camel-ai 0.2.14__py3-none-any.whl → 0.2.15a0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of camel-ai might be problematic. Click here for more details.

@@ -0,0 +1,17 @@
1
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
14
+
15
+ from .o1datagen import O1DataGenerator
16
+
17
+ __all__ = ['O1DataGenerator']
@@ -0,0 +1,435 @@
1
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
14
+
15
+ import json
16
+ from datetime import datetime
17
+ from typing import Annotated, Dict, Optional, Union
18
+
19
+ from pydantic import BaseModel, Field, confloat
20
+
21
+ from camel.agents import ChatAgent
22
+ from camel.logger import get_logger
23
+
24
+ # Get a logger for this module
25
+ logger = get_logger('o1datagenerator')
26
+
27
+
28
+ class AgentResponse(BaseModel):
29
+ r"""Model for structured agent responses.
30
+
31
+ A Pydantic model class that represents structured responses from agents,
32
+ including a similarity score that measures the quality of the response.
33
+
34
+ Args:
35
+ score (float): A similarity score between 0 and 1 that compares the
36
+ current answer to the correct answer. Must be within the range
37
+ [0, 1].
38
+ """
39
+
40
+ score: Annotated[float, confloat(ge=0, le=1)] = Field(
41
+ ...,
42
+ description="""Similarity score between 0 and 1
43
+ comparing current answer to correct answer""",
44
+ )
45
+
46
+
47
+ class VerificationResponse(BaseModel):
48
+ r"""Model for structured verification responses.
49
+
50
+ A Pydantic model class that represents verification results from agents,
51
+ indicating whether an answer is correct or not.
52
+
53
+ Args:
54
+ is_correct (bool): Boolean indicating if the answer is correct.
55
+ """
56
+
57
+ is_correct: bool = Field(
58
+ ...,
59
+ description="Boolean indicating if the answer is correct",
60
+ )
61
+
62
+
63
+ class O1DataGenerator:
64
+ r"""Class for generating and managing data through chat agent interactions.
65
+
66
+ handling the generation of data by a chat agent, managing golden answers,
67
+ and maintaining a solution tree for correct solution steps.
68
+
69
+ Args:
70
+ chat_agent (Optional[ChatAgent]): Optional single agent
71
+ for both tasks (legacy mode). (default::obj:`None`)
72
+ generator_agent (Optional[ChatAgent]): Optional specialized agent for
73
+ answer generation. (default::obj:`None`)
74
+ verifier_agent (Optional[ChatAgent]): Optional specialized agent for
75
+ answer verification. (default::obj:`None`)
76
+ golden_answers (Dict[str, str]): Dictionary containing pre-defined
77
+ correct answers for validation and comparison. Required for answer
78
+ verification.
79
+ search_limit (int): Maximum number of search iterations allowed.
80
+ (default::obj:`100`)
81
+ """
82
+
83
+ def __init__(
84
+ self,
85
+ chat_agent: Optional[ChatAgent] = None,
86
+ *,
87
+ generator_agent: Optional[ChatAgent] = None,
88
+ verifier_agent: Optional[ChatAgent] = None,
89
+ golden_answers: Dict[str, str],
90
+ search_limit: int = 100,
91
+ ):
92
+ r"""Initialize the O1DataGenerator.
93
+
94
+ This constructor supports both single-agent and dual-agent modes:
95
+ 1. Single-agent mode (legacy): Pass a single chat_agent that will be
96
+ used for both generation and verification.
97
+ 2. Dual-agent mode: Pass separate generator_agent and verifier_agent
98
+ for specialized tasks.
99
+
100
+ Args:
101
+ chat_agent (Optional[ChatAgent]): Optional single agent for both
102
+ tasks (legacy mode). (default::obj:`None`)
103
+ generator_agent (Optional[ChatAgent]): Optional specialized agent
104
+ for answer generation. (default::obj:`None`)
105
+ verifier_agent (Optional[ChatAgent]): Optional specialized agent
106
+ for answer verification. (default::obj:`None`)
107
+ golden_answers (Dict[str, str]): Dictionary containing pre-defined
108
+ correct answers for validation and comparison. Required for
109
+ answer verification.
110
+ search_limit (int): Maximum number of search iterations allowed.
111
+ (default::obj:`100`)
112
+ """
113
+ if chat_agent is not None:
114
+ if generator_agent is not None or verifier_agent is not None:
115
+ raise ValueError(
116
+ "Cannot specify both chat_agent \
117
+ and generator/verifier agents"
118
+ )
119
+ self.generator_agent = chat_agent
120
+ self.verifier_agent = chat_agent
121
+ else:
122
+ if generator_agent is None or verifier_agent is None:
123
+ raise ValueError(
124
+ "Must specify either chat_agent or both generator and "
125
+ "verifier agents"
126
+ )
127
+ self.generator_agent = generator_agent
128
+ self.verifier_agent = verifier_agent
129
+
130
+ self.golden_answers = golden_answers
131
+ self.search_limit = search_limit
132
+ self.solution_tree: Dict[str, Dict[str, Union[str, int]]] = {}
133
+ logger.info(
134
+ "O1DataGenerator initialized with search_limit=%d", search_limit
135
+ )
136
+
137
+ def get_answer(self, question: str, context: str = "") -> str:
138
+ r"""Get an answer from the chat agent for a given question.
139
+
140
+ Args:
141
+ question (str): The question to ask.
142
+ context (str): Additional context for the question.
143
+ (default::obj:`""`)
144
+
145
+ Returns:
146
+ str: The generated answer.
147
+ """
148
+ prompt = f"""
149
+ Please think step by step and solve this problem: {question}
150
+ Existing content: {context}
151
+ Requirements:
152
+ 1. Analyze the problem requirements
153
+ 2. List the steps to solve the problem
154
+ 3. Execute the solution process
155
+ 4. Provide the final answer
156
+ Please explain the thought process of each step in detail.
157
+ """
158
+ self.generator_agent.reset()
159
+ response = self.generator_agent.step(prompt)
160
+ answer = response.msgs[0].content
161
+ logger.info("AI thought process:\n%s", answer)
162
+ return answer
163
+
164
+ def verify_answer(self, question: str, answer: str) -> bool:
165
+ r"""Verify if a generated answer is semantically equivalent to
166
+ the golden answer for a given question.
167
+
168
+ Args:
169
+ question (str): The question being answered.
170
+ answer (str): The answer to verify.
171
+
172
+ Returns:
173
+ bool: True if the answer matches the golden answer based on
174
+ semantic equivalence (meaning the core content and meaning are
175
+ the same, even if the exact wording differs).
176
+ False in the following cases:
177
+ - If the provided question doesn't exist in the golden answers
178
+ - If the answer's meaning differs from the golden answer
179
+ """
180
+ golden_answer = self.golden_answers.get(question)
181
+ if not golden_answer:
182
+ raise ValueError(
183
+ f"No golden answer found for question: {question}"
184
+ )
185
+
186
+ prompt = (
187
+ f"Question: {question}\n"
188
+ f"Student Answer: {answer}\n"
189
+ f"Correct Answer: {golden_answer}\n"
190
+ "Is the student's answer correct? Please respond with 'true' or "
191
+ "'false' only."
192
+ )
193
+ self.verifier_agent.reset()
194
+ response = self.verifier_agent.step(
195
+ prompt, response_format=VerificationResponse
196
+ )
197
+ is_correct = response.msgs[0].parsed.is_correct # type:ignore [union-attr]
198
+ logger.info("Answer verification result: %s", is_correct)
199
+ return is_correct
200
+
201
+ def monte_carlo_tree_search(
202
+ self, question: str, partial_solution: str = ""
203
+ ) -> float:
204
+ r"""Perform Monte Carlo Tree Search to find the best solution.
205
+
206
+ Args:
207
+ question (str): The question to solve.
208
+ partial_solution (str): The current partial solution.
209
+ (default::obj:`""`)
210
+
211
+ Returns:
212
+ float: The similarity score between the current
213
+ solution and golden answer.
214
+ """
215
+ if question not in self.golden_answers:
216
+ raise ValueError(
217
+ f"No golden answer found for question: {question}"
218
+ )
219
+
220
+ golden_answer = self.golden_answers[question]
221
+
222
+ prompt = (
223
+ f"Please evaluate this solution and "
224
+ f"give a score between 0-1:\n"
225
+ f"Question: {question}\n"
226
+ f"Solution: {partial_solution}\n"
227
+ f"Correct answer: {golden_answer}\n"
228
+ f"Return a JSON object with a single field 'score' containing "
229
+ f"a float between 0 and 1, like this: {{'score': 0.85}}\n"
230
+ )
231
+ self.generator_agent.reset()
232
+ response = self.generator_agent.step(
233
+ prompt, response_format=AgentResponse
234
+ )
235
+ agent_response = response.msgs[0].parsed.score # type: ignore [union-attr]
236
+
237
+ return agent_response
238
+
239
+ def binary_search_error(self, question: str, solution: str) -> int:
240
+ r"""Use binary search to locate the first error in the solution.
241
+ This method splits the solution into sentences using both English and
242
+ Chinese sentence delimiters and performs binary search to find the
243
+ first error.
244
+
245
+ Args:
246
+ question (str): The question being solved.
247
+ solution (str): The complete solution to analyze.
248
+
249
+ Returns:
250
+ int: The position of the first error found in the solution.
251
+ Returns -1. If no errors are found (all sentences are correct).
252
+ """
253
+ logger.info("Starting binary search for error location")
254
+ # Split by both English period and Chinese period
255
+ sentences = [
256
+ s.strip()
257
+ for s in solution.replace('。', '.').split('.')
258
+ if s.strip()
259
+ ]
260
+
261
+ # First check if the entire solution is correct
262
+ if self.verify_answer(question, solution):
263
+ return -1
264
+
265
+ left, right = 0, len(sentences)
266
+ while left < right:
267
+ mid = (left + right) // 2
268
+ partial_solution = '. '.join(sentences[:mid]) + '.'
269
+ logger.info("Checking solution fragment:\n%s", partial_solution)
270
+ # Verify if the current part is correct
271
+ is_correct = self.verify_answer(question, partial_solution)
272
+ if is_correct:
273
+ left = mid + 1
274
+ else:
275
+ right = mid
276
+ logger.info("First error position found: sentence %d", left)
277
+ return left
278
+
279
+ def solve(self, question: str) -> str:
280
+ r"""Solve a question using a multi-step approach.
281
+
282
+ The solution process follows these steps:
283
+ 1. Try to solve directly - if correct, return the solution
284
+ 2. If not correct, use Monte Carlo Tree Search to find a good solution
285
+ 3. If the solution isn't perfect, use binary search to locate errors
286
+ 4. Generate a new solution based on the correct part
287
+
288
+ Args:
289
+ question (str): The question to solve.
290
+
291
+ Returns:
292
+ str: The best solution found.
293
+ """
294
+ # 1. Try direct solution first
295
+ solution = self.get_answer(question)
296
+ if self.verify_answer(question, solution):
297
+ logger.info("Initial solution is correct")
298
+ return solution
299
+
300
+ # 2. If direct solution fails, try Monte Carlo Tree Search
301
+ # to find a solution with high similarity score
302
+ best_solution = ""
303
+ best_score: float = 0.0
304
+ for i in range(self.search_limit):
305
+ # Generate new answer
306
+ current_solution = self.get_answer(question, best_solution)
307
+
308
+ # Evaluate solution similarity score
309
+ prompt = (
310
+ f"Please evaluate this solution and "
311
+ f"give a score between 0-1:\n"
312
+ f"Question: {question}\n"
313
+ f"Solution: {current_solution}\n"
314
+ f"Correct answer: {self.golden_answers.get(question, '')}\n"
315
+ f"Return a JSON object with a single field 'score' containing "
316
+ f"a float between 0 and 1, like this: {{'score': 0.85}}\n"
317
+ )
318
+ self.generator_agent.reset()
319
+ response = self.generator_agent.step(prompt)
320
+ try:
321
+ response = self.generator_agent.step(
322
+ prompt, response_format=AgentResponse
323
+ )
324
+ agent_response = response.msgs[0].parsed.score # type: ignore [union-attr]
325
+ score = agent_response
326
+
327
+ # Exit early if we find a very good solution (score > 0.9)
328
+ if score > 0.9:
329
+ logger.info(
330
+ "Found excellent solution with score %.2f. "
331
+ "Stopping search early.",
332
+ score,
333
+ )
334
+ return current_solution
335
+
336
+ if score > best_score:
337
+ best_score = score
338
+ best_solution = current_solution
339
+
340
+ logger.info(
341
+ "Current search progress: %d/%d, best score: %.2f",
342
+ i + 1,
343
+ self.search_limit,
344
+ best_score,
345
+ )
346
+ except Exception as e:
347
+ logger.error("Error parsing agent response: %s", str(e))
348
+ continue
349
+
350
+ # 3. If the answer is not completely correct,
351
+ # use binary search to locate the error
352
+ error_pos = self.binary_search_error(question, best_solution)
353
+
354
+ # If no errors found (error_pos == -1), return the current solution
355
+ if error_pos == -1:
356
+ logger.info("No specific errors found in the solution")
357
+ return best_solution
358
+
359
+ # 4. Generate new solution based on correct part
360
+ correct_part = '. '.join(best_solution.split('. ')[:error_pos]) + '.'
361
+ final_solution = self.get_answer(question, correct_part)
362
+ self.solution_tree[question] = {
363
+ "solution": final_solution,
364
+ "error_position": error_pos,
365
+ }
366
+ return final_solution
367
+
368
+ def import_qa_from_json(self, data: Union[str, Dict[str, str]]) -> bool:
369
+ r"""Import question and answer data from either a JSON file or a
370
+ dictionary.
371
+
372
+ Args:
373
+ data (Union[str, Dict[str, str]]): Either a path to a JSON file
374
+ containing QA pairs or a dictionary of question-answer pairs.
375
+ If a string is provided, it's treated as a file path.
376
+ The expected format is:
377
+ {"question1": "answer1",
378
+ "question2": "answer2",
379
+ ...}
380
+
381
+ Returns:
382
+ bool: True if import was successful, False otherwise.
383
+ """
384
+ try:
385
+ if isinstance(data, str):
386
+ logger.info("Loading QA pairs from file: %s", data)
387
+ with open(data, 'r', encoding='utf-8') as f:
388
+ qa_data = json.load(f)
389
+ else:
390
+ logger.info("Loading QA pairs from provided dictionary")
391
+ qa_data = data
392
+
393
+ # Validate the data format
394
+ if not isinstance(qa_data, dict):
395
+ logger.error("Invalid data format: expected dictionary")
396
+ return False
397
+
398
+ # Update golden answers
399
+ self.golden_answers.update(qa_data)
400
+ logger.info("Successfully imported %d QA pairs", len(qa_data))
401
+ return True
402
+
403
+ except Exception as e:
404
+ logger.error("Error importing QA data: %s", str(e))
405
+ return False
406
+
407
+ def export_solutions(self, filepath: str = 'solutions.json') -> None:
408
+ r"""Export the solution process and results to a JSON file.
409
+ Exports the solution tree, golden answers,
410
+ and export timestamp to a JSON file.
411
+ The exported data includes:
412
+ - solutions: The solution tree
413
+ with intermediate steps
414
+ - golden_answers: The reference answers used for verification
415
+ - export_time: ISO format timestamp of the export
416
+
417
+ Args:
418
+ filepath (str, optional): Path where the JSON file will be saved.
419
+ (default::obj:`'solutions.json'`)
420
+
421
+ Returns:
422
+ None: The method writes to a file and logs the result but does not
423
+ return any value.
424
+ """
425
+ export_data = {
426
+ "solutions": self.solution_tree,
427
+ "golden_answers": self.golden_answers,
428
+ "export_time": datetime.now().isoformat(),
429
+ }
430
+ try:
431
+ with open(filepath, 'w', encoding='utf-8') as f:
432
+ json.dump(export_data, f, ensure_ascii=False, indent=2)
433
+ logger.info(f"Solutions exported successfully to {filepath}")
434
+ except Exception as e:
435
+ logger.error(f"Error exporting solutions: {e!s}")
camel/datahubs/models.py CHANGED
@@ -19,4 +19,7 @@ from pydantic import BaseModel
19
19
  class Record(BaseModel):
20
20
  id: Optional[str] = None
21
21
  metadata: Optional[Dict[str, Any]] = None
22
- content: Dict[str, Any]
22
+ content: Optional[Dict[str, Any]] = None
23
+
24
+ class Config:
25
+ extra = "allow" # Allow any additional fields
@@ -109,7 +109,10 @@ class HermesFunctionFormatter(
109
109
  format.
110
110
  """
111
111
  tool_call_dict = {"name": func_name, "arguments": args}
112
- return f"{content}\n<tool_call>\n{tool_call_dict}\n</tool_call>"
112
+
113
+ if content:
114
+ return f"{content}\n<tool_call>\n{tool_call_dict}\n</tool_call>"
115
+ return f"<tool_call>\n{tool_call_dict}\n</tool_call>"
113
116
 
114
117
  def format_tool_response(self, func_name: str, result: Any) -> str:
115
118
  r"""Formats a tool response message with the given function name and
@@ -121,6 +121,14 @@ class AutoRetriever:
121
121
 
122
122
  collection_name = re.sub(r'[^a-zA-Z0-9]', '', content)[:20]
123
123
 
124
+ # Ensure the first character is either an underscore or a letter for
125
+ # Milvus
126
+ if (
127
+ self.storage_type == StorageType.MILVUS
128
+ and not collection_name[0].isalpha()
129
+ ):
130
+ collection_name = f"_{collection_name}"
131
+
124
132
  return collection_name
125
133
 
126
134
  def run_vector_retriever(
@@ -161,13 +161,16 @@ class VectorRetriever(BaseRetriever):
161
161
  # content path, chunk metadata, and chunk text
162
162
  for vector, chunk in zip(batch_vectors, batch_chunks):
163
163
  if isinstance(content, str):
164
- content_path_info = {"content path": content}
164
+ content_path_info = {"content path": content[:100]}
165
165
  elif isinstance(content, IOBase):
166
166
  content_path_info = {"content path": "From file bytes"}
167
167
  elif isinstance(content, Element):
168
168
  content_path_info = {
169
- "content path": content.metadata.file_directory
170
- or ""
169
+ "content path": content.metadata.file_directory[
170
+ :100
171
+ ]
172
+ if content.metadata.file_directory
173
+ else ""
171
174
  }
172
175
 
173
176
  chunk_metadata = {"metadata": chunk.metadata.to_dict()}
@@ -509,8 +509,8 @@ class RolePlaying:
509
509
  # step and once in role play), and the model generates only one
510
510
  # response when multi-response support is enabled.
511
511
  if (
512
- 'n' in self.user_agent.model_config_dict.keys()
513
- and self.user_agent.model_config_dict['n'] > 1
512
+ 'n' in self.user_agent.model_backend.model_config_dict.keys()
513
+ and self.user_agent.model_backend.model_config_dict['n'] > 1
514
514
  ):
515
515
  self.user_agent.record_message(user_msg)
516
516
 
@@ -532,8 +532,8 @@ class RolePlaying:
532
532
  # step and once in role play), and the model generates only one
533
533
  # response when multi-response support is enabled.
534
534
  if (
535
- 'n' in self.assistant_agent.model_config_dict.keys()
536
- and self.assistant_agent.model_config_dict['n'] > 1
535
+ 'n' in self.assistant_agent.model_backend.model_config_dict.keys()
536
+ and self.assistant_agent.model_backend.model_config_dict['n'] > 1
537
537
  ):
538
538
  self.assistant_agent.record_message(assistant_msg)
539
539
 
@@ -251,7 +251,7 @@ class Workforce(BaseNode):
251
251
  additional_info = "A Workforce node"
252
252
  elif isinstance(child, SingleAgentWorker):
253
253
  additional_info = "tools: " + (
254
- ", ".join(child.worker.func_dict.keys())
254
+ ", ".join(child.worker.tool_dict.keys())
255
255
  )
256
256
  elif isinstance(child, RolePlayingWorker):
257
257
  additional_info = "A Role playing node"
@@ -369,7 +369,7 @@ class Workforce(BaseNode):
369
369
  model_config_dict=model_config_dict,
370
370
  )
371
371
 
372
- return ChatAgent(worker_sys_msg, model=model, tools=function_list)
372
+ return ChatAgent(worker_sys_msg, model=model, tools=function_list) # type: ignore[arg-type]
373
373
 
374
374
  async def _get_returned_task(self) -> Task:
375
375
  r"""Get the task that's published by this node and just get returned
@@ -12,9 +12,20 @@
12
12
  # limitations under the License.
13
13
  # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
14
14
 
15
+ import logging
16
+ import re
15
17
  import time
16
18
  from typing import TYPE_CHECKING, Any, Dict, List, Tuple
17
19
 
20
+ from camel.storages.graph_storages.base import BaseGraphStorage
21
+ from camel.storages.graph_storages.graph_element import (
22
+ GraphElement,
23
+ )
24
+ from camel.utils.commons import dependencies_required
25
+
26
+ logger = logging.getLogger(__name__)
27
+
28
+
18
29
  if TYPE_CHECKING:
19
30
  from nebula3.data.ResultSet import ( # type: ignore[import-untyped]
20
31
  ResultSet,
@@ -24,11 +35,6 @@ if TYPE_CHECKING:
24
35
  Session,
25
36
  )
26
37
 
27
- from camel.storages.graph_storages.base import BaseGraphStorage
28
- from camel.storages.graph_storages.graph_element import (
29
- GraphElement,
30
- )
31
- from camel.utils.commons import dependencies_required
32
38
 
33
39
  MAX_RETRIES = 5
34
40
  RETRY_DELAY = 3
@@ -178,11 +184,21 @@ class NebulaGraph(BaseGraphStorage):
178
184
  """
179
185
  nodes = self._extract_nodes(graph_elements)
180
186
  for node in nodes:
181
- self.add_node(node['id'], node['type'])
187
+ try:
188
+ self.add_node(node['id'], node['type'])
189
+ except Exception as e:
190
+ logger.warning(f"Failed to add node {node}. Error: {e}")
191
+ continue
182
192
 
183
193
  relationships = self._extract_relationships(graph_elements)
184
194
  for rel in relationships:
185
- self.add_triplet(rel['subj']['id'], rel['obj']['id'], rel['type'])
195
+ try:
196
+ self.add_triplet(
197
+ rel['subj']['id'], rel['obj']['id'], rel['type']
198
+ )
199
+ except Exception as e:
200
+ logger.warning(f"Failed to add relationship {rel}. Error: {e}")
201
+ continue
186
202
 
187
203
  def ensure_edge_type_exists(
188
204
  self,
@@ -253,6 +269,9 @@ class NebulaGraph(BaseGraphStorage):
253
269
  node_id (str): The ID of the node.
254
270
  tag_name (str): The tag name of the node.
255
271
  """
272
+ node_id = re.sub(r'[^a-zA-Z0-9\u4e00-\u9fa5]', '', node_id)
273
+ tag_name = re.sub(r'[^a-zA-Z0-9\u4e00-\u9fa5]', '', tag_name)
274
+
256
275
  self.ensure_tag_exists(tag_name)
257
276
 
258
277
  # Insert node without properties
@@ -409,6 +428,10 @@ class NebulaGraph(BaseGraphStorage):
409
428
  obj (str): The identifier for the object entity.
410
429
  rel (str): The relationship between the subject and object.
411
430
  """
431
+ subj = re.sub(r'[^a-zA-Z0-9\u4e00-\u9fa5]', '', subj)
432
+ obj = re.sub(r'[^a-zA-Z0-9\u4e00-\u9fa5]', '', obj)
433
+ rel = re.sub(r'[^a-zA-Z0-9\u4e00-\u9fa5]', '', rel)
434
+
412
435
  self.ensure_tag_exists(subj)
413
436
  self.ensure_tag_exists(obj)
414
437
  self.ensure_edge_type_exists(rel)
camel/types/enums.py CHANGED
@@ -154,9 +154,15 @@ class ModelType(UnifiedModelType, Enum):
154
154
  return self.value
155
155
  return "gpt-4o-mini"
156
156
 
157
+ @property
158
+ def support_native_structured_output(self) -> bool:
159
+ return self.is_openai
160
+
157
161
  @property
158
162
  def support_native_tool_calling(self) -> bool:
159
- return any([self.is_openai, self.is_gemini, self.is_mistral])
163
+ return any(
164
+ [self.is_openai, self.is_gemini, self.is_mistral, self.is_qwen]
165
+ )
160
166
 
161
167
  @property
162
168
  def is_openai(self) -> bool:
@@ -113,6 +113,11 @@ class UnifiedModelType(str):
113
113
  r"""Returns whether the model is a Qwen model."""
114
114
  return True
115
115
 
116
+ @property
117
+ def support_native_structured_output(self) -> bool:
118
+ r"""Returns whether the model supports native structured output."""
119
+ return False
120
+
116
121
  @property
117
122
  def support_native_tool_calling(self) -> bool:
118
123
  r"""Returns whether the model supports native tool calling."""
camel/utils/__init__.py CHANGED
@@ -21,6 +21,7 @@ from .commons import (
21
21
  dependencies_required,
22
22
  download_tasks,
23
23
  func_string_to_callable,
24
+ generate_prompt_for_structured_output,
24
25
  get_first_int,
25
26
  get_prompt_template_key_words,
26
27
  get_pydantic_major_version,
@@ -78,4 +79,5 @@ __all__ = [
78
79
  "track_agent",
79
80
  "handle_http_error",
80
81
  "get_pydantic_model",
82
+ "generate_prompt_for_structured_output",
81
83
  ]