camel-ai 0.2.11__py3-none-any.whl → 0.2.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of camel-ai might be problematic. Click here for more details.

Files changed (55) hide show
  1. camel/__init__.py +1 -1
  2. camel/agents/chat_agent.py +13 -1
  3. camel/benchmarks/__init__.py +18 -0
  4. camel/benchmarks/base.py +152 -0
  5. camel/benchmarks/gaia.py +478 -0
  6. camel/configs/__init__.py +3 -0
  7. camel/configs/ollama_config.py +4 -2
  8. camel/configs/sglang_config.py +71 -0
  9. camel/data_collector/__init__.py +19 -0
  10. camel/data_collector/alpaca_collector.py +127 -0
  11. camel/data_collector/base.py +211 -0
  12. camel/data_collector/sharegpt_collector.py +205 -0
  13. camel/datahubs/__init__.py +23 -0
  14. camel/datahubs/base.py +136 -0
  15. camel/datahubs/huggingface.py +433 -0
  16. camel/datahubs/models.py +22 -0
  17. camel/interpreters/__init__.py +2 -0
  18. camel/interpreters/e2b_interpreter.py +136 -0
  19. camel/loaders/__init__.py +3 -1
  20. camel/loaders/base_io.py +41 -41
  21. camel/messages/__init__.py +2 -0
  22. camel/models/__init__.py +2 -0
  23. camel/models/anthropic_model.py +14 -4
  24. camel/models/base_model.py +28 -0
  25. camel/models/groq_model.py +1 -1
  26. camel/models/model_factory.py +3 -0
  27. camel/models/ollama_model.py +12 -0
  28. camel/models/openai_model.py +0 -26
  29. camel/models/reward/__init__.py +22 -0
  30. camel/models/reward/base_reward_model.py +58 -0
  31. camel/models/reward/evaluator.py +63 -0
  32. camel/models/reward/nemotron_model.py +112 -0
  33. camel/models/sglang_model.py +225 -0
  34. camel/models/vllm_model.py +1 -1
  35. camel/personas/persona_hub.py +2 -2
  36. camel/schemas/openai_converter.py +2 -2
  37. camel/societies/workforce/role_playing_worker.py +2 -2
  38. camel/societies/workforce/single_agent_worker.py +2 -2
  39. camel/societies/workforce/workforce.py +3 -3
  40. camel/storages/object_storages/amazon_s3.py +2 -2
  41. camel/storages/object_storages/azure_blob.py +2 -2
  42. camel/storages/object_storages/google_cloud.py +2 -2
  43. camel/toolkits/__init__.py +2 -0
  44. camel/toolkits/code_execution.py +5 -1
  45. camel/toolkits/function_tool.py +41 -0
  46. camel/toolkits/math_toolkit.py +47 -16
  47. camel/toolkits/search_toolkit.py +154 -2
  48. camel/toolkits/stripe_toolkit.py +273 -0
  49. camel/types/__init__.py +2 -0
  50. camel/types/enums.py +27 -2
  51. camel/utils/token_counting.py +22 -10
  52. {camel_ai-0.2.11.dist-info → camel_ai-0.2.12.dist-info}/METADATA +13 -6
  53. {camel_ai-0.2.11.dist-info → camel_ai-0.2.12.dist-info}/RECORD +55 -36
  54. {camel_ai-0.2.11.dist-info → camel_ai-0.2.12.dist-info}/LICENSE +0 -0
  55. {camel_ai-0.2.11.dist-info → camel_ai-0.2.12.dist-info}/WHEEL +0 -0
@@ -0,0 +1,478 @@
1
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
14
+
15
+ import json
16
+ import logging
17
+ import os
18
+ import random
19
+ import re
20
+ import string
21
+ import uuid
22
+ from pathlib import Path
23
+ from typing import Any, Dict, List, Literal, Optional, Protocol, Union
24
+
25
+ from tqdm import tqdm
26
+
27
+ from camel.agents import ChatAgent
28
+ from camel.benchmarks import BaseBenchmark
29
+ from camel.messages.base import BaseMessage
30
+ from camel.retrievers.auto_retriever import AutoRetriever
31
+
32
+ logger = logging.getLogger(__name__)
33
+
34
+
35
+ class RetrieverProtocol(Protocol):
36
+ r"""Protocol for the retriever class. Any retriever class implementing
37
+ this protocol can be used in the benchmark class.
38
+ """
39
+
40
+ def retrieve(
41
+ self, query: str, contents: List[str], **kwargs: Dict[str, Any]
42
+ ) -> Dict[str, Any]:
43
+ r"""Retrieve the relevant content for the query.
44
+
45
+ Args:
46
+ query (str): The query to retrieve the content for.
47
+ contents (List[str]): The list of contents to search in.
48
+ **kwargs (Dict[str, Any]): Additional keyword arguments.
49
+
50
+ Returns:
51
+ Dict[str, Any]: The relevant content for the query.
52
+ """
53
+ ...
54
+
55
+ def reset(self, **kwargs) -> bool:
56
+ r"""Reset the retriever.
57
+ Some benchmarks may require resetting the retriever
58
+ after each query.
59
+
60
+ Args:
61
+ **kwargs: Additional keyword arguments.
62
+
63
+ Returns:
64
+ bool: True if the reset was successful, False otherwise.
65
+ """
66
+ ...
67
+
68
+
69
+ class DefaultGAIARetriever(AutoRetriever):
70
+ r"""Default retriever for the GAIA benchmark.
71
+ This retriever uses AutoRetriever in camel to retrieve the content based on
72
+ the query.
73
+ """
74
+
75
+ def retrieve(
76
+ self, query: str, contents: List[str], **kwargs: Any
77
+ ) -> Dict[str, Any]:
78
+ r"""Retrieve the content based on the query.
79
+
80
+ Args:
81
+ query (str): The query to search for.
82
+ contents (List[str]): The list of contents to search from.
83
+ **kwargs (Any): The keyword arguments to pass to the
84
+ retriever.
85
+
86
+ Returns:
87
+ Dict[str, Any]: The retrieved content.
88
+ """
89
+ return self.run_vector_retriever(query, contents, **kwargs) # type: ignore[arg-type]
90
+
91
+ def reset(self, **kwargs: Any) -> bool:
92
+ r"""Reset the retriever.
93
+
94
+ Args:
95
+ **kwargs (Any): The keyword arguments to pass to the
96
+ retriever.
97
+
98
+ Returns:
99
+ bool: Whether the reset was successful.
100
+ """
101
+ path = Path(self.vector_storage_local_path or os.getcwd())
102
+ task_id = str(kwargs.get("task_id", uuid.uuid4()))
103
+ retriever_dir = path / task_id
104
+ if not retriever_dir.exists():
105
+ try:
106
+ retriever_dir.mkdir(parents=True)
107
+ except Exception as e:
108
+ logger.error(
109
+ "Error in creating directory: " + f"{retriever_dir}: {e!s}"
110
+ )
111
+ return False
112
+ self.vector_storage_local_path = str(retriever_dir)
113
+ return True
114
+
115
+
116
+ class GAIABenchmark(BaseBenchmark):
117
+ r"""GAIA Benchmark adapted from `"GAIA: a benchmark for General AI
118
+ Assistants"
119
+ <https://huggingface.co/datasets/gaia-benchmark/GAIA>`_.
120
+
121
+ Args:
122
+ data_dir (str): The directory to save the data.
123
+ save_to (str): The file to save the results.
124
+ retriever (Optional[RetrieverProtocol]): The retriever to use.
125
+ (default: :obj:`None`)
126
+ processes (int, optional): The number of processes to use.
127
+ (default: :obj:`1`)
128
+ """
129
+
130
+ def __init__(
131
+ self,
132
+ data_dir: str,
133
+ save_to: str,
134
+ retriever: Optional[RetrieverProtocol] = None,
135
+ processes: int = 1,
136
+ ):
137
+ r"""Initialize the GAIA benchmark.
138
+
139
+ Args:
140
+ data_dir (str): The directory to save the data.
141
+ save_to (str): The file to save the results.
142
+ retriever (Optional[RetrieverProtocol], optional): The retriever to
143
+ use. (default: :obj:`None`)
144
+ processes (int, optional): The number of processes to use for
145
+ parallel processing. (default: :obj:`1`)
146
+ """
147
+ super().__init__("gaia", data_dir, save_to, processes)
148
+ self.retriever = retriever or DefaultGAIARetriever()
149
+
150
+ def download(self):
151
+ r"""Download the GAIA dataset."""
152
+ from huggingface_hub import snapshot_download
153
+
154
+ snapshot_download(
155
+ repo_id="gaia-benchmark/GAIA",
156
+ repo_type="dataset",
157
+ local_dir=self.data_dir,
158
+ local_dir_use_symlinks=True,
159
+ )
160
+
161
+ def load(self, force_download=False):
162
+ r"""Load the GAIA dataset.
163
+
164
+ Args:
165
+ force_download (bool, optional): Whether to
166
+ force download the data.
167
+ """
168
+ if force_download:
169
+ logger.info("Force downloading data.")
170
+ self.download()
171
+
172
+ # Define validation and test directories
173
+ valid_dir = self.data_dir / "2023/validation"
174
+ test_dir = self.data_dir / "2023/test"
175
+
176
+ # Check if directories exist; if not, download the data
177
+ if not valid_dir.is_dir() or not test_dir.is_dir():
178
+ logger.info("Data not found. Downloading data.")
179
+ self.download()
180
+
181
+ # Load metadata for both validation and test datasets
182
+ for path, label in zip([valid_dir, test_dir], ["valid", "test"]):
183
+ self._data[label] = []
184
+ with open(path / "metadata.jsonl", "r") as f:
185
+ lines = f.readlines()
186
+ for line in lines:
187
+ data = json.loads(line)
188
+ if data["task_id"] == "0-0-0-0-0":
189
+ continue
190
+ if data["file_name"]:
191
+ data["file_name"] = path / data["file_name"]
192
+ self._data[label].append(data)
193
+ return self
194
+
195
+ @property
196
+ def train(self):
197
+ r"""Get the training set."""
198
+ raise NotImplementedError("GAIA does not have a training set.")
199
+
200
+ def run( # type: ignore[override]
201
+ self,
202
+ agent: ChatAgent,
203
+ on: Literal["train", "valid", "test"],
204
+ level: Union[int, List[int], Literal["all"]],
205
+ randomize: bool = False,
206
+ subset: Optional[int] = None,
207
+ ) -> Dict[str, Any]:
208
+ r"""Run the benchmark.
209
+
210
+ Args:
211
+ agent (ChatAgent): The agent to run the benchmark.
212
+ on (Literal["valid", "test"]): The set to run the benchmark.
213
+ level (Union[int, List[int], Literal["all"]]): The level to run
214
+ the benchmark.
215
+ randomize (bool, optional): Whether to randomize the data.
216
+ (default: :obj:`False`)
217
+ subset (Optional[int], optional): The subset of data to run.
218
+ (default: :obj:`None`)
219
+
220
+ Returns:
221
+ Dict[str, Any]: The results of the benchmark.
222
+ """
223
+ # Validate inputs
224
+ if on not in ["valid", "test"]:
225
+ raise ValueError(
226
+ f"Invalid value for `on`: {on}, expected 'valid' or 'test'."
227
+ )
228
+
229
+ levels = (
230
+ [1, 2, 3]
231
+ if level == "all"
232
+ else [level]
233
+ if isinstance(level, int)
234
+ else level
235
+ )
236
+ if not all(
237
+ isinstance(level, int) and level in [1, 2, 3] for level in levels
238
+ ):
239
+ raise ValueError(
240
+ f"Invalid value for `level`: {level}, expected 1, 2, 3 "
241
+ "or 'all'."
242
+ )
243
+
244
+ logger.info(f"Running benchmark on {on} set at levels {levels}.")
245
+ datas = [data for data in self._data[on] if data["Level"] in levels]
246
+
247
+ # Shuffle and subset data if necessary
248
+ if randomize:
249
+ random.shuffle(datas)
250
+ if subset:
251
+ datas = datas[:subset]
252
+
253
+ logger.info(f"Number of tasks: {len(datas)}")
254
+
255
+ # Initialize results storage
256
+ self._results = []
257
+
258
+ # Process tasks
259
+ with open(self.save_to, "w") as f:
260
+ for task in tqdm(datas, desc="Running"):
261
+ if not self._prepare_task(task):
262
+ continue
263
+
264
+ try:
265
+ result = agent.step(self._create_user_message(task))
266
+ self._process_result(agent, task, result, f)
267
+ except Exception as e:
268
+ self._handle_error(task, e, f)
269
+ finally:
270
+ agent.reset()
271
+
272
+ return self._generate_summary()
273
+
274
+ def _prepare_task(self, task: Dict[str, Any]) -> bool:
275
+ r"""Prepare the task by validating and enriching its data."""
276
+ if task["file_name"]:
277
+ file_path = Path(task["file_name"])
278
+ if not file_path.exists():
279
+ logger.info(
280
+ f"Skipping task because file not found: {file_path}"
281
+ )
282
+ return False
283
+ if file_path.suffix in ['.pdf', '.docx', '.doc', '.txt']:
284
+ if not self.retriever.reset(task_id=task["task_id"]):
285
+ return False
286
+ retrieved_info = self.retriever.retrieve(
287
+ query=task["Question"], contents=[task['file_name']]
288
+ )
289
+ retrieved_content = [
290
+ item["text"]
291
+ for item in retrieved_info.get("Retrieved Context", [])
292
+ ]
293
+ if retrieved_content:
294
+ task["Question"] += "\n" + "\n".join(retrieved_content)
295
+ else:
296
+ logger.info(
297
+ f"Skipping task due to unsupported file "
298
+ f"format: {file_path.suffix}"
299
+ )
300
+ return False
301
+ return True
302
+
303
+ def _create_user_message(self, task: Dict[str, Any]) -> BaseMessage:
304
+ r"""Create a user message from a task."""
305
+ return BaseMessage.make_user_message(
306
+ role_name="User",
307
+ content=task["Question"],
308
+ )
309
+
310
+ def _process_result(
311
+ self,
312
+ agent: ChatAgent,
313
+ task: Dict[str, Any],
314
+ result: Any,
315
+ file_obj: Any,
316
+ ) -> None:
317
+ r"""Process and store the result of a task."""
318
+ model_answer = self.get_final_answer(result.msgs[0].content)
319
+ final_answer = task["Final answer"]
320
+ score = self.question_scorer(model_answer, final_answer)
321
+ tool_calls = result.info.get("tool_calls", [])
322
+
323
+ result_data = {
324
+ "task_id": task["task_id"],
325
+ "question": task["Question"],
326
+ "level": task["Level"],
327
+ "model_answer": model_answer,
328
+ "ground_truth": final_answer,
329
+ "tool_calls": [tool.model_dump() for tool in tool_calls],
330
+ "error": None,
331
+ "score": int(score),
332
+ "history": agent.memory.get_context(),
333
+ }
334
+ self._results.append(result_data)
335
+ file_obj.write(json.dumps(result_data, indent=2) + "\n")
336
+ file_obj.flush()
337
+
338
+ def _handle_error(
339
+ self, task: Dict[str, Any], error: Exception, file_obj: Any
340
+ ) -> None:
341
+ r"""Handle errors encountered during task processing."""
342
+ logger.warning(f"Error processing task {task['task_id']}: {error}")
343
+ error_data = {
344
+ "task_id": task["task_id"],
345
+ "question": task["Question"],
346
+ "level": task["Level"],
347
+ "model_answer": "ERROR",
348
+ "ground_truth": task["Final answer"],
349
+ "tool_calls": [],
350
+ "error": str(error),
351
+ "score": 0,
352
+ }
353
+ self._results.append(error_data)
354
+ file_obj.write(json.dumps(error_data, indent=2) + "\n")
355
+ file_obj.flush()
356
+
357
+ def _generate_summary(self) -> Dict[str, Any]:
358
+ r"""Generate and return a summary of the benchmark results."""
359
+ return {
360
+ "total": len(self._results),
361
+ "correct": sum(result["score"] for result in self._results),
362
+ "results": self._results,
363
+ }
364
+
365
+ def question_scorer(self, model_answer: str, ground_truth: str) -> bool:
366
+ r"""Scorer for the GAIA benchmark.
367
+ https://huggingface.co/spaces/gaia-benchmark/leaderboard/blob/main/
368
+ scorer.py
369
+
370
+ Args:
371
+ model_answer (str): The model answer.
372
+ ground_truth (str): The ground truth answer.
373
+
374
+ Returns:
375
+ bool: The score of the model
376
+ """
377
+
378
+ def is_float(element: Any) -> bool:
379
+ try:
380
+ float(element)
381
+ return True
382
+ except ValueError:
383
+ return False
384
+
385
+ if is_float(ground_truth):
386
+ logger.info(f"Evaluating {model_answer} as a number.")
387
+ normalized_answer = self.normalize_number_str(model_answer)
388
+ return normalized_answer == float(ground_truth)
389
+
390
+ elif any(char in ground_truth for char in [",", ";"]):
391
+ logger.info(
392
+ f"Evaluating {model_answer} as a comma separated list."
393
+ )
394
+ gt_elems = self.split_string(ground_truth)
395
+ ma_elems = self.split_string(model_answer)
396
+
397
+ if len(gt_elems) != len(ma_elems):
398
+ logger.warning(
399
+ "Answer lists have different lengths, returning False.",
400
+ UserWarning,
401
+ )
402
+ return False
403
+
404
+ comparisons = []
405
+ for ma_elem, gt_elem in zip(ma_elems, gt_elems):
406
+ if is_float(gt_elem):
407
+ normalized_ma_elem = self.normalize_number_str(ma_elem)
408
+ comparisons.append(normalized_ma_elem == float(gt_elem))
409
+ else:
410
+ ma_elem = self.normalize_str(ma_elem, remove_punct=False)
411
+ gt_elem = self.normalize_str(gt_elem, remove_punct=False)
412
+ comparisons.append(ma_elem == gt_elem)
413
+ return all(comparisons)
414
+ else:
415
+ logger.info(f"Evaluating {model_answer} as a string.")
416
+ ma_elem = self.normalize_str(model_answer)
417
+ gt_elem = self.normalize_str(ground_truth)
418
+ return ma_elem == gt_elem
419
+
420
+ def normalize_number_str(self, number_str: str) -> float:
421
+ for char in ["$", "%", ","]:
422
+ number_str = number_str.replace(char, "")
423
+ try:
424
+ return float(number_str)
425
+ except ValueError:
426
+ logger.error(
427
+ f"String {number_str} cannot be normalized to number str."
428
+ )
429
+ return float("inf")
430
+
431
+ def split_string(
432
+ self, s: str, char_list: Optional[List[str]] = None
433
+ ) -> list[str]:
434
+ r"""Split a string based on a list of characters.
435
+
436
+ Args:
437
+ s (str): The string to split.
438
+ char_list (Optional[List[str]], optional): T
439
+ he list of characters to split on.
440
+ (default: :obj:`None`)
441
+ """
442
+ if char_list is None:
443
+ char_list = [",", ";"]
444
+ pattern = f"[{''.join(char_list)}]"
445
+ return re.split(pattern, s)
446
+
447
+ def normalize_str(self, input_str, remove_punct=True) -> str:
448
+ r"""Normalize a string.
449
+
450
+ Args:
451
+ input_str: The input string to normalize.
452
+ remove_punct: Whether to remove punctuation.
453
+
454
+ Returns:
455
+ str: The normalized string.
456
+ """
457
+ no_spaces = re.sub(r"\s", "", input_str)
458
+ if remove_punct:
459
+ translator = str.maketrans("", "", string.punctuation)
460
+ return no_spaces.lower().translate(translator)
461
+ else:
462
+ return no_spaces.lower()
463
+
464
+ def get_final_answer(self, content: str) -> str:
465
+ r"""Get the final answer from the content.
466
+
467
+ Args:
468
+ content (str): The content to extract the final answer from.
469
+
470
+ Returns:
471
+ str: The final answer.
472
+ """
473
+ final_answer_index = content.find("FINAL ANSWER")
474
+ if final_answer_index == -1:
475
+ return "FINAL ANSWER not found"
476
+ start_index = final_answer_index + len("FINAL ANSWER: ")
477
+ final_answer_content = content[start_index:].strip()
478
+ return final_answer_content
camel/configs/__init__.py CHANGED
@@ -30,6 +30,7 @@ from .samba_config import (
30
30
  SambaCloudAPIConfig,
31
31
  SambaVerseAPIConfig,
32
32
  )
33
+ from .sglang_config import SGLANG_API_PARAMS, SGLangConfig
33
34
  from .togetherai_config import TOGETHERAI_API_PARAMS, TogetherAIConfig
34
35
  from .vllm_config import VLLM_API_PARAMS, VLLMConfig
35
36
  from .yi_config import YI_API_PARAMS, YiConfig
@@ -55,6 +56,8 @@ __all__ = [
55
56
  'Gemini_API_PARAMS',
56
57
  'VLLMConfig',
57
58
  'VLLM_API_PARAMS',
59
+ 'SGLangConfig',
60
+ 'SGLANG_API_PARAMS',
58
61
  'MistralConfig',
59
62
  'MISTRAL_API_PARAMS',
60
63
  'RekaConfig',
@@ -13,7 +13,9 @@
13
13
  # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
14
14
  from __future__ import annotations
15
15
 
16
- from typing import Sequence, Union
16
+ from typing import Sequence, Type, Union
17
+
18
+ from pydantic import BaseModel
17
19
 
18
20
  from camel.configs.base_config import BaseConfig
19
21
  from camel.types import NOT_GIVEN, NotGiven
@@ -75,7 +77,7 @@ class OllamaConfig(BaseConfig):
75
77
  stop: Union[str, Sequence[str], NotGiven] = NOT_GIVEN
76
78
  max_tokens: Union[int, NotGiven] = NOT_GIVEN
77
79
  presence_penalty: float = 0.0
78
- response_format: Union[dict, NotGiven] = NOT_GIVEN
80
+ response_format: Union[Type[BaseModel], dict, NotGiven] = NOT_GIVEN
79
81
  frequency_penalty: float = 0.0
80
82
 
81
83
 
@@ -0,0 +1,71 @@
1
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
14
+ from __future__ import annotations
15
+
16
+ from typing import Sequence, Union
17
+
18
+ from camel.configs.base_config import BaseConfig
19
+ from camel.types import NOT_GIVEN, NotGiven
20
+
21
+
22
+ class SGLangConfig(BaseConfig):
23
+ r"""Defines the parameters for generating chat completions using the
24
+ OpenAI API.
25
+
26
+ Reference: https://sgl-project.github.io/references/sampling_params.html
27
+
28
+ Args:
29
+ stop (str or list, optional): Up to :obj:`4` sequences where the API
30
+ will stop generating further tokens. (default: :obj:`None`)
31
+ temperature (float, optional): Sampling temperature to use, between
32
+ :obj:`0` and :obj:`2`. Higher values make the output more random,
33
+ while lower values make it more focused and deterministic.
34
+ (default: :obj:`1.0`)
35
+ top_p (float, optional): An alternative to sampling with temperature,
36
+ called nucleus sampling, where the model considers the results of
37
+ the tokens with top_p probability mass. So :obj:`0.1` means only
38
+ the tokens comprising the top 10% probability mass are considered.
39
+ (default: :obj:`1.0`)
40
+ n (int, optional): How many chat completion choices to generate for
41
+ each input message. (default: :obj:`1`)
42
+ frequency_penalty (float, optional): Number between :obj:`-2.0` and
43
+ :obj:`2.0`. Positive values penalize new tokens based on their
44
+ existing frequency in the text so far, decreasing the model's
45
+ likelihood to repeat the same line verbatim. See more information
46
+ about frequency and presence penalties. (default: :obj:`0.0`)
47
+ presence_penalty (float, optional): Number between :obj:`-2.0` and
48
+ :obj:`2.0`. Positive values penalize new tokens based on whether
49
+ they appear in the text so far, increasing the model's likelihood
50
+ to talk about new topics. See more information about frequency and
51
+ presence penalties. (default: :obj:`0.0`)
52
+ stream (bool, optional): Whether to stream the generated output in
53
+ chunks. If set to `True`, the response will be streamed as it is
54
+ generated. (default: :obj:`False`)
55
+ max_tokens (int, optional): The maximum number of tokens to generate
56
+ in the chat completion. The total length of input tokens and
57
+ generated tokens is limited by the model's context length.
58
+ (default: :obj:`None`)
59
+ """
60
+
61
+ stop: Union[str, Sequence[str], NotGiven] = NOT_GIVEN
62
+ temperature: float = 1.0
63
+ top_p: float = 1.0
64
+ n: int = 1
65
+ frequency_penalty: float = 0.0
66
+ presence_penalty: float = 0.0
67
+ stream: bool = False
68
+ max_tokens: Union[int, NotGiven] = NOT_GIVEN
69
+
70
+
71
+ SGLANG_API_PARAMS = {param for param in SGLangConfig.model_fields.keys()}
@@ -0,0 +1,19 @@
1
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ #
6
+ # http://www.apache.org/licenses/LICENSE-2.0
7
+ #
8
+ # Unless required by applicable law or agreed to in writing, software
9
+ # distributed under the License is distributed on an "AS IS" BASIS,
10
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
+ # See the License for the specific language governing permissions and
12
+ # limitations under the License.
13
+ # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
14
+
15
+ from .alpaca_collector import AlpacaDataCollector
16
+ from .base import BaseDataCollector
17
+ from .sharegpt_collector import ShareGPTDataCollector
18
+
19
+ __all__ = ["BaseDataCollector", "AlpacaDataCollector", "ShareGPTDataCollector"]