
# limitations under the License.
|
|
13
13
|
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
|
+
|
|
15
|
+
# Enables postponed evaluation of annotations (for string-based type hints)
|
|
16
|
+
from __future__ import annotations
|
|
17
|
+
|
|
14
18
|
from typing import Any, List, Optional, Union
|
|
15
19
|
|
|
16
20
|
from PIL import Image
|
|
@@ -70,7 +74,7 @@ class VisionLanguageEmbedding(BaseEmbedding[Union[str, Image.Image]]):
|
|
|
70
74
|
def embed_list(
|
|
71
75
|
self, objs: List[Union[Image.Image, str]], **kwargs: Any
|
|
72
76
|
) -> List[List[float]]:
|
|
73
|
-
"""Generates embeddings for the given images or texts.
|
|
77
|
+
r"""Generates embeddings for the given images or texts.
|
|
74
78
|
|
|
75
79
|
Args:
|
|
76
80
|
objs (List[Image.Image|str]): The list of images or texts for
|
|
@@ -98,7 +102,10 @@ class VisionLanguageEmbedding(BaseEmbedding[Union[str, Image.Image]]):
|
|
|
98
102
|
|
|
99
103
|
result_list = []
|
|
100
104
|
for obj in objs:
|
|
101
|
-
if
|
|
105
|
+
if (
|
|
106
|
+
obj.__class__.__module__ == "PIL.Image"
|
|
107
|
+
and obj.__class__.__name__ == "Image"
|
|
108
|
+
):
|
|
102
109
|
image_input = self.processor(
|
|
103
110
|
images=obj,
|
|
104
111
|
return_tensors="pt",
|
camel/loaders/__init__.py
CHANGED
|
@@ -14,12 +14,13 @@
|
|
|
14
14
|
|
|
15
15
|
from .apify_reader import Apify
|
|
16
16
|
from .base_io import File, create_file, create_file_from_raw_bytes
|
|
17
|
-
from .chunkr_reader import ChunkrReader
|
|
17
|
+
from .chunkr_reader import ChunkrReader, ChunkrReaderConfig
|
|
18
18
|
from .crawl4ai_reader import Crawl4AI
|
|
19
19
|
from .firecrawl_reader import Firecrawl
|
|
20
20
|
from .jina_url_reader import JinaURLReader
|
|
21
21
|
from .markitdown import MarkItDownLoader
|
|
22
22
|
from .mineru_extractor import MinerU
|
|
23
|
+
from .mistral_reader import MistralReader
|
|
23
24
|
from .pandas_reader import PandasReader
|
|
24
25
|
from .scrapegraph_reader import ScrapeGraphAI
|
|
25
26
|
from .unstructured_io import UnstructuredIO
|
|
@@ -32,10 +33,12 @@ __all__ = [
|
|
|
32
33
|
'JinaURLReader',
|
|
33
34
|
'Firecrawl',
|
|
34
35
|
'Apify',
|
|
35
|
-
'ChunkrReader',
|
|
36
36
|
'PandasReader',
|
|
37
|
+
'ChunkrReader',
|
|
38
|
+
'ChunkrReaderConfig',
|
|
37
39
|
'MinerU',
|
|
38
40
|
'Crawl4AI',
|
|
39
41
|
'MarkItDownLoader',
|
|
40
42
|
'ScrapeGraphAI',
|
|
43
|
+
'MistralReader',
|
|
41
44
|
]
|
camel/loaders/chunkr_reader.py
CHANGED
|
@@ -13,16 +13,38 @@
|
|
|
13
13
|
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
14
|
|
|
15
15
|
import json
|
|
16
|
-
import logging
|
|
17
16
|
import os
|
|
18
|
-
import
|
|
19
|
-
from typing import IO, Any, Optional, Union
|
|
17
|
+
from typing import TYPE_CHECKING, Optional
|
|
20
18
|
|
|
21
|
-
|
|
19
|
+
if TYPE_CHECKING:
|
|
20
|
+
from chunkr_ai.models import Configuration
|
|
22
21
|
|
|
22
|
+
from camel.logger import get_logger
|
|
23
23
|
from camel.utils import api_keys_required
|
|
24
24
|
|
|
25
|
-
logger =
|
|
25
|
+
logger = get_logger(__name__)
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
class ChunkrReaderConfig:
|
|
29
|
+
r"""Defines the parameters for configuring the task.
|
|
30
|
+
|
|
31
|
+
Args:
|
|
32
|
+
chunk_processing (int, optional): The target chunk length.
|
|
33
|
+
(default: :obj:`512`)
|
|
34
|
+
high_resolution (bool, optional): Whether to use high resolution OCR.
|
|
35
|
+
(default: :obj:`True`)
|
|
36
|
+
ocr_strategy (str, optional): The OCR strategy. Defaults to 'Auto'.
|
|
37
|
+
"""
|
|
38
|
+
|
|
39
|
+
def __init__(
|
|
40
|
+
self,
|
|
41
|
+
chunk_processing: int = 512,
|
|
42
|
+
high_resolution: bool = True,
|
|
43
|
+
ocr_strategy: str = "Auto",
|
|
44
|
+
):
|
|
45
|
+
self.chunk_processing = chunk_processing
|
|
46
|
+
self.high_resolution = high_resolution
|
|
47
|
+
self.ocr_strategy = ocr_strategy
|
|
26
48
|
|
|
27
49
|
|
|
28
50
|
class ChunkrReader:
|
|
@@ -35,8 +57,6 @@ class ChunkrReader:
|
|
|
35
57
|
`CHUNKR_API_KEY`. (default: :obj:`None`)
|
|
36
58
|
url (Optional[str], optional): The url to the Chunkr service.
|
|
37
59
|
(default: :obj:`https://api.chunkr.ai/api/v1/task`)
|
|
38
|
-
timeout (int, optional): The maximum time in seconds to wait for the
|
|
39
|
-
API responses. (default: :obj:`30`)
|
|
40
60
|
**kwargs (Any): Additional keyword arguments for request headers.
|
|
41
61
|
"""
|
|
42
62
|
|
|
@@ -49,111 +69,80 @@ class ChunkrReader:
|
|
|
49
69
|
self,
|
|
50
70
|
api_key: Optional[str] = None,
|
|
51
71
|
url: Optional[str] = "https://api.chunkr.ai/api/v1/task",
|
|
52
|
-
timeout: int = 30,
|
|
53
|
-
**kwargs: Any,
|
|
54
72
|
) -> None:
|
|
73
|
+
from chunkr_ai import Chunkr
|
|
74
|
+
|
|
55
75
|
self._api_key = api_key or os.getenv('CHUNKR_API_KEY')
|
|
56
|
-
self.
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
**kwargs,
|
|
60
|
-
}
|
|
61
|
-
self.timeout = timeout
|
|
62
|
-
|
|
63
|
-
def submit_task(
|
|
76
|
+
self._chunkr = Chunkr(api_key=self._api_key)
|
|
77
|
+
|
|
78
|
+
async def submit_task(
|
|
64
79
|
self,
|
|
65
80
|
file_path: str,
|
|
66
|
-
|
|
67
|
-
ocr_strategy: str = "Auto",
|
|
68
|
-
target_chunk_length: str = "512",
|
|
81
|
+
chunkr_config: Optional[ChunkrReaderConfig] = None,
|
|
69
82
|
) -> str:
|
|
70
83
|
r"""Submits a file to the Chunkr API and returns the task ID.
|
|
71
84
|
|
|
72
85
|
Args:
|
|
73
86
|
file_path (str): The path to the file to be uploaded.
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
ocr_strategy (str, optional): The OCR strategy. Defaults to 'Auto'.
|
|
77
|
-
target_chunk_length (str, optional): The target chunk length.
|
|
78
|
-
(default: :obj:`512`)
|
|
87
|
+
chunkr_config (ChunkrReaderConfig, optional): The configuration
|
|
88
|
+
for the Chunkr API. Defaults to None.
|
|
79
89
|
|
|
80
90
|
Returns:
|
|
81
91
|
str: The task ID.
|
|
82
92
|
"""
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
timeout=self.timeout,
|
|
101
|
-
)
|
|
102
|
-
response.raise_for_status()
|
|
103
|
-
task_id = response.json().get('task_id')
|
|
104
|
-
if not task_id:
|
|
105
|
-
raise ValueError("Task ID not returned in the response.")
|
|
106
|
-
logger.info(f"Task submitted successfully. Task ID: {task_id}")
|
|
107
|
-
return task_id
|
|
108
|
-
except Exception as e:
|
|
109
|
-
logger.error(f"Failed to submit task: {e}")
|
|
110
|
-
raise ValueError(f"Failed to submit task: {e}") from e
|
|
111
|
-
|
|
112
|
-
def get_task_output(self, task_id: str, max_retries: int = 5) -> str:
|
|
93
|
+
chunkr_config = self._to_chunkr_configuration(
|
|
94
|
+
chunkr_config or ChunkrReaderConfig()
|
|
95
|
+
)
|
|
96
|
+
|
|
97
|
+
try:
|
|
98
|
+
task = await self._chunkr.create_task(
|
|
99
|
+
file=file_path, config=chunkr_config
|
|
100
|
+
)
|
|
101
|
+
logger.info(
|
|
102
|
+
f"Task submitted successfully. Task ID: {task.task_id}"
|
|
103
|
+
)
|
|
104
|
+
return task.task_id
|
|
105
|
+
except Exception as e:
|
|
106
|
+
logger.error(f"Failed to submit task: {e}")
|
|
107
|
+
raise ValueError(f"Failed to submit task: {e}") from e
|
|
108
|
+
|
|
109
|
+
async def get_task_output(self, task_id: str) -> str | None:
|
|
113
110
|
r"""Polls the Chunkr API to check the task status and returns the task
|
|
114
111
|
result.
|
|
115
112
|
|
|
116
113
|
Args:
|
|
117
114
|
task_id (str): The task ID to check the status for.
|
|
118
|
-
max_retries (int, optional): Maximum number of retry attempts.
|
|
119
|
-
(default: :obj:`5`)
|
|
120
115
|
|
|
121
116
|
Returns:
|
|
122
|
-
str: The formatted task result in JSON format
|
|
123
|
-
|
|
124
|
-
Raises:
|
|
125
|
-
ValueError: If the task status cannot be retrieved.
|
|
126
|
-
RuntimeError: If the maximum number of retries is reached without
|
|
127
|
-
a successful task completion.
|
|
117
|
+
Optional[str]: The formatted task result in JSON format, or `None`
|
|
118
|
+
if the task fails or is canceld.
|
|
128
119
|
"""
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
120
|
+
from chunkr_ai.models import Status
|
|
121
|
+
|
|
122
|
+
try:
|
|
123
|
+
task = await self._chunkr.get_task(task_id)
|
|
124
|
+
except Exception as e:
|
|
125
|
+
logger.error(f"Failed to get task by task id: {task_id}: {e}")
|
|
126
|
+
raise ValueError(
|
|
127
|
+
f"Failed to get task by task id: {task_id}: {e}"
|
|
128
|
+
) from e
|
|
129
|
+
|
|
130
|
+
try:
|
|
131
|
+
await task.poll()
|
|
132
|
+
if task.status == Status.SUCCEEDED:
|
|
133
|
+
logger.info(f"Task {task_id} completed successfully.")
|
|
134
|
+
return self._pretty_print_response(task.json())
|
|
135
|
+
elif task.status == Status.FAILED:
|
|
136
|
+
logger.warning(
|
|
137
|
+
f"Task {task_id} encountered an error: {task.message}"
|
|
136
138
|
)
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
logger.info(
|
|
145
|
-
f"Task {task_id} is still {task_status}. Retrying "
|
|
146
|
-
"in 5 seconds..."
|
|
147
|
-
)
|
|
148
|
-
except Exception as e:
|
|
149
|
-
logger.error(f"Failed to retrieve task status: {e}")
|
|
150
|
-
raise ValueError(f"Failed to retrieve task status: {e}") from e
|
|
151
|
-
|
|
152
|
-
attempts += 1
|
|
153
|
-
time.sleep(5)
|
|
154
|
-
|
|
155
|
-
logger.error(f"Max retries reached for task {task_id}.")
|
|
156
|
-
raise RuntimeError(f"Max retries reached for task {task_id}.")
|
|
139
|
+
return None
|
|
140
|
+
else:
|
|
141
|
+
logger.warning(f"Task {task_id} was manually cancelled.")
|
|
142
|
+
return None
|
|
143
|
+
except Exception as e:
|
|
144
|
+
logger.error(f"Failed to retrieve task status: {e}")
|
|
145
|
+
raise ValueError(f"Failed to retrieve task status: {e}") from e
|
|
157
146
|
|
|
158
147
|
def _pretty_print_response(self, response_json: dict) -> str:
|
|
159
148
|
r"""Pretty prints the JSON response.
|
|
@@ -164,4 +153,41 @@ class ChunkrReader:
|
|
|
164
153
|
Returns:
|
|
165
154
|
str: Formatted JSON as a string.
|
|
166
155
|
"""
|
|
167
|
-
|
|
156
|
+
from datetime import datetime
|
|
157
|
+
|
|
158
|
+
return json.dumps(
|
|
159
|
+
response_json,
|
|
160
|
+
default=lambda o: o.isoformat()
|
|
161
|
+
if isinstance(o, datetime)
|
|
162
|
+
else None,
|
|
163
|
+
indent=4,
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
def _to_chunkr_configuration(
|
|
167
|
+
self, chunkr_config: ChunkrReaderConfig
|
|
168
|
+
) -> "Configuration":
|
|
169
|
+
r"""Converts the ChunkrReaderConfig to Chunkr Configuration.
|
|
170
|
+
|
|
171
|
+
Args:
|
|
172
|
+
chunkr_config (ChunkrReaderConfig):
|
|
173
|
+
The ChunkrReaderConfig to convert.
|
|
174
|
+
|
|
175
|
+
Returns:
|
|
176
|
+
Configuration: Chunkr SDK configuration.
|
|
177
|
+
"""
|
|
178
|
+
from chunkr_ai.models import (
|
|
179
|
+
ChunkProcessing,
|
|
180
|
+
Configuration,
|
|
181
|
+
OcrStrategy,
|
|
182
|
+
)
|
|
183
|
+
|
|
184
|
+
return Configuration(
|
|
185
|
+
chunk_processing=ChunkProcessing(
|
|
186
|
+
target_length=chunkr_config.chunk_processing
|
|
187
|
+
),
|
|
188
|
+
high_resolution=chunkr_config.high_resolution,
|
|
189
|
+
ocr_strategy={
|
|
190
|
+
"Auto": OcrStrategy.AUTO,
|
|
191
|
+
"All": OcrStrategy.ALL,
|
|
192
|
+
}.get(chunkr_config.ocr_strategy, OcrStrategy.ALL),
|
|
193
|
+
)
|
|
@@ -0,0 +1,148 @@
|
|
|
1
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
3
|
+
# you may not use this file except in compliance with the License.
|
|
4
|
+
# You may obtain a copy of the License at
|
|
5
|
+
#
|
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
7
|
+
#
|
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
11
|
+
# See the License for the specific language governing permissions and
|
|
12
|
+
# limitations under the License.
|
|
13
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
|
+
import os
|
|
15
|
+
from typing import TYPE_CHECKING, List, Optional
|
|
16
|
+
|
|
17
|
+
if TYPE_CHECKING:
|
|
18
|
+
from mistralai.models import OCRResponse
|
|
19
|
+
|
|
20
|
+
from camel.logger import get_logger
|
|
21
|
+
from camel.utils import api_keys_required
|
|
22
|
+
|
|
23
|
+
logger = get_logger(__name__)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class MistralReader:
|
|
27
|
+
r"""Mistral Document Loader."""
|
|
28
|
+
|
|
29
|
+
@api_keys_required(
|
|
30
|
+
[
|
|
31
|
+
("api_key", "MISTRAL_API_KEY"),
|
|
32
|
+
]
|
|
33
|
+
)
|
|
34
|
+
def __init__(
|
|
35
|
+
self,
|
|
36
|
+
api_key: Optional[str] = None,
|
|
37
|
+
model: Optional[str] = "mistral-ocr-latest",
|
|
38
|
+
) -> None:
|
|
39
|
+
r"""Initialize the MistralReader.
|
|
40
|
+
|
|
41
|
+
Args:
|
|
42
|
+
api_key (Optional[str]): The API key for the Mistral API.
|
|
43
|
+
(default: :obj:`None`)
|
|
44
|
+
model (Optional[str]): The model to use for OCR.
|
|
45
|
+
(default: :obj:`"mistral-ocr-latest"`)
|
|
46
|
+
"""
|
|
47
|
+
from mistralai import Mistral
|
|
48
|
+
|
|
49
|
+
self._api_key = api_key or os.environ.get("MISTRAL_API_KEY")
|
|
50
|
+
self.client = Mistral(api_key=self._api_key)
|
|
51
|
+
self.model = model
|
|
52
|
+
|
|
53
|
+
def _encode_file(self, file_path: str) -> str:
|
|
54
|
+
r"""Encode the pdf to base64.
|
|
55
|
+
|
|
56
|
+
Args:
|
|
57
|
+
file_path (str): Path to the input file.
|
|
58
|
+
|
|
59
|
+
Returns:
|
|
60
|
+
str: base64 version of the file.
|
|
61
|
+
"""
|
|
62
|
+
|
|
63
|
+
import base64
|
|
64
|
+
|
|
65
|
+
try:
|
|
66
|
+
with open(file_path, "rb") as pdf_file:
|
|
67
|
+
return base64.b64encode(pdf_file.read()).decode('utf-8')
|
|
68
|
+
except FileNotFoundError:
|
|
69
|
+
logger.error(f"Error: The file {file_path} was not found.")
|
|
70
|
+
return ""
|
|
71
|
+
except Exception as e:
|
|
72
|
+
logger.error(f"Error: {e}")
|
|
73
|
+
return ""
|
|
74
|
+
|
|
75
|
+
def extract_text(
|
|
76
|
+
self,
|
|
77
|
+
file_path: str,
|
|
78
|
+
is_image: bool = False,
|
|
79
|
+
pages: Optional[List[int]] = None,
|
|
80
|
+
include_image_base64: Optional[bool] = None,
|
|
81
|
+
) -> "OCRResponse":
|
|
82
|
+
r"""Converts the given file to Markdown format.
|
|
83
|
+
|
|
84
|
+
Args:
|
|
85
|
+
file_path (str): Path to the input file or a remote URL.
|
|
86
|
+
is_image (bool): Whether the file or URL is an image. If True,
|
|
87
|
+
uses image_url type instead of document_url.
|
|
88
|
+
(default: :obj:`False`)
|
|
89
|
+
pages (Optional[List[int]]): Specific pages user wants to process
|
|
90
|
+
in various formats: single number, range, or list of both.
|
|
91
|
+
Starts from 0. (default: :obj:`None`)
|
|
92
|
+
include_image_base64 (Optional[bool]): Whether to include image
|
|
93
|
+
URLs in response. (default: :obj:`None`)
|
|
94
|
+
|
|
95
|
+
Returns:
|
|
96
|
+
OCRResponse: page wise extractions.
|
|
97
|
+
|
|
98
|
+
Raises:
|
|
99
|
+
FileNotFoundError: If the specified local file does not exist.
|
|
100
|
+
ValueError: If the file format is not supported.
|
|
101
|
+
Exception: For other errors during conversion.
|
|
102
|
+
"""
|
|
103
|
+
# Check if the input is a URL (starts with http:// or https://)
|
|
104
|
+
is_url = file_path.startswith(('http://', 'https://'))
|
|
105
|
+
|
|
106
|
+
if not is_url and not os.path.isfile(file_path):
|
|
107
|
+
logger.error(f"File not found: {file_path}")
|
|
108
|
+
raise FileNotFoundError(f"File not found: {file_path}")
|
|
109
|
+
try:
|
|
110
|
+
if is_url:
|
|
111
|
+
logger.info(f"Processing URL: {file_path}")
|
|
112
|
+
if is_image:
|
|
113
|
+
document_config = {
|
|
114
|
+
"type": "image_url",
|
|
115
|
+
"image_url": file_path,
|
|
116
|
+
}
|
|
117
|
+
else:
|
|
118
|
+
document_config = {
|
|
119
|
+
"type": "document_url",
|
|
120
|
+
"document_url": file_path,
|
|
121
|
+
}
|
|
122
|
+
else:
|
|
123
|
+
logger.info(f"Converting local file: {file_path}")
|
|
124
|
+
base64_file = self._encode_file(file_path)
|
|
125
|
+
if is_image:
|
|
126
|
+
document_config = {
|
|
127
|
+
"type": "image_url",
|
|
128
|
+
"image_url": f"data:image/jpeg;base64,{base64_file}",
|
|
129
|
+
}
|
|
130
|
+
else:
|
|
131
|
+
document_config = {
|
|
132
|
+
"type": "document_url",
|
|
133
|
+
"document_url": f"data:application/"
|
|
134
|
+
f"pdf;base64,{base64_file}",
|
|
135
|
+
}
|
|
136
|
+
|
|
137
|
+
ocr_response = self.client.ocr.process(
|
|
138
|
+
model=self.model,
|
|
139
|
+
document=document_config, # type: ignore[arg-type]
|
|
140
|
+
pages=None if is_image else pages,
|
|
141
|
+
include_image_base64=include_image_base64,
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
logger.info(f"Processing completed successfully for: {file_path}")
|
|
145
|
+
return ocr_response
|
|
146
|
+
except Exception as e:
|
|
147
|
+
logger.error(f"Error processing '{file_path}': {e}")
|
|
148
|
+
raise ValueError(f"Error processing '{file_path}': {e}")
|
|
@@ -73,7 +73,6 @@ class ChatHistoryBlock(MemoryBlock):
|
|
|
73
73
|
warnings.warn("The `ChatHistoryMemory` is empty.")
|
|
74
74
|
return list()
|
|
75
75
|
|
|
76
|
-
chat_records: List[MemoryRecord] = []
|
|
77
76
|
if window_size is not None and window_size >= 0:
|
|
78
77
|
# Initial preserved index: Keep first message
|
|
79
78
|
# if it's SYSTEM/DEVELOPER (index 0)
|
|
@@ -117,7 +116,7 @@ class ChatHistoryBlock(MemoryBlock):
|
|
|
117
116
|
# Return full records when no window restriction
|
|
118
117
|
final_records = record_dicts
|
|
119
118
|
|
|
120
|
-
chat_records = [
|
|
119
|
+
chat_records: List[MemoryRecord] = [
|
|
121
120
|
MemoryRecord.from_dict(record) for record in final_records
|
|
122
121
|
]
|
|
123
122
|
|