camel-ai 0.2.37__py3-none-any.whl → 0.2.39__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of camel-ai might be problematic. Click here for more details.

Files changed (122) hide show
  1. camel/__init__.py +1 -1
  2. camel/agents/chat_agent.py +4 -0
  3. camel/agents/repo_agent.py +2 -2
  4. camel/benchmarks/apibank.py +1 -1
  5. camel/benchmarks/apibench.py +1 -1
  6. camel/configs/__init__.py +3 -0
  7. camel/configs/modelscope_config.py +59 -0
  8. camel/datagen/evol_instruct/__init__.py +20 -0
  9. camel/datagen/evol_instruct/evol_instruct.py +424 -0
  10. camel/datagen/evol_instruct/scorer.py +166 -0
  11. camel/datagen/evol_instruct/templates.py +268 -0
  12. camel/datagen/self_improving_cot.py +1 -1
  13. camel/datasets/__init__.py +2 -0
  14. camel/datasets/base_generator.py +22 -9
  15. camel/datasets/few_shot_generator.py +2 -3
  16. camel/datasets/self_instruct_generator.py +415 -0
  17. camel/embeddings/openai_compatible_embedding.py +13 -5
  18. camel/environments/models.py +10 -4
  19. camel/environments/single_step.py +181 -41
  20. camel/interpreters/docker_interpreter.py +2 -2
  21. camel/interpreters/e2b_interpreter.py +1 -1
  22. camel/interpreters/internal_python_interpreter.py +1 -1
  23. camel/interpreters/subprocess_interpreter.py +1 -1
  24. camel/loaders/__init__.py +2 -2
  25. camel/loaders/{panda_reader.py → pandas_reader.py} +61 -30
  26. camel/loaders/unstructured_io.py +2 -1
  27. camel/memories/blocks/chat_history_block.py +1 -1
  28. camel/memories/context_creators/score_based.py +198 -67
  29. camel/models/__init__.py +2 -0
  30. camel/models/aiml_model.py +9 -3
  31. camel/models/anthropic_model.py +11 -3
  32. camel/models/azure_openai_model.py +9 -3
  33. camel/models/base_audio_model.py +6 -0
  34. camel/models/base_model.py +4 -0
  35. camel/models/deepseek_model.py +9 -3
  36. camel/models/gemini_model.py +9 -3
  37. camel/models/groq_model.py +9 -3
  38. camel/models/internlm_model.py +8 -2
  39. camel/models/model_factory.py +123 -0
  40. camel/models/modelscope_model.py +208 -0
  41. camel/models/moonshot_model.py +8 -2
  42. camel/models/nemotron_model.py +9 -3
  43. camel/models/nvidia_model.py +9 -3
  44. camel/models/ollama_model.py +9 -3
  45. camel/models/openai_audio_models.py +7 -5
  46. camel/models/openai_compatible_model.py +9 -3
  47. camel/models/openai_model.py +58 -5
  48. camel/models/openrouter_model.py +9 -3
  49. camel/models/qwen_model.py +9 -3
  50. camel/models/samba_model.py +9 -3
  51. camel/models/sglang_model.py +11 -4
  52. camel/models/siliconflow_model.py +8 -2
  53. camel/models/stub_model.py +2 -1
  54. camel/models/togetherai_model.py +11 -5
  55. camel/models/vllm_model.py +10 -4
  56. camel/models/yi_model.py +9 -3
  57. camel/models/zhipuai_model.py +11 -5
  58. camel/retrievers/auto_retriever.py +14 -0
  59. camel/retrievers/vector_retriever.py +1 -1
  60. camel/storages/__init__.py +2 -0
  61. camel/storages/graph_storages/neo4j_graph.py +1 -1
  62. camel/storages/vectordb_storages/__init__.py +2 -0
  63. camel/storages/vectordb_storages/base.py +2 -2
  64. camel/storages/vectordb_storages/milvus.py +2 -2
  65. camel/storages/vectordb_storages/qdrant.py +2 -2
  66. camel/storages/vectordb_storages/tidb.py +332 -0
  67. camel/tasks/task.py +2 -2
  68. camel/toolkits/__init__.py +9 -1
  69. camel/toolkits/arxiv_toolkit.py +2 -1
  70. camel/toolkits/ask_news_toolkit.py +11 -3
  71. camel/toolkits/audio_analysis_toolkit.py +2 -0
  72. camel/toolkits/base.py +3 -0
  73. camel/toolkits/browser_toolkit.py +84 -61
  74. camel/toolkits/code_execution.py +3 -1
  75. camel/toolkits/dappier_toolkit.py +2 -1
  76. camel/toolkits/data_commons_toolkit.py +2 -0
  77. camel/toolkits/excel_toolkit.py +2 -0
  78. camel/toolkits/file_write_toolkit.py +2 -0
  79. camel/toolkits/github_toolkit.py +6 -4
  80. camel/toolkits/google_scholar_toolkit.py +2 -0
  81. camel/toolkits/human_toolkit.py +17 -1
  82. camel/toolkits/image_analysis_toolkit.py +2 -0
  83. camel/toolkits/linkedin_toolkit.py +2 -1
  84. camel/toolkits/math_toolkit.py +2 -0
  85. camel/toolkits/mcp_toolkit.py +42 -52
  86. camel/toolkits/meshy_toolkit.py +20 -2
  87. camel/toolkits/networkx_toolkit.py +2 -0
  88. camel/toolkits/notion_toolkit.py +7 -0
  89. camel/toolkits/openai_agent_toolkit.py +131 -0
  90. camel/toolkits/openbb_toolkit.py +2 -1
  91. camel/toolkits/pubmed_toolkit.py +2 -0
  92. camel/toolkits/reddit_toolkit.py +2 -1
  93. camel/toolkits/retrieval_toolkit.py +2 -1
  94. camel/toolkits/search_toolkit.py +2 -1
  95. camel/toolkits/searxng_toolkit.py +207 -0
  96. camel/toolkits/semantic_scholar_toolkit.py +2 -0
  97. camel/toolkits/slack_toolkit.py +2 -0
  98. camel/toolkits/stripe_toolkit.py +2 -1
  99. camel/toolkits/sympy_toolkit.py +2 -0
  100. camel/toolkits/terminal_toolkit.py +2 -0
  101. camel/toolkits/thinking_toolkit.py +168 -12
  102. camel/toolkits/twitter_toolkit.py +2 -1
  103. camel/toolkits/video_analysis_toolkit.py +2 -1
  104. camel/toolkits/video_download_toolkit.py +2 -1
  105. camel/toolkits/weather_toolkit.py +2 -0
  106. camel/toolkits/whatsapp_toolkit.py +2 -1
  107. camel/toolkits/zapier_toolkit.py +2 -1
  108. camel/types/enums.py +66 -0
  109. camel/types/unified_model_type.py +5 -0
  110. camel/utils/__init__.py +2 -0
  111. camel/utils/chunker/code_chunker.py +9 -9
  112. camel/utils/commons.py +50 -30
  113. camel/utils/constants.py +2 -2
  114. camel/utils/mcp.py +79 -0
  115. camel/verifiers/__init__.py +2 -0
  116. camel/verifiers/base.py +15 -15
  117. camel/verifiers/math_verifier.py +182 -0
  118. camel/verifiers/python_verifier.py +28 -28
  119. {camel_ai-0.2.37.dist-info → camel_ai-0.2.39.dist-info}/METADATA +54 -4
  120. {camel_ai-0.2.37.dist-info → camel_ai-0.2.39.dist-info}/RECORD +122 -110
  121. {camel_ai-0.2.37.dist-info → camel_ai-0.2.39.dist-info}/WHEEL +0 -0
  122. {camel_ai-0.2.37.dist-info → camel_ai-0.2.39.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,415 @@
1
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
14
+
15
+ import asyncio
16
+ import random
17
+ from datetime import datetime
18
+ from typing import Iterable, List, Optional, cast
19
+
20
+ from pydantic import BaseModel, Field, ValidationError
21
+
22
+ from camel.agents import ChatAgent
23
+ from camel.logger import get_logger
24
+ from camel.models import ModelFactory
25
+ from camel.types import ModelPlatformType, ModelType
26
+ from camel.verifiers import BaseVerifier
27
+
28
+ from .base_generator import BaseGenerator
29
+ from .models import DataPoint
30
+ from .static_dataset import StaticDataset
31
+
32
+ logger = get_logger(__name__)
33
+
34
+ DEFAULT_INSTRUCTION_SYSTEM_PROMPT = """
35
+ You are a high-capacity instruction generation assistant.
36
+
37
+ Your task is to generate a **new, creative, and challenging question** based on
38
+ several examples.
39
+ These examples may cover different domains or styles, but your goal is to:
40
+ - **Understand their specific patterns** in structure, and complexity;
41
+ - **Combine and synthesize** ideas from multiple examples, rather than copying
42
+ or lightly editing any single one;
43
+ - **Intelligently integrate** multiple reasoning steps, constraints, or
44
+ concepts into a single, coherent question;
45
+ - Ensure the new question is **non-trivial** and requires deep thinking or
46
+ multi-step reasoning.
47
+
48
+ **Guidelines:**
49
+ - Use the examples as inspiration for format, depth, and tone.
50
+ - Your new question should be self-contained, logically sound, and answerable.
51
+ - Do not repeat exact phrasings or create shallow combinations; instead,
52
+ produce something meaningfully new.
53
+ - Avoid open-ended or subjective questions that depend on personal opinions or
54
+ discussion.
55
+ - The generated question must have a **clear, objective, and verifiable
56
+ answer**.
57
+ - Aim for increased depth or novelty through subtle combination or
58
+ transformation.
59
+ - Keep the final output to a **single unified question** with one clear answer,
60
+ not a multi-part task.
61
+
62
+ **Output Format (strict):**
63
+ ```
64
+ Question: [Generated question]
65
+ ```
66
+ """
67
+
68
+ DEFAULT_RATIONALE_SYSTEM_PROMPT = """You are an advanced Python code assistant.
69
+
70
+ Your task is to **solve the given question by writing Python code only**,
71
+ without any explanation or natural language output.
72
+ The code must compute the answer **programmatically**, not by hardcoding or
73
+ guessing the result.
74
+
75
+ **Rules:**
76
+ - Use Python code to perform the actual computation.
77
+ - Use {package_list} to solve the problem. Do not import any other libraries.
78
+ - **Do not hardcode the final answer** (e.g., avoid writing `print(1/2)` unless
79
+ that value is computed).
80
+ - The result must be obtained through valid computation logic in code.
81
+ - Do not include explanations. Output code only.
82
+ - The entire code must be wrapped in triple backticks:
83
+ ```
84
+ [Your Python code here]
85
+ ```
86
+
87
+ Now, solve the following question using Python. Only output the code:
88
+ """
89
+
90
+
91
+ class SelfInstructGenerator(BaseGenerator):
92
+ r"""A generator for creating synthetic datapoints using self-instruct.
93
+
94
+ It utilizes both a human-provided dataset (seed_dataset) and generated
95
+ machine instructions (machine_instructions) to produce new, synthetic
96
+ datapoints that include a question, a computed rationale (code), and a
97
+ final answer (from a verifier).
98
+ """
99
+
100
+ class QuestionSchema(BaseModel):
101
+ r"""Schema for the generated question.
102
+
103
+ Attributes:
104
+ question (str): The question generated by the model.
105
+ """
106
+
107
+ question: str = Field(description="The question generated")
108
+
109
+ class RationaleSchema(BaseModel):
110
+ r"""Schema for the generated rationale code.
111
+
112
+ Attributes:
113
+ code (str): The generated code without any formatting.
114
+ """
115
+
116
+ code: str = Field(
117
+ description="The generated code without any formatting"
118
+ )
119
+
120
+ def __init__(
121
+ self,
122
+ seed_dataset: StaticDataset,
123
+ verifier: BaseVerifier,
124
+ instruction_agent: Optional[ChatAgent] = None,
125
+ rationale_agent: Optional[ChatAgent] = None,
126
+ seed: int = 42,
127
+ **kwargs,
128
+ ):
129
+ r"""Initialize the self-instruct generator.
130
+
131
+ Args:
132
+ seed_dataset (StaticDataset): Dataset containing seed instructions.
133
+ verifier (BaseVerifier): Verifier instance to validate generated
134
+ solutions.
135
+ instruction_agent (Optional[ChatAgent]): Agent for generating
136
+ instructions. If not provided, a default agent will be created.
137
+ rationale_agent (Optional[ChatAgent]): Agent for generating
138
+ rationales. If not provided, a default agent will be created.
139
+ seed (int): Random seed for reproducibility. (default: :obj:`42`)
140
+ **kwargs: Additional keyword arguments passed to the BaseGenerator.
141
+ """
142
+ super().__init__(seed=seed, **kwargs)
143
+ self.seed_dataset = seed_dataset
144
+ self.verifier = verifier
145
+ # extract packages from verifier
146
+ self.packages: List[str] = getattr(
147
+ self.verifier, "required_packages", []
148
+ )
149
+ # create default agents if not provided
150
+ self.instruction_agent = (
151
+ instruction_agent or self.default_instruction_agent()
152
+ )
153
+ self.rationale_agent = (
154
+ rationale_agent or self.default_rationale_agent()
155
+ )
156
+
157
+ # Extract questions from the seed dataset as human_instructions
158
+ self.human_instructions: List[str] = [
159
+ dp.question
160
+ for dp in list(cast(Iterable[DataPoint], self.seed_dataset))
161
+ ]
162
+ self.machine_instructions: List[DataPoint] = []
163
+ # Create an instance-level lock for thread-safe updates to _data
164
+ self._lock = asyncio.Lock()
165
+ self._data = [] # Storage for generated DataPoint instances
166
+
167
+ def default_instruction_agent(self) -> ChatAgent:
168
+ r"""Create the default instruction generation agent.
169
+
170
+ This agent is configured with a moderate temperature setting to
171
+ encourage creative and diverse instruction generation behavior.
172
+
173
+ Returns:
174
+ ChatAgent: An agent with the default instruction prompt.
175
+ """
176
+ model = ModelFactory.create(
177
+ model_platform=ModelPlatformType.DEFAULT,
178
+ model_type=ModelType.DEFAULT,
179
+ model_config_dict={"temperature": 0.7},
180
+ )
181
+ return ChatAgent(
182
+ DEFAULT_INSTRUCTION_SYSTEM_PROMPT,
183
+ model=model,
184
+ )
185
+
186
+ def default_rationale_agent(self) -> ChatAgent:
187
+ r"""Create the default rationale generation agent.
188
+
189
+ This agent is configured with a deterministic (zero temperature)
190
+ setting to ensure consistent and precise rationale generation based on
191
+ a given instruction and package list.
192
+
193
+ Returns:
194
+ ChatAgent: An agent with the rationale prompt
195
+ """
196
+ model = ModelFactory.create(
197
+ model_platform=ModelPlatformType.DEFAULT,
198
+ model_type=ModelType.DEFAULT,
199
+ model_config_dict={"temperature": 0.0},
200
+ )
201
+ return ChatAgent(
202
+ DEFAULT_RATIONALE_SYSTEM_PROMPT.format(package_list=self.packages),
203
+ model=model,
204
+ )
205
+
206
+ @staticmethod
207
+ def format_support_block(dp: DataPoint) -> str:
208
+ r"""Format a DataPoint into a few-shot example block.
209
+
210
+ Args:
211
+ dp (DataPoint): A data point.
212
+
213
+ Returns:
214
+ str: A formatted string containing the question and its
215
+ corresponding code block in Markdown-style Python format.
216
+ """
217
+ support_q = dp.question.strip()
218
+ support_code = dp.rationale.strip() if dp.rationale else ""
219
+ return (
220
+ f"Question:\n{support_q}\n\n"
221
+ "Code:\n"
222
+ "```python\n"
223
+ f"{support_code}\n"
224
+ "```"
225
+ )
226
+
227
+ def generate_new_instruction(
228
+ self,
229
+ agent: ChatAgent,
230
+ support_human_dps: list[DataPoint],
231
+ support_machine_dps: list[DataPoint],
232
+ ) -> str:
233
+ r"""Generate a new instruction using self-instruct prompting.
234
+
235
+ Args:
236
+ agent (ChatAgent): The agent to use for generating the instruction.
237
+ support_human_dps (list[DataPoint]): List of human examples to
238
+ sample.
239
+ support_machine_dps (list[DataPoint]): List of machine examples to
240
+ sample.
241
+
242
+ Returns:
243
+ str: The newly generated question.
244
+ """
245
+ human_sample = [dp.question for dp in list(support_human_dps)]
246
+ machine_sample = [dp.question for dp in list(support_machine_dps)]
247
+
248
+ few_shot_examples = human_sample + machine_sample
249
+
250
+ # Build the prompt using the few-shot examples
251
+ prompt = "Below are some question examples:\n\n"
252
+ for idx, instr in enumerate(few_shot_examples, start=1):
253
+ prompt += f"Question {idx}: {instr}\n"
254
+ prompt += f"Question {len(few_shot_examples) + 1}:\n"
255
+ prompt += "Now generate a new question based on the given examples.\n"
256
+
257
+ question_template = f"Question: {prompt}"
258
+ response = cast(
259
+ SelfInstructGenerator.QuestionSchema,
260
+ agent.step(question_template, response_format=self.QuestionSchema)
261
+ .msgs[0]
262
+ .parsed,
263
+ )
264
+ return response.question
265
+
266
+ def generate_rationale(
267
+ self,
268
+ question: str,
269
+ agent: Optional[ChatAgent] = None,
270
+ support_human_dps: Optional[list[DataPoint]] = None,
271
+ ) -> str:
272
+ r"""Generate rationale code (solution) for the given question.
273
+
274
+ Args:
275
+ question (str): The question to be solved.
276
+ agent (Optional[ChatAgent]): The agent to use for generating the
277
+ rationale. If None is provided, the default rationale agent
278
+ will be used. (default: :obj:`None`)
279
+ support_human_dps (Optional[list[DataPoint]]): List of human
280
+ examples to sample. (default: :obj:`None`)
281
+
282
+ Returns:
283
+ str: The generated code solution as a string.
284
+ """
285
+
286
+ # Build few-shot example prompt
287
+ few_shot_prompt = ""
288
+ if support_human_dps:
289
+ few_shot_examples = [
290
+ self.format_support_block(dp) for dp in support_human_dps
291
+ ]
292
+ few_shot_prompt += "Below are example questions and solutions:\n\n"
293
+ few_shot_prompt += "\n\n".join(few_shot_examples)
294
+
295
+ few_shot_prompt += f"\n\nWrite code to solve the question:\n{question}"
296
+
297
+ response = cast(
298
+ SelfInstructGenerator.RationaleSchema,
299
+ (agent or self.default_rationale_agent())
300
+ .step(few_shot_prompt, response_format=self.RationaleSchema)
301
+ .msgs[0]
302
+ .parsed,
303
+ )
304
+ return response.code
305
+
306
+ async def generate_new(
307
+ self,
308
+ n: int,
309
+ max_retries: int = 10,
310
+ human_sample_count: int = 3,
311
+ machine_sample_count: int = 1,
312
+ **kwargs,
313
+ ) -> None:
314
+ r"""Generates and validates `n` new datapoints through
315
+ self-instruct prompting, with a retry limit.
316
+
317
+ Args:
318
+ n (int): The number of valid datapoints to generate.
319
+ max_retries (int): Maximum number of retries before stopping.
320
+ (default: :obj:`10`)
321
+ human_sample_count (int): Number of human examples to sample.
322
+ (default: :obj:`3`)
323
+ machine_sample_count (int): Number of machine examples to sample.
324
+ (default: :obj:`1`)
325
+ **kwargs: Additional keyword arguments.
326
+
327
+ Notes:
328
+ - Retries on validation failures until `n` valid datapoints exist
329
+ or `max_retries` is reached, whichever comes first.
330
+ - If retries are exhausted before reaching `n`, a `RuntimeError`
331
+ is raised.
332
+ - Metadata includes a timestamp for tracking datapoint creation.
333
+ """
334
+ valid_data_points: list[DataPoint] = []
335
+ retries = 0
336
+
337
+ while len(valid_data_points) < n and retries < max_retries:
338
+ try:
339
+ human_dps_list = list(cast(List[DataPoint], self.seed_dataset))
340
+ support_human_dps = random.sample(
341
+ human_dps_list,
342
+ min(human_sample_count, len(human_dps_list)),
343
+ )
344
+
345
+ machine_dps_list = list(self.machine_instructions)
346
+ support_machine_dps = []
347
+ if machine_dps_list and machine_sample_count > 0:
348
+ support_machine_dps = random.sample(
349
+ machine_dps_list,
350
+ min(machine_sample_count, len(machine_dps_list)),
351
+ )
352
+ question = self.generate_new_instruction(
353
+ self.instruction_agent,
354
+ support_human_dps,
355
+ support_machine_dps,
356
+ )
357
+ rationale = self.generate_rationale(
358
+ question, self.rationale_agent, support_human_dps
359
+ )
360
+ if not isinstance(rationale, str):
361
+ raise TypeError(f"Rationale {rationale} is not a string.")
362
+
363
+ try:
364
+ verifier_response = await self.verifier.verify(
365
+ solution=rationale,
366
+ reference_answer=None,
367
+ )
368
+ if not verifier_response or not verifier_response.result:
369
+ raise ValueError(
370
+ "Verifier unsuccessful, response: "
371
+ f"{verifier_response}"
372
+ )
373
+ except (ValueError, AttributeError) as e:
374
+ logger.warning(
375
+ f"Verifier issue: {e}, "
376
+ f"retrying... ({retries + 1}/{max_retries})"
377
+ )
378
+ retries += 1
379
+ continue
380
+ try:
381
+ new_datapoint = DataPoint(
382
+ question=question,
383
+ rationale=rationale,
384
+ final_answer=verifier_response.result,
385
+ metadata={
386
+ "synthetic": str(True),
387
+ "created": datetime.now().isoformat(),
388
+ "generator": "self_instruct",
389
+ },
390
+ )
391
+ except ValidationError as e:
392
+ logger.warning(
393
+ f"Datapoint validation failed: {e}, "
394
+ f"retrying... ({retries + 1}/{max_retries})"
395
+ )
396
+ retries += 1
397
+ continue
398
+
399
+ valid_data_points.append(new_datapoint)
400
+
401
+ except Exception as e:
402
+ logger.warning(
403
+ f"Unexpected error: {e}, retrying..."
404
+ f" ({retries + 1}/{max_retries})"
405
+ )
406
+ retries += 1
407
+
408
+ if len(valid_data_points) < n:
409
+ raise RuntimeError(
410
+ f"Failed to generate {n} valid datapoints "
411
+ f"after {max_retries} retries."
412
+ )
413
+
414
+ async with self._lock:
415
+ self._data.extend(valid_data_points)
@@ -30,6 +30,9 @@ class OpenAICompatibleEmbedding(BaseEmbedding[str]):
30
30
  model_type (str): The model type to be used for text embeddings.
31
31
  api_key (str): The API key for authenticating with the model service.
32
32
  url (str): The url to the model service.
33
+ output_dim (Optional[int]): The dimensionality of the embedding
34
+ vectors. If None, it will be determined during the first
35
+ embedding call.
33
36
  """
34
37
 
35
38
  @api_keys_required(
@@ -43,9 +46,10 @@ class OpenAICompatibleEmbedding(BaseEmbedding[str]):
43
46
  model_type: str,
44
47
  api_key: Optional[str] = None,
45
48
  url: Optional[str] = None,
49
+ output_dim: Optional[int] = None,
46
50
  ) -> None:
47
51
  self.model_type = model_type
48
- self.output_dim: Optional[int] = None
52
+ self.output_dim: Optional[int] = output_dim
49
53
 
50
54
  self._api_key = api_key or os.environ.get(
51
55
  "OPENAI_COMPATIBILITY_API_KEY"
@@ -87,10 +91,14 @@ class OpenAICompatibleEmbedding(BaseEmbedding[str]):
87
91
 
88
92
  Returns:
89
93
  int: The dimensionality of the embedding for the current model.
94
+
95
+ Raises:
96
+ ValueError: If the embedding dimension cannot be determined.
90
97
  """
91
98
  if self.output_dim is None:
92
- raise ValueError(
93
- "Output dimension is not yet determined. Call "
94
- "'embed_list' first."
95
- )
99
+ self.embed_list(["test"])
100
+
101
+ if self.output_dim is None:
102
+ raise ValueError("Failed to determine embedding dimension")
103
+
96
104
  return self.output_dim
@@ -13,7 +13,7 @@
13
13
  # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
14
14
 
15
15
  from datetime import datetime, timezone
16
- from typing import Any, Dict, Optional, Protocol
16
+ from typing import Any, Dict, Optional, Protocol, Tuple
17
17
 
18
18
  from pydantic import BaseModel, Field
19
19
 
@@ -33,9 +33,8 @@ class Action(BaseModel):
33
33
  generated (UTC).
34
34
  """
35
35
 
36
- index: int = Field(
37
- ..., description="Index of the state this action is performed upon"
38
- )
36
+ index: int = Field(default=0, description="...")
37
+
39
38
  llm_response: str = Field(description="Generated response from the LLM")
40
39
  metadata: Dict[str, Any] = Field(
41
40
  default_factory=dict,
@@ -87,6 +86,13 @@ class StepResult(BaseModel):
87
86
  description="Additional information about the step",
88
87
  )
89
88
 
89
+ def as_tuple(
90
+ self,
91
+ ) -> Tuple[Observation, float, bool, Dict[str, Any]]:
92
+ r"""Returns all fields of the model as a tuple, in declaration order"""
93
+ self.info["rewards_dict"] = self.rewards_dict
94
+ return (self.observation, self.reward, self.done, self.info)
95
+
90
96
 
91
97
  class Environment(Protocol):
92
98
  async def reset(self) -> Observation: