camel-ai 0.2.13__py3-none-any.whl → 0.2.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of camel-ai might be problematic. Click here for more details.

Files changed (72) hide show
  1. camel/__init__.py +1 -1
  2. camel/agents/chat_agent.py +362 -237
  3. camel/benchmarks/__init__.py +11 -1
  4. camel/benchmarks/apibank.py +560 -0
  5. camel/benchmarks/apibench.py +496 -0
  6. camel/benchmarks/gaia.py +2 -2
  7. camel/benchmarks/nexus.py +518 -0
  8. camel/datagen/__init__.py +21 -0
  9. camel/datagen/cotdatagen.py +448 -0
  10. camel/datagen/self_instruct/__init__.py +36 -0
  11. camel/datagen/self_instruct/filter/__init__.py +34 -0
  12. camel/datagen/self_instruct/filter/filter_function.py +208 -0
  13. camel/datagen/self_instruct/filter/filter_registry.py +56 -0
  14. camel/datagen/self_instruct/filter/instruction_filter.py +76 -0
  15. camel/datagen/self_instruct/self_instruct.py +393 -0
  16. camel/datagen/self_instruct/templates.py +384 -0
  17. camel/datahubs/huggingface.py +12 -2
  18. camel/datahubs/models.py +4 -2
  19. camel/embeddings/mistral_embedding.py +5 -1
  20. camel/embeddings/openai_compatible_embedding.py +6 -1
  21. camel/embeddings/openai_embedding.py +5 -1
  22. camel/interpreters/e2b_interpreter.py +5 -1
  23. camel/loaders/apify_reader.py +5 -1
  24. camel/loaders/chunkr_reader.py +5 -1
  25. camel/loaders/firecrawl_reader.py +0 -30
  26. camel/logger.py +11 -5
  27. camel/messages/conversion/sharegpt/hermes/hermes_function_formatter.py +4 -1
  28. camel/models/anthropic_model.py +5 -1
  29. camel/models/azure_openai_model.py +1 -2
  30. camel/models/cohere_model.py +5 -1
  31. camel/models/deepseek_model.py +5 -1
  32. camel/models/gemini_model.py +5 -1
  33. camel/models/groq_model.py +5 -1
  34. camel/models/mistral_model.py +5 -1
  35. camel/models/nemotron_model.py +5 -1
  36. camel/models/nvidia_model.py +5 -1
  37. camel/models/openai_model.py +28 -12
  38. camel/models/qwen_model.py +5 -1
  39. camel/models/reka_model.py +5 -1
  40. camel/models/reward/nemotron_model.py +5 -1
  41. camel/models/samba_model.py +5 -1
  42. camel/models/togetherai_model.py +5 -1
  43. camel/models/yi_model.py +5 -1
  44. camel/models/zhipuai_model.py +5 -1
  45. camel/retrievers/auto_retriever.py +8 -0
  46. camel/retrievers/vector_retriever.py +6 -3
  47. camel/schemas/__init__.py +2 -1
  48. camel/schemas/base.py +2 -4
  49. camel/schemas/openai_converter.py +5 -1
  50. camel/schemas/outlines_converter.py +249 -0
  51. camel/societies/role_playing.py +4 -4
  52. camel/societies/workforce/workforce.py +2 -2
  53. camel/storages/graph_storages/nebula_graph.py +119 -27
  54. camel/storages/graph_storages/neo4j_graph.py +138 -0
  55. camel/toolkits/__init__.py +2 -0
  56. camel/toolkits/arxiv_toolkit.py +20 -3
  57. camel/toolkits/function_tool.py +61 -61
  58. camel/toolkits/meshy_toolkit.py +5 -1
  59. camel/toolkits/notion_toolkit.py +1 -1
  60. camel/toolkits/openbb_toolkit.py +869 -0
  61. camel/toolkits/search_toolkit.py +91 -5
  62. camel/toolkits/stripe_toolkit.py +5 -1
  63. camel/toolkits/twitter_toolkit.py +24 -16
  64. camel/types/enums.py +10 -1
  65. camel/types/unified_model_type.py +5 -0
  66. camel/utils/__init__.py +4 -0
  67. camel/utils/commons.py +146 -42
  68. camel/utils/token_counting.py +1 -0
  69. {camel_ai-0.2.13.dist-info → camel_ai-0.2.15.dist-info}/METADATA +18 -7
  70. {camel_ai-0.2.13.dist-info → camel_ai-0.2.15.dist-info}/RECORD +72 -58
  71. {camel_ai-0.2.13.dist-info → camel_ai-0.2.15.dist-info}/LICENSE +0 -0
  72. {camel_ai-0.2.13.dist-info → camel_ai-0.2.15.dist-info}/WHEEL +0 -0
@@ -0,0 +1,448 @@
1
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
14
+
15
+ import json
16
+ from datetime import datetime
17
+ from typing import Annotated, Dict, Optional, Union
18
+
19
+ from pydantic import BaseModel, Field, confloat
20
+
21
+ from camel.agents import ChatAgent
22
+ from camel.logger import get_logger
23
+
24
+ # Get a logger for this module
25
+ logger = get_logger('CoTDataGenerator')
26
+
27
+
28
+ class AgentResponse(BaseModel):
29
+ r"""Model for structured agent responses.
30
+
31
+ A Pydantic model class that represents structured responses from agents,
32
+ including a similarity score that measures the quality of the response.
33
+
34
+ Args:
35
+ score (float): A similarity score between 0 and 1 that compares the
36
+ current answer to the correct answer. Must be within the range
37
+ [0, 1].
38
+ """
39
+
40
+ score: Annotated[float, confloat(ge=0, le=1)] = Field(
41
+ ...,
42
+ description="""Similarity score between 0 and 1
43
+ comparing current answer to correct answer""",
44
+ )
45
+
46
+
47
+ class VerificationResponse(BaseModel):
48
+ r"""Model for structured verification responses.
49
+
50
+ A Pydantic model class that represents verification results from agents,
51
+ indicating whether an answer is correct or not.
52
+
53
+ Args:
54
+ is_correct (bool): Boolean indicating if the answer is correct.
55
+ """
56
+
57
+ is_correct: bool = Field(
58
+ ...,
59
+ description="Boolean indicating if the answer is correct",
60
+ )
61
+
62
+
63
+ class CoTDataGenerator:
64
+ r"""Class for generating and managing data through chat agent interactions.
65
+
66
+ This module implements a sophisticated Chain of Thought data generation
67
+ system that combines several key algorithms to produce high-quality
68
+ reasoning paths. Methods implemented:
69
+
70
+ 1. Monte Carlo Tree Search (MCTS)
71
+ 2. Binary Search Error Detection
72
+ 3. Dual-Agent Verification System
73
+ 4. Solution Tree Management
74
+
75
+ Args:
76
+ chat_agent (Optional[ChatAgent]): Optional single agent
77
+ for both tasks (legacy mode). (default::obj:`None`)
78
+ generator_agent (Optional[ChatAgent]): Optional specialized agent for
79
+ answer generation. (default::obj:`None`)
80
+ verifier_agent (Optional[ChatAgent]): Optional specialized agent for
81
+ answer verification. (default::obj:`None`)
82
+ golden_answers (Dict[str, str]): Dictionary containing pre-defined
83
+ correct answers for validation and comparison. Required for answer
84
+ verification.
85
+ search_limit (int): Maximum number of search iterations allowed.
86
+ (default::obj:`100`)
87
+ """
88
+
89
+ def __init__(
90
+ self,
91
+ chat_agent: Optional[ChatAgent] = None,
92
+ *,
93
+ generator_agent: Optional[ChatAgent] = None,
94
+ verifier_agent: Optional[ChatAgent] = None,
95
+ golden_answers: Dict[str, str],
96
+ search_limit: int = 100,
97
+ ):
98
+ r"""Initialize the CoTDataGenerator.
99
+
100
+ This constructor supports both single-agent and dual-agent modes:
101
+ 1. Single-agent mode (legacy): Pass a single chat_agent that will be
102
+ used for both generation and verification.
103
+ 2. Dual-agent mode: Pass separate generator_agent and verifier_agent
104
+ for specialized tasks.
105
+
106
+ Args:
107
+ chat_agent (Optional[ChatAgent]): Optional single agent for both
108
+ tasks (legacy mode). (default::obj:`None`)
109
+ generator_agent (Optional[ChatAgent]): Optional specialized agent
110
+ for answer generation. (default::obj:`None`)
111
+ verifier_agent (Optional[ChatAgent]): Optional specialized agent
112
+ for answer verification. (default::obj:`None`)
113
+ golden_answers (Dict[str, str]): Dictionary containing pre-defined
114
+ correct answers for validation and comparison. Required for
115
+ answer verification.
116
+ search_limit (int): Maximum number of search iterations allowed.
117
+ (default::obj:`100`)
118
+ """
119
+ if chat_agent is not None:
120
+ if generator_agent is not None or verifier_agent is not None:
121
+ raise ValueError(
122
+ "Cannot specify both chat_agent \
123
+ and generator/verifier agents"
124
+ )
125
+ self.generator_agent = chat_agent
126
+ self.verifier_agent = chat_agent
127
+ else:
128
+ if generator_agent is None or verifier_agent is None:
129
+ raise ValueError(
130
+ "Must specify either chat_agent or both generator and "
131
+ "verifier agents"
132
+ )
133
+ self.generator_agent = generator_agent
134
+ self.verifier_agent = verifier_agent
135
+
136
+ self.golden_answers = golden_answers
137
+ self.search_limit = search_limit
138
+ self.solution_tree: Dict[str, Dict[str, Union[str, int]]] = {}
139
+ logger.info(
140
+ "CoTDataGenerator initialized with search_limit=%d", search_limit
141
+ )
142
+
143
+ def get_answer(self, question: str, context: str = "") -> str:
144
+ r"""Get an answer from the chat agent for a given question.
145
+
146
+ Args:
147
+ question (str): The question to ask.
148
+ context (str): Additional context for the question.
149
+ (default::obj:`""`)
150
+
151
+ Returns:
152
+ str: The generated answer.
153
+ """
154
+ prompt = f"""
155
+ Please think step by step and solve this problem: {question}
156
+ Existing content: {context}
157
+ Requirements:
158
+ 1. Analyze the problem requirements
159
+ 2. List the steps to solve the problem
160
+ 3. Execute the solution process
161
+ 4. Provide the final answer
162
+ Please explain the thought process of each step in detail.
163
+ """
164
+ self.generator_agent.reset()
165
+ response = self.generator_agent.step(prompt)
166
+ answer = response.msgs[0].content
167
+ logger.info("AI thought process:\n%s", answer)
168
+ return answer
169
+
170
+ def verify_answer(self, question: str, answer: str) -> bool:
171
+ r"""Verify if a generated answer is semantically equivalent to
172
+ the golden answer for a given question.
173
+
174
+ Args:
175
+ question (str): The question being answered.
176
+ answer (str): The answer to verify.
177
+
178
+ Returns:
179
+ bool: True if the answer matches the golden answer based on
180
+ semantic equivalence (meaning the core content and meaning are
181
+ the same, even if the exact wording differs).
182
+ False in the following cases:
183
+ - If the provided question doesn't exist in the golden answers
184
+ - If the answer's meaning differs from the golden answer
185
+ """
186
+ golden_answer = self.golden_answers.get(question)
187
+ if not golden_answer:
188
+ raise ValueError(
189
+ f"No golden answer found for question: {question}"
190
+ )
191
+
192
+ prompt = (
193
+ f"Question: {question}\n"
194
+ f"Student Answer: {answer}\n"
195
+ f"Correct Answer: {golden_answer}\n"
196
+ "Is the student's answer correct? Please respond with 'true' or "
197
+ "'false' only."
198
+ )
199
+ self.verifier_agent.reset()
200
+ response = self.verifier_agent.step(
201
+ prompt, response_format=VerificationResponse
202
+ )
203
+ is_correct = response.msgs[0].parsed.is_correct # type:ignore [union-attr]
204
+ logger.info("Answer verification result: %s", is_correct)
205
+ return is_correct
206
+
207
+ def monte_carlo_tree_search(
208
+ self, question: str, partial_solution: str = ""
209
+ ) -> float:
210
+ r"""Perform Monte Carlo Tree Search to find the best solution.
211
+
212
+ Process:
213
+ a. Selection: Choose promising partial solutions based on previous
214
+ scores
215
+ b. Expansion: Generate new solution steps using the generator agent
216
+ c. Simulation: Evaluate solution quality using similarity scores
217
+ d. Backpropagation: Update solution tree with new findings
218
+
219
+ Args:
220
+ question (str): The question to solve.
221
+ partial_solution (str): The current partial solution.
222
+ (default::obj:`""`)
223
+
224
+ Returns:
225
+ float: The similarity score between the current
226
+ solution and golden answer.
227
+ """
228
+ if question not in self.golden_answers:
229
+ raise ValueError(
230
+ f"No golden answer found for question: {question}"
231
+ )
232
+
233
+ golden_answer = self.golden_answers[question]
234
+
235
+ prompt = (
236
+ f"Please evaluate this solution and "
237
+ f"give a score between 0-1:\n"
238
+ f"Question: {question}\n"
239
+ f"Solution: {partial_solution}\n"
240
+ f"Correct answer: {golden_answer}\n"
241
+ f"Return a JSON object with a single field 'score' containing "
242
+ f"a float between 0 and 1, like this: {{'score': 0.85}}\n"
243
+ )
244
+ self.generator_agent.reset()
245
+ response = self.generator_agent.step(
246
+ prompt, response_format=AgentResponse
247
+ )
248
+ agent_response = response.msgs[0].parsed.score # type: ignore [union-attr]
249
+
250
+ return agent_response
251
+
252
+ def binary_search_error(self, question: str, solution: str) -> int:
253
+ r"""Use binary search to locate the first error in the solution.
254
+ This method splits the solution into sentences using both English and
255
+ Chinese sentence delimiters and performs binary search to find the
256
+ first error.
257
+
258
+ Args:
259
+ question (str): The question being solved.
260
+ solution (str): The complete solution to analyze.
261
+
262
+ Returns:
263
+ int: The position of the first error found in the solution.
264
+ Returns -1. If no errors are found (all sentences are correct).
265
+ """
266
+ logger.info("Starting binary search for error location")
267
+ # Split by both English period and Chinese period
268
+ sentences = [
269
+ s.strip()
270
+ for s in solution.replace('。', '.').split('.')
271
+ if s.strip()
272
+ ]
273
+
274
+ # First check if the entire solution is correct
275
+ if self.verify_answer(question, solution):
276
+ return -1
277
+
278
+ left, right = 0, len(sentences)
279
+ while left < right:
280
+ mid = (left + right) // 2
281
+ partial_solution = '. '.join(sentences[:mid]) + '.'
282
+ logger.info("Checking solution fragment:\n%s", partial_solution)
283
+ # Verify if the current part is correct
284
+ is_correct = self.verify_answer(question, partial_solution)
285
+ if is_correct:
286
+ left = mid + 1
287
+ else:
288
+ right = mid
289
+ logger.info("First error position found: sentence %d", left)
290
+ return left
291
+
292
+ def solve(self, question: str) -> str:
293
+ r"""Solve a question using a multi-step approach.
294
+
295
+ The solution process follows these steps:
296
+ 1. Try to solve directly - if correct, return the solution
297
+ 2. If not correct, use Monte Carlo Tree Search to find a good solution
298
+ 3. If the solution isn't perfect, use binary search to locate errors
299
+ 4. Generate a new solution based on the correct part
300
+
301
+ Args:
302
+ question (str): The question to solve.
303
+
304
+ Returns:
305
+ str: The best solution found.
306
+ """
307
+ # 1. Try direct solution first
308
+ solution = self.get_answer(question)
309
+ if self.verify_answer(question, solution):
310
+ logger.info("Initial solution is correct")
311
+ return solution
312
+
313
+ # 2. If direct solution fails, try Monte Carlo Tree Search
314
+ # to find a solution with high similarity score
315
+ best_solution = ""
316
+ best_score: float = 0.0
317
+ for i in range(self.search_limit):
318
+ # Generate new answer
319
+ current_solution = self.get_answer(question, best_solution)
320
+
321
+ # Evaluate solution similarity score
322
+ prompt = (
323
+ f"Please evaluate this solution and "
324
+ f"give a score between 0-1:\n"
325
+ f"Question: {question}\n"
326
+ f"Solution: {current_solution}\n"
327
+ f"Correct answer: {self.golden_answers.get(question, '')}\n"
328
+ f"Return a JSON object with a single field 'score' containing "
329
+ f"a float between 0 and 1, like this: {{'score': 0.85}}\n"
330
+ )
331
+ self.generator_agent.reset()
332
+ response = self.generator_agent.step(prompt)
333
+ try:
334
+ response = self.generator_agent.step(
335
+ prompt, response_format=AgentResponse
336
+ )
337
+ agent_response = response.msgs[0].parsed.score # type: ignore [union-attr]
338
+ score = agent_response
339
+
340
+ # Exit early if we find a very good solution (score > 0.9)
341
+ if score > 0.9:
342
+ logger.info(
343
+ "Found excellent solution with score %.2f. "
344
+ "Stopping search early.",
345
+ score,
346
+ )
347
+ return current_solution
348
+
349
+ if score > best_score:
350
+ best_score = score
351
+ best_solution = current_solution
352
+
353
+ logger.info(
354
+ "Current search progress: %d/%d, best score: %.2f",
355
+ i + 1,
356
+ self.search_limit,
357
+ best_score,
358
+ )
359
+ except Exception as e:
360
+ logger.error("Error parsing agent response: %s", str(e))
361
+ continue
362
+
363
+ # 3. If the answer is not completely correct,
364
+ # use binary search to locate the error
365
+ error_pos = self.binary_search_error(question, best_solution)
366
+
367
+ # If no errors found (error_pos == -1), return the current solution
368
+ if error_pos == -1:
369
+ logger.info("No specific errors found in the solution")
370
+ return best_solution
371
+
372
+ # 4. Generate new solution based on correct part
373
+ correct_part = '. '.join(best_solution.split('. ')[:error_pos]) + '.'
374
+ final_solution = self.get_answer(question, correct_part)
375
+ self.solution_tree[question] = {
376
+ "solution": final_solution,
377
+ "error_position": error_pos,
378
+ }
379
+ return final_solution
380
+
381
+ def import_qa_from_json(self, data: Union[str, Dict[str, str]]) -> bool:
382
+ r"""Import question and answer data from either a JSON file or a
383
+ dictionary.
384
+
385
+ Args:
386
+ data (Union[str, Dict[str, str]]): Either a path to a JSON file
387
+ containing QA pairs or a dictionary of question-answer pairs.
388
+ If a string is provided, it's treated as a file path.
389
+ The expected format is:
390
+ {"question1": "answer1",
391
+ "question2": "answer2",
392
+ ...}
393
+
394
+ Returns:
395
+ bool: True if import was successful, False otherwise.
396
+ """
397
+ try:
398
+ if isinstance(data, str):
399
+ logger.info("Loading QA pairs from file: %s", data)
400
+ with open(data, 'r', encoding='utf-8') as f:
401
+ qa_data = json.load(f)
402
+ else:
403
+ logger.info("Loading QA pairs from provided dictionary")
404
+ qa_data = data
405
+
406
+ # Validate the data format
407
+ if not isinstance(qa_data, dict):
408
+ logger.error("Invalid data format: expected dictionary")
409
+ return False
410
+
411
+ # Update golden answers
412
+ self.golden_answers.update(qa_data)
413
+ logger.info("Successfully imported %d QA pairs", len(qa_data))
414
+ return True
415
+
416
+ except Exception as e:
417
+ logger.error("Error importing QA data: %s", str(e))
418
+ return False
419
+
420
+ def export_solutions(self, filepath: str = 'solutions.json') -> None:
421
+ r"""Export the solution process and results to a JSON file.
422
+ Exports the solution tree, golden answers,
423
+ and export timestamp to a JSON file.
424
+ The exported data includes:
425
+ - solutions: The solution tree
426
+ with intermediate steps
427
+ - golden_answers: The reference answers used for verification
428
+ - export_time: ISO format timestamp of the export
429
+
430
+ Args:
431
+ filepath (str, optional): Path where the JSON file will be saved.
432
+ (default::obj:`'solutions.json'`)
433
+
434
+ Returns:
435
+ None: The method writes to a file and logs the result but does not
436
+ return any value.
437
+ """
438
+ export_data = {
439
+ "solutions": self.solution_tree,
440
+ "golden_answers": self.golden_answers,
441
+ "export_time": datetime.now().isoformat(),
442
+ }
443
+ try:
444
+ with open(filepath, 'w', encoding='utf-8') as f:
445
+ json.dump(export_data, f, ensure_ascii=False, indent=2)
446
+ logger.info(f"Solutions exported successfully to {filepath}")
447
+ except Exception as e:
448
+ logger.error(f"Error exporting solutions: {e!s}")
@@ -0,0 +1,36 @@
1
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
14
+ from .filter import (
15
+ FILTER_REGISTRY,
16
+ FilterFunction,
17
+ InstructionFilter,
18
+ KeywordFilter,
19
+ LengthFilter,
20
+ NonEnglishFilter,
21
+ PunctuationFilter,
22
+ RougeSimilarityFilter,
23
+ )
24
+ from .self_instruct import SelfInstructPipeline
25
+
26
+ __all__ = [
27
+ 'SelfInstructPipeline',
28
+ 'InstructionFilter',
29
+ 'NonEnglishFilter',
30
+ 'PunctuationFilter',
31
+ 'RougeSimilarityFilter',
32
+ 'FilterFunction',
33
+ 'KeywordFilter',
34
+ 'LengthFilter',
35
+ 'FILTER_REGISTRY',
36
+ ]
@@ -0,0 +1,34 @@
1
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
14
+ from .filter_function import (
15
+ FilterFunction,
16
+ KeywordFilter,
17
+ LengthFilter,
18
+ NonEnglishFilter,
19
+ PunctuationFilter,
20
+ RougeSimilarityFilter,
21
+ )
22
+ from .filter_registry import FILTER_REGISTRY
23
+ from .instruction_filter import InstructionFilter
24
+
25
+ __all__ = [
26
+ "LengthFilter",
27
+ "NonEnglishFilter",
28
+ "PunctuationFilter",
29
+ "RougeSimilarityFilter",
30
+ "FilterFunction",
31
+ "KeywordFilter",
32
+ "InstructionFilter",
33
+ "FILTER_REGISTRY",
34
+ ]