camel-ai 0.2.38__py3-none-any.whl → 0.2.39__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of camel-ai might be problematic. Click here for more details.

Files changed (85) hide show
  1. camel/__init__.py +1 -1
  2. camel/agents/chat_agent.py +4 -0
  3. camel/agents/repo_agent.py +2 -2
  4. camel/benchmarks/apibank.py +1 -1
  5. camel/benchmarks/apibench.py +1 -1
  6. camel/configs/__init__.py +3 -0
  7. camel/configs/modelscope_config.py +59 -0
  8. camel/datagen/self_improving_cot.py +1 -1
  9. camel/datasets/__init__.py +2 -0
  10. camel/datasets/base_generator.py +22 -9
  11. camel/datasets/few_shot_generator.py +2 -3
  12. camel/datasets/self_instruct_generator.py +415 -0
  13. camel/embeddings/openai_compatible_embedding.py +13 -5
  14. camel/environments/models.py +1 -1
  15. camel/environments/single_step.py +155 -89
  16. camel/interpreters/docker_interpreter.py +1 -1
  17. camel/interpreters/internal_python_interpreter.py +1 -1
  18. camel/loaders/unstructured_io.py +2 -1
  19. camel/memories/blocks/chat_history_block.py +1 -1
  20. camel/memories/context_creators/score_based.py +2 -2
  21. camel/models/__init__.py +2 -0
  22. camel/models/model_factory.py +119 -0
  23. camel/models/modelscope_model.py +208 -0
  24. camel/models/openai_audio_models.py +2 -2
  25. camel/models/openai_model.py +49 -2
  26. camel/models/togetherai_model.py +2 -2
  27. camel/models/vllm_model.py +1 -1
  28. camel/models/zhipuai_model.py +2 -2
  29. camel/retrievers/vector_retriever.py +1 -1
  30. camel/storages/graph_storages/neo4j_graph.py +1 -1
  31. camel/storages/vectordb_storages/base.py +2 -2
  32. camel/storages/vectordb_storages/milvus.py +2 -2
  33. camel/storages/vectordb_storages/qdrant.py +2 -2
  34. camel/tasks/task.py +2 -2
  35. camel/toolkits/__init__.py +4 -1
  36. camel/toolkits/arxiv_toolkit.py +2 -1
  37. camel/toolkits/ask_news_toolkit.py +11 -3
  38. camel/toolkits/audio_analysis_toolkit.py +2 -0
  39. camel/toolkits/base.py +3 -0
  40. camel/toolkits/code_execution.py +3 -1
  41. camel/toolkits/dappier_toolkit.py +2 -1
  42. camel/toolkits/data_commons_toolkit.py +2 -0
  43. camel/toolkits/excel_toolkit.py +2 -0
  44. camel/toolkits/file_write_toolkit.py +2 -0
  45. camel/toolkits/github_toolkit.py +6 -4
  46. camel/toolkits/google_scholar_toolkit.py +2 -0
  47. camel/toolkits/human_toolkit.py +17 -1
  48. camel/toolkits/image_analysis_toolkit.py +2 -0
  49. camel/toolkits/linkedin_toolkit.py +2 -1
  50. camel/toolkits/math_toolkit.py +2 -0
  51. camel/toolkits/mcp_toolkit.py +42 -52
  52. camel/toolkits/meshy_toolkit.py +20 -2
  53. camel/toolkits/networkx_toolkit.py +2 -0
  54. camel/toolkits/notion_toolkit.py +7 -0
  55. camel/toolkits/openbb_toolkit.py +2 -1
  56. camel/toolkits/pubmed_toolkit.py +2 -0
  57. camel/toolkits/reddit_toolkit.py +2 -1
  58. camel/toolkits/retrieval_toolkit.py +2 -1
  59. camel/toolkits/search_toolkit.py +2 -1
  60. camel/toolkits/semantic_scholar_toolkit.py +2 -0
  61. camel/toolkits/slack_toolkit.py +2 -0
  62. camel/toolkits/stripe_toolkit.py +2 -1
  63. camel/toolkits/sympy_toolkit.py +2 -0
  64. camel/toolkits/terminal_toolkit.py +2 -0
  65. camel/toolkits/twitter_toolkit.py +2 -1
  66. camel/toolkits/video_analysis_toolkit.py +2 -1
  67. camel/toolkits/video_download_toolkit.py +2 -1
  68. camel/toolkits/weather_toolkit.py +2 -0
  69. camel/toolkits/whatsapp_toolkit.py +2 -1
  70. camel/toolkits/zapier_toolkit.py +2 -1
  71. camel/types/enums.py +65 -0
  72. camel/types/unified_model_type.py +5 -0
  73. camel/utils/__init__.py +2 -0
  74. camel/utils/chunker/code_chunker.py +9 -9
  75. camel/utils/commons.py +50 -30
  76. camel/utils/constants.py +2 -2
  77. camel/utils/mcp.py +79 -0
  78. camel/verifiers/__init__.py +2 -0
  79. camel/verifiers/base.py +15 -15
  80. camel/verifiers/math_verifier.py +182 -0
  81. camel/verifiers/python_verifier.py +18 -26
  82. {camel_ai-0.2.38.dist-info → camel_ai-0.2.39.dist-info}/METADATA +3 -1
  83. {camel_ai-0.2.38.dist-info → camel_ai-0.2.39.dist-info}/RECORD +85 -80
  84. {camel_ai-0.2.38.dist-info → camel_ai-0.2.39.dist-info}/WHEEL +0 -0
  85. {camel_ai-0.2.38.dist-info → camel_ai-0.2.39.dist-info}/licenses/LICENSE +0 -0
camel/__init__.py CHANGED
@@ -14,7 +14,7 @@
14
14
 
15
15
  from camel.logger import disable_logging, enable_logging, set_log_level
16
16
 
17
- __version__ = '0.2.38'
17
+ __version__ = '0.2.39'
18
18
 
19
19
  __all__ = [
20
20
  '__version__',
@@ -526,6 +526,10 @@ class ChatAgent(BaseAgent):
526
526
  message.content = response.output_messages[0].content
527
527
  if not self._try_format_message(message, response_format):
528
528
  logger.warning(f"Failed to parse response: {message.content}")
529
+ logger.warning(
530
+ "To improve reliability, consider using models "
531
+ "that are better equipped to handle structured output"
532
+ )
529
533
 
530
534
  async def _aformat_response_if_needed(
531
535
  self,
@@ -17,7 +17,7 @@ from string import Template
17
17
  from typing import TYPE_CHECKING, List, Optional, Tuple, Union
18
18
 
19
19
  if TYPE_CHECKING:
20
- from github import Github
20
+ from github.MainClass import Github
21
21
  from pydantic import BaseModel
22
22
 
23
23
  from camel.agents import ChatAgent
@@ -219,7 +219,7 @@ class RepoAgent(ChatAgent):
219
219
  List[RepositoryInfo]: A list of objects containing information
220
220
  about the all repositories, including the contents.
221
221
  """
222
- from github import Github
222
+ from github.MainClass import Github
223
223
 
224
224
  github_client = Github(self.github_auth_token)
225
225
  res = []
@@ -48,7 +48,7 @@ def process_messages(
48
48
  Args:
49
49
  chat_history (List[Dict[str, Any]):
50
50
  A list of dictionaries representing the chat history.
51
- prompt (str): A propmt to be set as the system message.
51
+ prompt (str): A prompt to be set as the system message.
52
52
 
53
53
  Returns:
54
54
  List[Dict[str, str]]: A list of dictionaries representing
@@ -30,7 +30,7 @@ logger = logging.getLogger(__name__)
30
30
 
31
31
 
32
32
  # Mapping of dataset names to file names
33
- # 'Oracle' retriver used here which means all the full
33
+ # 'Oracle' retriever used here which means all the full
34
34
  # API documentation will be included in the prompt
35
35
  dataset_mapping = {
36
36
  "huggingface": {
camel/configs/__init__.py CHANGED
@@ -21,6 +21,7 @@ from .groq_config import GROQ_API_PARAMS, GroqConfig
21
21
  from .internlm_config import INTERNLM_API_PARAMS, InternLMConfig
22
22
  from .litellm_config import LITELLM_API_PARAMS, LiteLLMConfig
23
23
  from .mistral_config import MISTRAL_API_PARAMS, MistralConfig
24
+ from .modelscope_config import MODELSCOPE_API_PARAMS, ModelScopeConfig
24
25
  from .moonshot_config import MOONSHOT_API_PARAMS, MoonshotConfig
25
26
  from .nvidia_config import NVIDIA_API_PARAMS, NvidiaConfig
26
27
  from .ollama_config import OLLAMA_API_PARAMS, OllamaConfig
@@ -85,6 +86,8 @@ __all__ = [
85
86
  'INTERNLM_API_PARAMS',
86
87
  'MoonshotConfig',
87
88
  "MOONSHOT_API_PARAMS",
89
+ 'ModelScopeConfig',
90
+ 'MODELSCOPE_API_PARAMS',
88
91
  'SiliconFlowConfig',
89
92
  'SILICONFLOW_API_PARAMS',
90
93
  'AIMLConfig',
@@ -0,0 +1,59 @@
1
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
14
+ from __future__ import annotations
15
+
16
+ from typing import Optional, Union
17
+
18
+ from camel.configs.base_config import BaseConfig
19
+
20
+
21
+ class ModelScopeConfig(BaseConfig):
22
+ r"""Defines the parameters for generating chat completions using the
23
+ ModelScope API. You can refer to the following link for more details:
24
+ https://www.modelscope.cn/docs/model-service/API-Inference/intro
25
+
26
+ Args:
27
+ tool_choice (Union[dict[str, str], str], optional): Controls which (if
28
+ any) tool is called by the model. :obj:`"none"` means the model
29
+ will not call any tool and instead generates a message.
30
+ :obj:`"auto"` means the model can pick between generating a
31
+ message or calling one or more tools. :obj:`"required"` or
32
+ specifying a particular tool via
33
+ {"type": "function", "function": {"name": "some_function"}}
34
+ can be used to guide the model to use tools more strongly.
35
+ (default: :obj:`None`)
36
+ max_tokens (int, optional): Specifies the maximum number of tokens
37
+ the model can generate. This sets an upper limit, but does not
38
+ guarantee that this number will always be reached.
39
+ (default: :obj:`None`)
40
+ top_p (float, optional): Controls the randomness of the generated
41
+ results. Lower values lead to less randomness, while higher
42
+ values increase randomness. (default: :obj:`None`)
43
+ temperature (float, optional): Controls the diversity and focus of
44
+ the generated results. Lower values make the output more focused,
45
+ while higher values make it more diverse. (default: :obj:`0.3`)
46
+ stream (bool, optional): If True, enables streaming output.
47
+ (default: :obj:`None`)
48
+ """
49
+
50
+ tool_choice: Optional[Union[dict[str, str], str]] = None
51
+ max_tokens: Optional[int] = None
52
+ top_p: Optional[float] = None
53
+ temperature: Optional[float] = None
54
+ stream: Optional[bool] = None
55
+
56
+
57
+ MODELSCOPE_API_PARAMS = {
58
+ param for param in ModelScopeConfig.model_fields.keys()
59
+ }
@@ -518,7 +518,7 @@ class SelfImprovingCoTPipeline:
518
518
  self.reason_agent.model_backend.model_config_dict['n'] = (
519
519
  self.rejection_sampling_n
520
520
  )
521
- # Generate multiple condidate traces in one call using parameter n
521
+ # Generate multiple candidate traces in one call using parameter n
522
522
  responses = self.reason_agent.step(prompt)
523
523
  # Extract cancidate traces
524
524
  candidate_traces = [choice.content for choice in responses.msgs]
@@ -14,6 +14,7 @@
14
14
  from .base_generator import BaseGenerator
15
15
  from .few_shot_generator import FewShotGenerator
16
16
  from .models import DataPoint
17
+ from .self_instruct_generator import SelfInstructGenerator
17
18
  from .static_dataset import StaticDataset
18
19
 
19
20
  __all__ = [
@@ -21,4 +22,5 @@ __all__ = [
21
22
  "DataPoint",
22
23
  "FewShotGenerator",
23
24
  "StaticDataset",
25
+ "SelfInstructGenerator",
24
26
  ]
@@ -39,6 +39,7 @@ class BaseGenerator(abc.ABC, IterableDataset):
39
39
  def __init__(
40
40
  self,
41
41
  seed: int = 42,
42
+ buffer: int = 20,
42
43
  cache: Union[str, Path, None] = None,
43
44
  data_path: Union[str, Path, None] = None,
44
45
  **kwargs,
@@ -47,6 +48,8 @@ class BaseGenerator(abc.ABC, IterableDataset):
47
48
 
48
49
  Args:
49
50
  seed (int): Random seed for reproducibility. (default: :obj:`42`)
51
+ buffer (int): Amount of DataPoints to be generated when the
52
+ iterator runs out of DataPoints in data. (default: :obj:`20`)
50
53
  cache (Union[str, Path, None]): Optional path to save generated
51
54
  datapoints during iteration. If None is provided, datapoints
52
55
  will be discarded every 100 generations.
@@ -56,7 +59,7 @@ class BaseGenerator(abc.ABC, IterableDataset):
56
59
  """
57
60
  self._rng = random.Random(seed)
58
61
  self.cache = Path(cache) if cache else None
59
-
62
+ self._buffer = buffer
60
63
  self._data: List[DataPoint] = []
61
64
  self._batch_to_save: List[DataPoint] = []
62
65
 
@@ -72,15 +75,27 @@ class BaseGenerator(abc.ABC, IterableDataset):
72
75
  )
73
76
 
74
77
  @abc.abstractmethod
75
- async def generate_new(self, n: int, **kwargs) -> List[DataPoint]:
76
- r"""Generate n new datapoints.
78
+ async def generate_new(self, n: int, **kwargs) -> None:
79
+ r"""Generate n new datapoints and append them to self._data.
80
+
81
+ Subclass implementations must generate the specified number of
82
+ datapoints and append them directly to the `self._data` list.
83
+ This method should not return the datapoints; the iterator
84
+ relies on `self._data` being populated.
77
85
 
78
86
  Args:
79
- n (int): Number of datapoints to generate.
87
+ n (int): Number of datapoints to generate and append.
80
88
  **kwargs: Additional generation parameters.
81
89
 
82
90
  Returns:
83
- List[DataPoint]: A list of newly generated datapoints.
91
+ None: This method should not return anything.
92
+
93
+ Example:
94
+ ```python
95
+ async def generate_new(self, n: int, **kwargs) -> None:
96
+ new_points = [DataPoint(...) for _ in range(n)]
97
+ self._data.extend(new_points)
98
+ ```
84
99
  """
85
100
  pass
86
101
 
@@ -99,8 +114,7 @@ class BaseGenerator(abc.ABC, IterableDataset):
99
114
  async def generator():
100
115
  while True:
101
116
  if not self._data:
102
- new_datapoints = await self.generate_new(20)
103
- self._data.extend(new_datapoints)
117
+ await self.generate_new(self._buffer)
104
118
  datapoint = self._data.pop(0)
105
119
  yield datapoint
106
120
  self._batch_to_save.append(datapoint)
@@ -137,8 +151,7 @@ class BaseGenerator(abc.ABC, IterableDataset):
137
151
 
138
152
  while True:
139
153
  if not self._data:
140
- new_datapoints = asyncio.run(self.generate_new(20))
141
- self._data.extend(new_datapoints)
154
+ asyncio.run(self.generate_new(self._buffer))
142
155
  datapoint = self._data.pop(0)
143
156
  yield datapoint
144
157
  self._batch_to_save.append(datapoint)
@@ -126,7 +126,7 @@ class FewShotGenerator(BaseGenerator):
126
126
  max_retries: int = 10,
127
127
  num_examples: int = 3,
128
128
  **kwargs,
129
- ) -> List[DataPoint]:
129
+ ) -> None:
130
130
  r"""Generates and validates `n` new datapoints through
131
131
  few-shot prompting, with a retry limit.
132
132
 
@@ -203,7 +203,7 @@ class FewShotGenerator(BaseGenerator):
203
203
  try:
204
204
  verifier_response = await self.verifier.verify(
205
205
  solution=rationale,
206
- ground_truth=None,
206
+ reference_answer=None,
207
207
  )
208
208
  if not verifier_response or not verifier_response.result:
209
209
  raise ValueError(
@@ -255,4 +255,3 @@ class FewShotGenerator(BaseGenerator):
255
255
  # Thread-safe way to extend the data list
256
256
  async with asyncio.Lock():
257
257
  self._data.extend(valid_data_points)
258
- return valid_data_points
@@ -0,0 +1,415 @@
1
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
14
+
15
+ import asyncio
16
+ import random
17
+ from datetime import datetime
18
+ from typing import Iterable, List, Optional, cast
19
+
20
+ from pydantic import BaseModel, Field, ValidationError
21
+
22
+ from camel.agents import ChatAgent
23
+ from camel.logger import get_logger
24
+ from camel.models import ModelFactory
25
+ from camel.types import ModelPlatformType, ModelType
26
+ from camel.verifiers import BaseVerifier
27
+
28
+ from .base_generator import BaseGenerator
29
+ from .models import DataPoint
30
+ from .static_dataset import StaticDataset
31
+
32
+ logger = get_logger(__name__)
33
+
34
+ DEFAULT_INSTRUCTION_SYSTEM_PROMPT = """
35
+ You are a high-capacity instruction generation assistant.
36
+
37
+ Your task is to generate a **new, creative, and challenging question** based on
38
+ several examples.
39
+ These examples may cover different domains or styles, but your goal is to:
40
+ - **Understand their specific patterns** in structure, and complexity;
41
+ - **Combine and synthesize** ideas from multiple examples, rather than copying
42
+ or lightly editing any single one;
43
+ - **Intelligently integrate** multiple reasoning steps, constraints, or
44
+ concepts into a single, coherent question;
45
+ - Ensure the new question is **non-trivial** and requires deep thinking or
46
+ multi-step reasoning.
47
+
48
+ **Guidelines:**
49
+ - Use the examples as inspiration for format, depth, and tone.
50
+ - Your new question should be self-contained, logically sound, and answerable.
51
+ - Do not repeat exact phrasings or create shallow combinations; instead,
52
+ produce something meaningfully new.
53
+ - Avoid open-ended or subjective questions that depend on personal opinions or
54
+ discussion.
55
+ - The generated question must have a **clear, objective, and verifiable
56
+ answer**.
57
+ - Aim for increased depth or novelty through subtle combination or
58
+ transformation.
59
+ - Keep the final output to a **single unified question** with one clear answer,
60
+ not a multi-part task.
61
+
62
+ **Output Format (strict):**
63
+ ```
64
+ Question: [Generated question]
65
+ ```
66
+ """
67
+
68
+ DEFAULT_RATIONALE_SYSTEM_PROMPT = """You are an advanced Python code assistant.
69
+
70
+ Your task is to **solve the given question by writing Python code only**,
71
+ without any explanation or natural language output.
72
+ The code must compute the answer **programmatically**, not by hardcoding or
73
+ guessing the result.
74
+
75
+ **Rules:**
76
+ - Use Python code to perform the actual computation.
77
+ - Use {package_list} to solve the problem. Do not import any other libraries.
78
+ - **Do not hardcode the final answer** (e.g., avoid writing `print(1/2)` unless
79
+ that value is computed).
80
+ - The result must be obtained through valid computation logic in code.
81
+ - Do not include explanations. Output code only.
82
+ - The entire code must be wrapped in triple backticks:
83
+ ```
84
+ [Your Python code here]
85
+ ```
86
+
87
+ Now, solve the following question using Python. Only output the code:
88
+ """
89
+
90
+
91
+ class SelfInstructGenerator(BaseGenerator):
92
+ r"""A generator for creating synthetic datapoints using self-instruct.
93
+
94
+ It utilizes both a human-provided dataset (seed_dataset) and generated
95
+ machine instructions (machine_instructions) to produce new, synthetic
96
+ datapoints that include a question, a computed rationale (code), and a
97
+ final answer (from a verifier).
98
+ """
99
+
100
+ class QuestionSchema(BaseModel):
101
+ r"""Schema for the generated question.
102
+
103
+ Attributes:
104
+ question (str): The question generated by the model.
105
+ """
106
+
107
+ question: str = Field(description="The question generated")
108
+
109
+ class RationaleSchema(BaseModel):
110
+ r"""Schema for the generated rationale code.
111
+
112
+ Attributes:
113
+ code (str): The generated code without any formatting.
114
+ """
115
+
116
+ code: str = Field(
117
+ description="The generated code without any formatting"
118
+ )
119
+
120
+ def __init__(
121
+ self,
122
+ seed_dataset: StaticDataset,
123
+ verifier: BaseVerifier,
124
+ instruction_agent: Optional[ChatAgent] = None,
125
+ rationale_agent: Optional[ChatAgent] = None,
126
+ seed: int = 42,
127
+ **kwargs,
128
+ ):
129
+ r"""Initialize the self-instruct generator.
130
+
131
+ Args:
132
+ seed_dataset (StaticDataset): Dataset containing seed instructions.
133
+ verifier (BaseVerifier): Verifier instance to validate generated
134
+ solutions.
135
+ instruction_agent (Optional[ChatAgent]): Agent for generating
136
+ instructions. If not provided, a default agent will be created.
137
+ rationale_agent (Optional[ChatAgent]): Agent for generating
138
+ rationales. If not provided, a default agent will be created.
139
+ seed (int): Random seed for reproducibility. (default: :obj:`42`)
140
+ **kwargs: Additional keyword arguments passed to the BaseGenerator.
141
+ """
142
+ super().__init__(seed=seed, **kwargs)
143
+ self.seed_dataset = seed_dataset
144
+ self.verifier = verifier
145
+ # extract packages from verifier
146
+ self.packages: List[str] = getattr(
147
+ self.verifier, "required_packages", []
148
+ )
149
+ # create default agents if not provided
150
+ self.instruction_agent = (
151
+ instruction_agent or self.default_instruction_agent()
152
+ )
153
+ self.rationale_agent = (
154
+ rationale_agent or self.default_rationale_agent()
155
+ )
156
+
157
+ # Extract questions from the seed dataset as human_instructions
158
+ self.human_instructions: List[str] = [
159
+ dp.question
160
+ for dp in list(cast(Iterable[DataPoint], self.seed_dataset))
161
+ ]
162
+ self.machine_instructions: List[DataPoint] = []
163
+ # Create an instance-level lock for thread-safe updates to _data
164
+ self._lock = asyncio.Lock()
165
+ self._data = [] # Storage for generated DataPoint instances
166
+
167
+ def default_instruction_agent(self) -> ChatAgent:
168
+ r"""Create the default instruction generation agent.
169
+
170
+ This agent is configured with a moderate temperature setting to
171
+ encourage creative and diverse instruction generation behavior.
172
+
173
+ Returns:
174
+ ChatAgent: An agent with the default instruction prompt.
175
+ """
176
+ model = ModelFactory.create(
177
+ model_platform=ModelPlatformType.DEFAULT,
178
+ model_type=ModelType.DEFAULT,
179
+ model_config_dict={"temperature": 0.7},
180
+ )
181
+ return ChatAgent(
182
+ DEFAULT_INSTRUCTION_SYSTEM_PROMPT,
183
+ model=model,
184
+ )
185
+
186
+ def default_rationale_agent(self) -> ChatAgent:
187
+ r"""Create the default rationale generation agent.
188
+
189
+ This agent is configured with a deterministic (zero temperature)
190
+ setting to ensure consistent and precise rationale generation based on
191
+ a given instruction and package list.
192
+
193
+ Returns:
194
+ ChatAgent: An agent with the rationale prompt
195
+ """
196
+ model = ModelFactory.create(
197
+ model_platform=ModelPlatformType.DEFAULT,
198
+ model_type=ModelType.DEFAULT,
199
+ model_config_dict={"temperature": 0.0},
200
+ )
201
+ return ChatAgent(
202
+ DEFAULT_RATIONALE_SYSTEM_PROMPT.format(package_list=self.packages),
203
+ model=model,
204
+ )
205
+
206
+ @staticmethod
207
+ def format_support_block(dp: DataPoint) -> str:
208
+ r"""Format a DataPoint into a few-shot example block.
209
+
210
+ Args:
211
+ dp (DataPoint): A data point.
212
+
213
+ Returns:
214
+ str: A formatted string containing the question and its
215
+ corresponding code block in Markdown-style Python format.
216
+ """
217
+ support_q = dp.question.strip()
218
+ support_code = dp.rationale.strip() if dp.rationale else ""
219
+ return (
220
+ f"Question:\n{support_q}\n\n"
221
+ "Code:\n"
222
+ "```python\n"
223
+ f"{support_code}\n"
224
+ "```"
225
+ )
226
+
227
+ def generate_new_instruction(
228
+ self,
229
+ agent: ChatAgent,
230
+ support_human_dps: list[DataPoint],
231
+ support_machine_dps: list[DataPoint],
232
+ ) -> str:
233
+ r"""Generate a new instruction using self-instruct prompting.
234
+
235
+ Args:
236
+ agent (ChatAgent): The agent to use for generating the instruction.
237
+ support_human_dps (list[DataPoint]): List of human examples to
238
+ sample.
239
+ support_machine_dps (list[DataPoint]): List of machine examples to
240
+ sample.
241
+
242
+ Returns:
243
+ str: The newly generated question.
244
+ """
245
+ human_sample = [dp.question for dp in list(support_human_dps)]
246
+ machine_sample = [dp.question for dp in list(support_machine_dps)]
247
+
248
+ few_shot_examples = human_sample + machine_sample
249
+
250
+ # Build the prompt using the few-shot examples
251
+ prompt = "Below are some question examples:\n\n"
252
+ for idx, instr in enumerate(few_shot_examples, start=1):
253
+ prompt += f"Question {idx}: {instr}\n"
254
+ prompt += f"Question {len(few_shot_examples) + 1}:\n"
255
+ prompt += "Now generate a new question based on the given examples.\n"
256
+
257
+ question_template = f"Question: {prompt}"
258
+ response = cast(
259
+ SelfInstructGenerator.QuestionSchema,
260
+ agent.step(question_template, response_format=self.QuestionSchema)
261
+ .msgs[0]
262
+ .parsed,
263
+ )
264
+ return response.question
265
+
266
+ def generate_rationale(
267
+ self,
268
+ question: str,
269
+ agent: Optional[ChatAgent] = None,
270
+ support_human_dps: Optional[list[DataPoint]] = None,
271
+ ) -> str:
272
+ r"""Generate rationale code (solution) for the given question.
273
+
274
+ Args:
275
+ question (str): The question to be solved.
276
+ agent (Optional[ChatAgent]): The agent to use for generating the
277
+ rationale. If None is provided, the default rationale agent
278
+ will be used. (default: :obj:`None`)
279
+ support_human_dps (Optional[list[DataPoint]]): List of human
280
+ examples to sample. (default: :obj:`None`)
281
+
282
+ Returns:
283
+ str: The generated code solution as a string.
284
+ """
285
+
286
+ # Build few-shot example prompt
287
+ few_shot_prompt = ""
288
+ if support_human_dps:
289
+ few_shot_examples = [
290
+ self.format_support_block(dp) for dp in support_human_dps
291
+ ]
292
+ few_shot_prompt += "Below are example questions and solutions:\n\n"
293
+ few_shot_prompt += "\n\n".join(few_shot_examples)
294
+
295
+ few_shot_prompt += f"\n\nWrite code to solve the question:\n{question}"
296
+
297
+ response = cast(
298
+ SelfInstructGenerator.RationaleSchema,
299
+ (agent or self.default_rationale_agent())
300
+ .step(few_shot_prompt, response_format=self.RationaleSchema)
301
+ .msgs[0]
302
+ .parsed,
303
+ )
304
+ return response.code
305
+
306
+ async def generate_new(
307
+ self,
308
+ n: int,
309
+ max_retries: int = 10,
310
+ human_sample_count: int = 3,
311
+ machine_sample_count: int = 1,
312
+ **kwargs,
313
+ ) -> None:
314
+ r"""Generates and validates `n` new datapoints through
315
+ self-instruct prompting, with a retry limit.
316
+
317
+ Args:
318
+ n (int): The number of valid datapoints to generate.
319
+ max_retries (int): Maximum number of retries before stopping.
320
+ (default: :obj:`10`)
321
+ human_sample_count (int): Number of human examples to sample.
322
+ (default: :obj:`3`)
323
+ machine_sample_count (int): Number of machine examples to sample.
324
+ (default: :obj:`1`)
325
+ **kwargs: Additional keyword arguments.
326
+
327
+ Notes:
328
+ - Retries on validation failures until `n` valid datapoints exist
329
+ or `max_retries` is reached, whichever comes first.
330
+ - If retries are exhausted before reaching `n`, a `RuntimeError`
331
+ is raised.
332
+ - Metadata includes a timestamp for tracking datapoint creation.
333
+ """
334
+ valid_data_points: list[DataPoint] = []
335
+ retries = 0
336
+
337
+ while len(valid_data_points) < n and retries < max_retries:
338
+ try:
339
+ human_dps_list = list(cast(List[DataPoint], self.seed_dataset))
340
+ support_human_dps = random.sample(
341
+ human_dps_list,
342
+ min(human_sample_count, len(human_dps_list)),
343
+ )
344
+
345
+ machine_dps_list = list(self.machine_instructions)
346
+ support_machine_dps = []
347
+ if machine_dps_list and machine_sample_count > 0:
348
+ support_machine_dps = random.sample(
349
+ machine_dps_list,
350
+ min(machine_sample_count, len(machine_dps_list)),
351
+ )
352
+ question = self.generate_new_instruction(
353
+ self.instruction_agent,
354
+ support_human_dps,
355
+ support_machine_dps,
356
+ )
357
+ rationale = self.generate_rationale(
358
+ question, self.rationale_agent, support_human_dps
359
+ )
360
+ if not isinstance(rationale, str):
361
+ raise TypeError(f"Rationale {rationale} is not a string.")
362
+
363
+ try:
364
+ verifier_response = await self.verifier.verify(
365
+ solution=rationale,
366
+ reference_answer=None,
367
+ )
368
+ if not verifier_response or not verifier_response.result:
369
+ raise ValueError(
370
+ "Verifier unsuccessful, response: "
371
+ f"{verifier_response}"
372
+ )
373
+ except (ValueError, AttributeError) as e:
374
+ logger.warning(
375
+ f"Verifier issue: {e}, "
376
+ f"retrying... ({retries + 1}/{max_retries})"
377
+ )
378
+ retries += 1
379
+ continue
380
+ try:
381
+ new_datapoint = DataPoint(
382
+ question=question,
383
+ rationale=rationale,
384
+ final_answer=verifier_response.result,
385
+ metadata={
386
+ "synthetic": str(True),
387
+ "created": datetime.now().isoformat(),
388
+ "generator": "self_instruct",
389
+ },
390
+ )
391
+ except ValidationError as e:
392
+ logger.warning(
393
+ f"Datapoint validation failed: {e}, "
394
+ f"retrying... ({retries + 1}/{max_retries})"
395
+ )
396
+ retries += 1
397
+ continue
398
+
399
+ valid_data_points.append(new_datapoint)
400
+
401
+ except Exception as e:
402
+ logger.warning(
403
+ f"Unexpected error: {e}, retrying..."
404
+ f" ({retries + 1}/{max_retries})"
405
+ )
406
+ retries += 1
407
+
408
+ if len(valid_data_points) < n:
409
+ raise RuntimeError(
410
+ f"Failed to generate {n} valid datapoints "
411
+ f"after {max_retries} retries."
412
+ )
413
+
414
+ async with self._lock:
415
+ self._data.extend(valid_data_points)