camel-ai 0.2.34__py3-none-any.whl → 0.2.35__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of camel-ai might be problematic. Click here for more details.
- camel/__init__.py +1 -1
- camel/agents/_types.py +1 -1
- camel/agents/_utils.py +4 -4
- camel/agents/chat_agent.py +174 -29
- camel/configs/openai_config.py +20 -16
- camel/datasets/base_generator.py +188 -27
- camel/memories/agent_memories.py +47 -1
- camel/memories/base.py +23 -1
- camel/memories/records.py +5 -0
- camel/models/stub_model.py +25 -0
- camel/retrievers/vector_retriever.py +12 -7
- camel/storages/key_value_storages/__init__.py +2 -1
- camel/storages/key_value_storages/json.py +3 -7
- camel/storages/vectordb_storages/base.py +5 -1
- camel/toolkits/__init__.py +2 -1
- camel/toolkits/memory_toolkit.py +129 -0
- camel/utils/chunker/__init__.py +22 -0
- camel/utils/chunker/base.py +24 -0
- camel/utils/chunker/code_chunker.py +193 -0
- camel/utils/chunker/uio_chunker.py +66 -0
- camel/utils/token_counting.py +133 -0
- {camel_ai-0.2.34.dist-info → camel_ai-0.2.35.dist-info}/METADATA +1 -1
- {camel_ai-0.2.34.dist-info → camel_ai-0.2.35.dist-info}/RECORD +25 -20
- {camel_ai-0.2.34.dist-info → camel_ai-0.2.35.dist-info}/WHEEL +0 -0
- {camel_ai-0.2.34.dist-info → camel_ai-0.2.35.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,129 @@
|
|
|
1
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
3
|
+
# you may not use this file except in compliance with the License.
|
|
4
|
+
# You may obtain a copy of the License at
|
|
5
|
+
#
|
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
7
|
+
#
|
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
11
|
+
# See the License for the specific language governing permissions and
|
|
12
|
+
# limitations under the License.
|
|
13
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
|
+
import json
|
|
15
|
+
from typing import TYPE_CHECKING, Optional
|
|
16
|
+
|
|
17
|
+
from camel.memories import (
|
|
18
|
+
ChatHistoryMemory,
|
|
19
|
+
MemoryRecord,
|
|
20
|
+
ScoreBasedContextCreator,
|
|
21
|
+
)
|
|
22
|
+
from camel.toolkits.base import BaseToolkit
|
|
23
|
+
from camel.toolkits.function_tool import FunctionTool
|
|
24
|
+
|
|
25
|
+
if TYPE_CHECKING:
|
|
26
|
+
from camel.agents import ChatAgent
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
class MemoryToolkit(BaseToolkit):
|
|
30
|
+
r"""A toolkit that provides methods for saving, loading, and clearing a
|
|
31
|
+
ChatAgent's memory.
|
|
32
|
+
These methods are exposed as FunctionTool objects for
|
|
33
|
+
function calling. Internally, it calls:
|
|
34
|
+
- agent.save_memory(path)
|
|
35
|
+
- agent.load_memory(new_memory_obj)
|
|
36
|
+
- agent.load_memory_from_path(path)
|
|
37
|
+
- agent.clear_memory()
|
|
38
|
+
|
|
39
|
+
Args:
|
|
40
|
+
agent (ChatAgent): The chat agent whose memory will be managed.
|
|
41
|
+
timeout (Optional[float], optional): Maximum execution time allowed for
|
|
42
|
+
toolkit operations in seconds. If None, no timeout is applied.
|
|
43
|
+
(default: :obj:`None`)
|
|
44
|
+
"""
|
|
45
|
+
|
|
46
|
+
def __init__(self, agent: 'ChatAgent', timeout: Optional[float] = None):
|
|
47
|
+
super().__init__(timeout=timeout)
|
|
48
|
+
self.agent = agent
|
|
49
|
+
|
|
50
|
+
def save(self, path: str) -> str:
|
|
51
|
+
r"""Saves the agent's current memory to a JSON file.
|
|
52
|
+
|
|
53
|
+
Args:
|
|
54
|
+
path (str): The file path to save the memory to.
|
|
55
|
+
|
|
56
|
+
Returns:
|
|
57
|
+
str: Confirmation message.
|
|
58
|
+
"""
|
|
59
|
+
self.agent.save_memory(path)
|
|
60
|
+
return f"Memory saved to {path}"
|
|
61
|
+
|
|
62
|
+
def load(self, memory_json: str) -> str:
|
|
63
|
+
r"""Loads memory into the agent from a JSON string.
|
|
64
|
+
|
|
65
|
+
Args:
|
|
66
|
+
memory_json (str): A JSON string containing memory records.
|
|
67
|
+
|
|
68
|
+
Returns:
|
|
69
|
+
str: Confirmation or error message.
|
|
70
|
+
"""
|
|
71
|
+
try:
|
|
72
|
+
data = json.loads(memory_json.strip())
|
|
73
|
+
if not isinstance(data, list):
|
|
74
|
+
return "[ERROR] Memory data should be a list of records."
|
|
75
|
+
|
|
76
|
+
# Build a fresh ChatHistoryMemory
|
|
77
|
+
context_creator = ScoreBasedContextCreator(
|
|
78
|
+
token_counter=self.agent.model_backend.token_counter,
|
|
79
|
+
token_limit=self.agent.model_backend.token_limit,
|
|
80
|
+
)
|
|
81
|
+
new_memory = ChatHistoryMemory(context_creator)
|
|
82
|
+
|
|
83
|
+
# Convert each record dict -> MemoryRecord
|
|
84
|
+
for record_dict in data:
|
|
85
|
+
record = MemoryRecord.from_dict(record_dict)
|
|
86
|
+
new_memory.write_record(record)
|
|
87
|
+
|
|
88
|
+
# Load into the agent
|
|
89
|
+
self.agent.load_memory(new_memory)
|
|
90
|
+
return "Loaded memory from provided JSON string."
|
|
91
|
+
except json.JSONDecodeError:
|
|
92
|
+
return "[ERROR] Invalid JSON string provided."
|
|
93
|
+
except Exception as e:
|
|
94
|
+
return f"[ERROR] Failed to load memory: {e!s}"
|
|
95
|
+
|
|
96
|
+
def load_from_path(self, path: str) -> str:
|
|
97
|
+
r"""Loads the agent's memory from a JSON file.
|
|
98
|
+
|
|
99
|
+
Args:
|
|
100
|
+
path (str): The file path to load the memory from.
|
|
101
|
+
|
|
102
|
+
Returns:
|
|
103
|
+
str: Confirmation message.
|
|
104
|
+
"""
|
|
105
|
+
self.agent.load_memory_from_path(path)
|
|
106
|
+
return f"Memory loaded from {path}"
|
|
107
|
+
|
|
108
|
+
def clear_memory(self) -> str:
|
|
109
|
+
r"""Clears the agent's memory.
|
|
110
|
+
|
|
111
|
+
Returns:
|
|
112
|
+
str: Confirmation message.
|
|
113
|
+
"""
|
|
114
|
+
self.agent.clear_memory()
|
|
115
|
+
return "Memory has been cleared."
|
|
116
|
+
|
|
117
|
+
def get_tools(self) -> list[FunctionTool]:
|
|
118
|
+
r"""Expose the memory management methods as function tools
|
|
119
|
+
for the ChatAgent.
|
|
120
|
+
|
|
121
|
+
Returns:
|
|
122
|
+
list[FunctionTool]: List of FunctionTool objects.
|
|
123
|
+
"""
|
|
124
|
+
return [
|
|
125
|
+
FunctionTool(self.save),
|
|
126
|
+
FunctionTool(self.load),
|
|
127
|
+
FunctionTool(self.load_from_path),
|
|
128
|
+
FunctionTool(self.clear_memory),
|
|
129
|
+
]
|
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
3
|
+
# you may not use this file except in compliance with the License.
|
|
4
|
+
# You may obtain a copy of the License at
|
|
5
|
+
#
|
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
7
|
+
#
|
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
11
|
+
# See the License for the specific language governing permissions and
|
|
12
|
+
# limitations under the License.
|
|
13
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
|
+
from .base import BaseChunker
|
|
15
|
+
from .code_chunker import CodeChunker
|
|
16
|
+
from .uio_chunker import UnstructuredIOChunker
|
|
17
|
+
|
|
18
|
+
__all__ = [
|
|
19
|
+
"BaseChunker",
|
|
20
|
+
"CodeChunker",
|
|
21
|
+
"UnstructuredIOChunker",
|
|
22
|
+
]
|
|
@@ -0,0 +1,24 @@
|
|
|
1
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
3
|
+
# you may not use this file except in compliance with the License.
|
|
4
|
+
# You may obtain a copy of the License at
|
|
5
|
+
#
|
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
7
|
+
#
|
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
11
|
+
# See the License for the specific language governing permissions and
|
|
12
|
+
# limitations under the License.
|
|
13
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
|
+
from abc import ABC, abstractmethod
|
|
15
|
+
from typing import Any
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class BaseChunker(ABC):
|
|
19
|
+
r"""An abstract base class for all CAMEL chunkers."""
|
|
20
|
+
|
|
21
|
+
@abstractmethod
|
|
22
|
+
def chunk(self, content: Any) -> Any:
|
|
23
|
+
r"""Chunk the given content"""
|
|
24
|
+
pass
|
|
@@ -0,0 +1,193 @@
|
|
|
1
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
3
|
+
# you may not use this file except in compliance with the License.
|
|
4
|
+
# You may obtain a copy of the License at
|
|
5
|
+
#
|
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
7
|
+
#
|
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
11
|
+
# See the License for the specific language governing permissions and
|
|
12
|
+
# limitations under the License.
|
|
13
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
|
+
import re
|
|
15
|
+
from typing import List, Optional
|
|
16
|
+
|
|
17
|
+
from unstructured.documents.elements import Element, ElementMetadata
|
|
18
|
+
|
|
19
|
+
from camel.messages import OpenAIUserMessage
|
|
20
|
+
from camel.types import ModelType
|
|
21
|
+
from camel.utils import BaseTokenCounter, OpenAITokenCounter
|
|
22
|
+
|
|
23
|
+
from .base import BaseChunker
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class CodeChunker(BaseChunker):
|
|
27
|
+
r"""A class for chunking code or text while respecting structure
|
|
28
|
+
and token limits.
|
|
29
|
+
|
|
30
|
+
This class ensures that structured elements such as functions,
|
|
31
|
+
classes, and regions are not arbitrarily split across chunks.
|
|
32
|
+
It also handles oversized lines and Base64-encoded images.
|
|
33
|
+
|
|
34
|
+
Attributes:
|
|
35
|
+
chunk_size (int, optional): The maximum token size per chunk.
|
|
36
|
+
(default: :obj:`8192`)
|
|
37
|
+
token_counter (BaseTokenCounter, optional): The tokenizer used for
|
|
38
|
+
token counting, if `None`, OpenAITokenCounter will be used.
|
|
39
|
+
(default: :obj:`None`)
|
|
40
|
+
remove_image: (bool, optional): If the chunker should skip the images.
|
|
41
|
+
"""
|
|
42
|
+
|
|
43
|
+
def __init__(
|
|
44
|
+
self,
|
|
45
|
+
chunk_size: int = 8192,
|
|
46
|
+
token_counter: Optional[BaseTokenCounter] = None,
|
|
47
|
+
remove_image: Optional[bool] = True,
|
|
48
|
+
):
|
|
49
|
+
self.chunk_size = chunk_size
|
|
50
|
+
self.token_counter = (
|
|
51
|
+
token_counter
|
|
52
|
+
if token_counter
|
|
53
|
+
else OpenAITokenCounter(model=ModelType.GPT_4O_MINI)
|
|
54
|
+
)
|
|
55
|
+
self.remove_image = remove_image
|
|
56
|
+
self.struct_pattern = re.compile(
|
|
57
|
+
r'^\s*(?:(def|class|function)\s+\w+|'
|
|
58
|
+
r'(public|private|protected)\s+[\w<>]+\s+\w+\s*\(|'
|
|
59
|
+
r'\b(interface|enum|namespace)\s+\w+|'
|
|
60
|
+
r'#\s*(region|endregion)\b)'
|
|
61
|
+
)
|
|
62
|
+
self.image_pattern = re.compile(
|
|
63
|
+
r'!\[.*?\]\((?:data:image/[^;]+;base64,[a-zA-Z0-9+/]+=*|[^)]+)\)'
|
|
64
|
+
)
|
|
65
|
+
|
|
66
|
+
def count_tokens(self, text: str):
|
|
67
|
+
r"""Counts the number of tokens in the given text.
|
|
68
|
+
|
|
69
|
+
Args:
|
|
70
|
+
text (str): The input text to be tokenized.
|
|
71
|
+
|
|
72
|
+
Returns:
|
|
73
|
+
int: The number of tokens in the input text.
|
|
74
|
+
"""
|
|
75
|
+
return self.token_counter.count_tokens_from_messages(
|
|
76
|
+
[OpenAIUserMessage(role="user", name="user", content=text)]
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
def _split_oversized(self, line: str) -> List[str]:
|
|
80
|
+
r"""Splits an oversized line into multiple chunks based on token limits
|
|
81
|
+
|
|
82
|
+
Args:
|
|
83
|
+
line (str): The oversized line to be split.
|
|
84
|
+
|
|
85
|
+
Returns:
|
|
86
|
+
List[str]: A list of smaller chunks after splitting the
|
|
87
|
+
oversized line.
|
|
88
|
+
"""
|
|
89
|
+
tokens = self.token_counter.encode(line)
|
|
90
|
+
chunks = []
|
|
91
|
+
buffer = []
|
|
92
|
+
current_count = 0
|
|
93
|
+
|
|
94
|
+
for token in tokens:
|
|
95
|
+
buffer.append(token)
|
|
96
|
+
current_count += 1
|
|
97
|
+
|
|
98
|
+
if current_count >= self.chunk_size:
|
|
99
|
+
chunks.append(self.token_counter.decode(buffer).strip())
|
|
100
|
+
buffer = []
|
|
101
|
+
current_count = 0
|
|
102
|
+
|
|
103
|
+
if buffer:
|
|
104
|
+
chunks.append(self.token_counter.decode(buffer))
|
|
105
|
+
return chunks
|
|
106
|
+
|
|
107
|
+
def chunk(self, content: List[str]) -> List[Element]:
|
|
108
|
+
r"""Splits the content into smaller chunks while preserving
|
|
109
|
+
structure and adhering to token constraints.
|
|
110
|
+
|
|
111
|
+
Args:
|
|
112
|
+
content (List[str]): The content to be chunked.
|
|
113
|
+
|
|
114
|
+
Returns:
|
|
115
|
+
List[str]: A list of chunked text segments.
|
|
116
|
+
"""
|
|
117
|
+
content_str = "\n".join(map(str, content))
|
|
118
|
+
chunks = []
|
|
119
|
+
current_chunk: list[str] = []
|
|
120
|
+
current_tokens = 0
|
|
121
|
+
struct_buffer: list[str] = []
|
|
122
|
+
struct_tokens = 0
|
|
123
|
+
|
|
124
|
+
for line in content_str.splitlines(keepends=True):
|
|
125
|
+
if self.remove_image:
|
|
126
|
+
if self.image_pattern.match(line):
|
|
127
|
+
continue
|
|
128
|
+
|
|
129
|
+
line_tokens = self.count_tokens(line)
|
|
130
|
+
|
|
131
|
+
if line_tokens > self.chunk_size:
|
|
132
|
+
if current_chunk:
|
|
133
|
+
chunks.append("".join(current_chunk))
|
|
134
|
+
current_chunk = []
|
|
135
|
+
current_tokens = 0
|
|
136
|
+
chunks.extend(self._split_oversized(line))
|
|
137
|
+
continue
|
|
138
|
+
|
|
139
|
+
if self.struct_pattern.match(line):
|
|
140
|
+
if struct_buffer:
|
|
141
|
+
if current_tokens + struct_tokens <= self.chunk_size:
|
|
142
|
+
current_chunk.extend(struct_buffer)
|
|
143
|
+
current_tokens += struct_tokens
|
|
144
|
+
else:
|
|
145
|
+
if current_chunk:
|
|
146
|
+
chunks.append("".join(current_chunk))
|
|
147
|
+
current_chunk = struct_buffer.copy()
|
|
148
|
+
current_tokens = struct_tokens
|
|
149
|
+
struct_buffer = []
|
|
150
|
+
struct_tokens = 0
|
|
151
|
+
|
|
152
|
+
struct_buffer.append(line)
|
|
153
|
+
struct_tokens += line_tokens
|
|
154
|
+
else:
|
|
155
|
+
if struct_buffer:
|
|
156
|
+
struct_buffer.append(line)
|
|
157
|
+
struct_tokens += line_tokens
|
|
158
|
+
else:
|
|
159
|
+
if current_tokens + line_tokens > self.chunk_size:
|
|
160
|
+
chunks.append("".join(current_chunk))
|
|
161
|
+
current_chunk = [line]
|
|
162
|
+
current_tokens = line_tokens
|
|
163
|
+
else:
|
|
164
|
+
current_chunk.append(line)
|
|
165
|
+
current_tokens += line_tokens
|
|
166
|
+
|
|
167
|
+
if struct_buffer:
|
|
168
|
+
if current_tokens + struct_tokens <= self.chunk_size:
|
|
169
|
+
current_chunk.extend(struct_buffer)
|
|
170
|
+
else:
|
|
171
|
+
if current_chunk:
|
|
172
|
+
chunks.append("".join(current_chunk))
|
|
173
|
+
current_chunk = struct_buffer
|
|
174
|
+
|
|
175
|
+
if current_chunk:
|
|
176
|
+
chunks.append("".join(current_chunk))
|
|
177
|
+
|
|
178
|
+
final_chunks = []
|
|
179
|
+
for chunk in chunks:
|
|
180
|
+
chunk_token = self.count_tokens(chunk)
|
|
181
|
+
if chunk_token > self.chunk_size:
|
|
182
|
+
final_chunks.extend(self._split_oversized(chunk))
|
|
183
|
+
else:
|
|
184
|
+
final_chunks.append(chunk)
|
|
185
|
+
|
|
186
|
+
# TODO: need to reconsider how to correctly form metadata (maybe need
|
|
187
|
+
# to decouple the connection with unstructuredIO)
|
|
188
|
+
chunked_elements = []
|
|
189
|
+
for chunk in final_chunks:
|
|
190
|
+
element = Element(metadata=ElementMetadata())
|
|
191
|
+
element.text = chunk
|
|
192
|
+
chunked_elements.append(element)
|
|
193
|
+
return chunked_elements
|
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
3
|
+
# you may not use this file except in compliance with the License.
|
|
4
|
+
# You may obtain a copy of the License at
|
|
5
|
+
#
|
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
7
|
+
#
|
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
11
|
+
# See the License for the specific language governing permissions and
|
|
12
|
+
# limitations under the License.
|
|
13
|
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
|
14
|
+
from typing import List, Optional
|
|
15
|
+
|
|
16
|
+
from unstructured.documents.elements import Element
|
|
17
|
+
|
|
18
|
+
from camel.loaders import UnstructuredIO
|
|
19
|
+
from camel.utils.chunker import BaseChunker
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class UnstructuredIOChunker(BaseChunker):
|
|
23
|
+
r"""A class for chunking text while respecting structure and
|
|
24
|
+
character limits.
|
|
25
|
+
|
|
26
|
+
This class ensures that structured elements, such as document sections
|
|
27
|
+
and titles, are not arbitrarily split across chunks. It utilizes the
|
|
28
|
+
`UnstructuredIO` class to process and segment elements while maintaining
|
|
29
|
+
readability and coherence. The chunking method can be adjusted based on
|
|
30
|
+
the provided `chunk_type` parameter.
|
|
31
|
+
|
|
32
|
+
Args:
|
|
33
|
+
chunk_type (str, optional): The method used for chunking text.
|
|
34
|
+
(default: :obj:`"chunk_by_title"`)
|
|
35
|
+
max_characters (int, optional): The maximum number of characters
|
|
36
|
+
allowed per chunk. (default: :obj:`500`)
|
|
37
|
+
metadata_filename (Optional[str], optional): An optional filename
|
|
38
|
+
for storing metadata related to chunking. (default: :obj:`None`)
|
|
39
|
+
"""
|
|
40
|
+
|
|
41
|
+
def __init__(
|
|
42
|
+
self,
|
|
43
|
+
chunk_type: str = "chunk_by_title",
|
|
44
|
+
max_characters: int = 500,
|
|
45
|
+
metadata_filename: Optional[str] = None,
|
|
46
|
+
):
|
|
47
|
+
self.uio = UnstructuredIO()
|
|
48
|
+
self.chunk_type = chunk_type
|
|
49
|
+
self.max_characters = max_characters
|
|
50
|
+
self.metadata_filename = metadata_filename
|
|
51
|
+
|
|
52
|
+
def chunk(self, content: List[Element]) -> List[Element]:
|
|
53
|
+
r"""Splits the content into smaller chunks while preserving
|
|
54
|
+
structure and adhering to token constraints.
|
|
55
|
+
|
|
56
|
+
Args:
|
|
57
|
+
content (List[Element]): The content to be chunked.
|
|
58
|
+
|
|
59
|
+
Returns:
|
|
60
|
+
List[Element]: A list of chunked text segments.
|
|
61
|
+
"""
|
|
62
|
+
return self.uio.chunk_elements(
|
|
63
|
+
chunk_type=self.chunk_type,
|
|
64
|
+
elements=content,
|
|
65
|
+
max_characters=self.max_characters,
|
|
66
|
+
)
|
camel/utils/token_counting.py
CHANGED
|
@@ -90,6 +90,30 @@ class BaseTokenCounter(ABC):
|
|
|
90
90
|
"""
|
|
91
91
|
pass
|
|
92
92
|
|
|
93
|
+
@abstractmethod
|
|
94
|
+
def encode(self, text: str) -> List[int]:
|
|
95
|
+
r"""Encode text into token IDs.
|
|
96
|
+
|
|
97
|
+
Args:
|
|
98
|
+
text (str): The text to encode.
|
|
99
|
+
|
|
100
|
+
Returns:
|
|
101
|
+
List[int]: List of token IDs.
|
|
102
|
+
"""
|
|
103
|
+
pass
|
|
104
|
+
|
|
105
|
+
@abstractmethod
|
|
106
|
+
def decode(self, token_ids: List[int]) -> str:
|
|
107
|
+
r"""Decode token IDs back to text.
|
|
108
|
+
|
|
109
|
+
Args:
|
|
110
|
+
token_ids (List[int]): List of token IDs to decode.
|
|
111
|
+
|
|
112
|
+
Returns:
|
|
113
|
+
str: Decoded text.
|
|
114
|
+
"""
|
|
115
|
+
pass
|
|
116
|
+
|
|
93
117
|
|
|
94
118
|
class OpenAITokenCounter(BaseTokenCounter):
|
|
95
119
|
def __init__(self, model: UnifiedModelType):
|
|
@@ -227,6 +251,28 @@ class OpenAITokenCounter(BaseTokenCounter):
|
|
|
227
251
|
total = EXTRA_TOKENS + SQUARE_TOKENS * h * w
|
|
228
252
|
return total
|
|
229
253
|
|
|
254
|
+
def encode(self, text: str) -> List[int]:
|
|
255
|
+
r"""Encode text into token IDs.
|
|
256
|
+
|
|
257
|
+
Args:
|
|
258
|
+
text (str): The text to encode.
|
|
259
|
+
|
|
260
|
+
Returns:
|
|
261
|
+
List[int]: List of token IDs.
|
|
262
|
+
"""
|
|
263
|
+
return self.encoding.encode(text, disallowed_special=())
|
|
264
|
+
|
|
265
|
+
def decode(self, token_ids: List[int]) -> str:
|
|
266
|
+
r"""Decode token IDs back to text.
|
|
267
|
+
|
|
268
|
+
Args:
|
|
269
|
+
token_ids (List[int]): List of token IDs to decode.
|
|
270
|
+
|
|
271
|
+
Returns:
|
|
272
|
+
str: Decoded text.
|
|
273
|
+
"""
|
|
274
|
+
return self.encoding.decode(token_ids)
|
|
275
|
+
|
|
230
276
|
|
|
231
277
|
class AnthropicTokenCounter(BaseTokenCounter):
|
|
232
278
|
@dependencies_required('anthropic')
|
|
@@ -266,6 +312,33 @@ class AnthropicTokenCounter(BaseTokenCounter):
|
|
|
266
312
|
model=self.model,
|
|
267
313
|
).input_tokens
|
|
268
314
|
|
|
315
|
+
def encode(self, text: str) -> List[int]:
|
|
316
|
+
r"""Encode text into token IDs.
|
|
317
|
+
|
|
318
|
+
Args:
|
|
319
|
+
text (str): The text to encode.
|
|
320
|
+
|
|
321
|
+
Returns:
|
|
322
|
+
List[int]: List of token IDs.
|
|
323
|
+
"""
|
|
324
|
+
raise NotImplementedError(
|
|
325
|
+
"The Anthropic API does not provide direct access to token IDs. "
|
|
326
|
+
"Use count_tokens_from_messages() for token counting instead."
|
|
327
|
+
)
|
|
328
|
+
|
|
329
|
+
def decode(self, token_ids: List[int]) -> str:
|
|
330
|
+
r"""Decode token IDs back to text.
|
|
331
|
+
|
|
332
|
+
Args:
|
|
333
|
+
token_ids (List[int]): List of token IDs to decode.
|
|
334
|
+
|
|
335
|
+
Returns:
|
|
336
|
+
str: Decoded text.
|
|
337
|
+
"""
|
|
338
|
+
raise NotImplementedError(
|
|
339
|
+
"The Anthropic API does not provide functionality to decode token IDs."
|
|
340
|
+
)
|
|
341
|
+
|
|
269
342
|
|
|
270
343
|
class LiteLLMTokenCounter(BaseTokenCounter):
|
|
271
344
|
def __init__(self, model_type: UnifiedModelType):
|
|
@@ -319,6 +392,32 @@ class LiteLLMTokenCounter(BaseTokenCounter):
|
|
|
319
392
|
"""
|
|
320
393
|
return self.completion_cost(completion_response=response)
|
|
321
394
|
|
|
395
|
+
def encode(self, text: str) -> List[int]:
|
|
396
|
+
r"""Encode text into token IDs.
|
|
397
|
+
|
|
398
|
+
Args:
|
|
399
|
+
text (str): The text to encode.
|
|
400
|
+
|
|
401
|
+
Returns:
|
|
402
|
+
List[int]: List of token IDs.
|
|
403
|
+
"""
|
|
404
|
+
from litellm import encoding
|
|
405
|
+
|
|
406
|
+
return encoding.encode(text, disallowed_special=())
|
|
407
|
+
|
|
408
|
+
def decode(self, token_ids: List[int]) -> str:
|
|
409
|
+
r"""Decode token IDs back to text.
|
|
410
|
+
|
|
411
|
+
Args:
|
|
412
|
+
token_ids (List[int]): List of token IDs to decode.
|
|
413
|
+
|
|
414
|
+
Returns:
|
|
415
|
+
str: Decoded text.
|
|
416
|
+
"""
|
|
417
|
+
from litellm import encoding
|
|
418
|
+
|
|
419
|
+
return encoding.decode(token_ids)
|
|
420
|
+
|
|
322
421
|
|
|
323
422
|
class MistralTokenCounter(BaseTokenCounter):
|
|
324
423
|
def __init__(self, model_type: ModelType):
|
|
@@ -390,3 +489,37 @@ class MistralTokenCounter(BaseTokenCounter):
|
|
|
390
489
|
)
|
|
391
490
|
|
|
392
491
|
return mistral_request
|
|
492
|
+
|
|
493
|
+
def encode(self, text: str) -> List[int]:
|
|
494
|
+
r"""Encode text into token IDs.
|
|
495
|
+
|
|
496
|
+
Args:
|
|
497
|
+
text (str): The text to encode.
|
|
498
|
+
|
|
499
|
+
Returns:
|
|
500
|
+
List[int]: List of token IDs.
|
|
501
|
+
"""
|
|
502
|
+
# Use the Mistral tokenizer to encode the text
|
|
503
|
+
return self.tokenizer.encode_chat_completion(
|
|
504
|
+
ChatCompletionRequest(
|
|
505
|
+
model=self.model_type,
|
|
506
|
+
messages=[
|
|
507
|
+
{
|
|
508
|
+
"role": "user",
|
|
509
|
+
"content": text,
|
|
510
|
+
}
|
|
511
|
+
],
|
|
512
|
+
)
|
|
513
|
+
)
|
|
514
|
+
|
|
515
|
+
def decode(self, token_ids: List[int]) -> str:
|
|
516
|
+
r"""Decode token IDs back to text.
|
|
517
|
+
|
|
518
|
+
Args:
|
|
519
|
+
token_ids (List[int]): List of token IDs to decode.
|
|
520
|
+
|
|
521
|
+
Returns:
|
|
522
|
+
str: Decoded text.
|
|
523
|
+
"""
|
|
524
|
+
# Use the Mistral tokenizer to decode the tokens
|
|
525
|
+
return self.tokenizer.decode(token_ids)
|