calfkit 0.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
calfkit/__init__.py ADDED
@@ -0,0 +1,4 @@
1
+ from importlib.metadata import version
2
+
3
+ __version__ = version("calfkit")
4
+ __all__ = ["__version__"]
@@ -0,0 +1,3 @@
1
+ from calfkit.broker.broker import Broker
2
+
3
+ __all__ = ["Broker"]
@@ -0,0 +1,34 @@
1
+ import os
2
+ from collections.abc import Iterable
3
+ from typing import Any, Literal
4
+
5
+ from faststream import FastStream
6
+ from faststream.kafka import KafkaBroker
7
+
8
+ from calfkit.broker.deployable import Deployable
9
+ from calfkit.broker.middleware import ContextInjectionMiddleware
10
+
11
+
12
+ class Broker(KafkaBroker, Deployable):
13
+ """Lightweight client wrapper connecting to Calf brokers"""
14
+
15
+ mode = Literal["kafka_mode"]
16
+
17
+ def __init__(self, bootstrap_servers: str | Iterable[str] | None = None, **broker_kwargs: Any):
18
+ if not bootstrap_servers:
19
+ bootstrap_servers = os.getenv("CALF_HOST_URL")
20
+ super().__init__(
21
+ bootstrap_servers or "localhost",
22
+ middlewares=[ContextInjectionMiddleware],
23
+ **broker_kwargs,
24
+ )
25
+
26
+ @property
27
+ def app(self) -> FastStream:
28
+ return FastStream(self)
29
+
30
+ async def run_app(self) -> None:
31
+ await self.app.run()
32
+
33
+ def __getattr__(self, name: str) -> Any:
34
+ return getattr(self, name)
@@ -0,0 +1,6 @@
1
+ from abc import ABC, abstractmethod
2
+
3
+
4
+ class Deployable(ABC):
5
+ @abstractmethod
6
+ async def run_app(self) -> None: ...
@@ -0,0 +1,15 @@
1
+ from typing import Any
2
+
3
+ from faststream import BaseMiddleware
4
+ from faststream.message import StreamMessage
5
+ from faststream.types import AsyncFuncAny
6
+
7
+
8
+ class ContextInjectionMiddleware(BaseMiddleware):
9
+ async def consume_scope(
10
+ self,
11
+ call_next: AsyncFuncAny,
12
+ msg: StreamMessage[Any],
13
+ ) -> Any:
14
+ with self.context.scope("correlation_id", msg.correlation_id):
15
+ return await super().consume_scope(call_next, msg)
@@ -0,0 +1,51 @@
1
+ from asyncio import Future, wait_for
2
+ from uuid import uuid4
3
+
4
+ from faststream.kafka import KafkaBroker, KafkaMessage
5
+ from faststream.types import SendableMessage
6
+
7
+
8
+ class RPCWorker:
9
+ responses: dict[str, Future[bytes]]
10
+
11
+ def __init__(self, broker: KafkaBroker, reply_topic: str) -> None:
12
+ self.responses = {}
13
+ self.broker = broker
14
+ self.reply_topic = reply_topic
15
+
16
+ self.subscriber = broker.subscriber(reply_topic)
17
+ self.subscriber(self._handle_responses)
18
+
19
+ async def start(self) -> None:
20
+ await self.subscriber.start()
21
+
22
+ async def stop(self) -> None:
23
+ await self.subscriber.stop()
24
+
25
+ def _handle_responses(self, msg: KafkaMessage) -> None:
26
+ if future := self.responses.pop(msg.correlation_id, None):
27
+ future.set_result(msg.body)
28
+
29
+ async def request(
30
+ self,
31
+ data: SendableMessage,
32
+ topic: str,
33
+ timeout: float = 10.0,
34
+ ) -> bytes:
35
+ correlation_id = str(uuid4())
36
+ future = self.responses[correlation_id] = Future[bytes]()
37
+
38
+ await self.broker.publish(
39
+ data,
40
+ topic,
41
+ reply_to=self.reply_topic,
42
+ correlation_id=correlation_id,
43
+ )
44
+
45
+ try:
46
+ response: bytes = await wait_for(future, timeout=timeout)
47
+ except TimeoutError:
48
+ self.responses.pop(correlation_id, None)
49
+ raise
50
+ else:
51
+ return response
@@ -0,0 +1,9 @@
1
+ """Message utilities for calf SDK.
2
+
3
+ This module provides utilities for working with pydantic_ai ModelMessage types,
4
+ including message history manipulation and transformation.
5
+ """
6
+
7
+ from .util import patch_system_prompts, validate_tool_call_pairs
8
+
9
+ __all__ = ["patch_system_prompts", "validate_tool_call_pairs"]
@@ -0,0 +1,99 @@
1
+ """Message utility functions for calf SDK.
2
+
3
+ This module provides utilities for working with pydantic_ai ModelMessage types,
4
+ including message history manipulation and transformation.
5
+ """
6
+
7
+ from pydantic_ai.messages import (
8
+ ModelMessage,
9
+ ModelRequest,
10
+ ModelResponse,
11
+ RetryPromptPart,
12
+ SystemPromptPart,
13
+ ToolCallPart,
14
+ ToolReturnPart,
15
+ )
16
+
17
+
18
+ def patch_system_prompts(
19
+ base: list[ModelMessage],
20
+ incoming: list[ModelMessage],
21
+ ) -> list[ModelMessage]:
22
+ """Patch system prompts in message history.
23
+
24
+ If incoming messages contain system prompts, they replace any existing
25
+ system prompts in base. System prompts are consolidated and placed at
26
+ the front of the history.
27
+
28
+ If incoming has no system prompts, returns base unmodified.
29
+
30
+ Args:
31
+ base: The existing message history to patch.
32
+ incoming: The new messages that may contain replacement system prompts.
33
+
34
+ Returns:
35
+ A new message history with system prompts patched.
36
+
37
+ Examples:
38
+ >>> from pydantic_ai import ModelRequest, SystemPromptPart
39
+ >>> base = [ModelRequest(parts=[SystemPromptPart("old system")])]
40
+ >>> incoming = [ModelRequest(parts=[SystemPromptPart("new system")])]
41
+ >>> result = patch_system_prompts(base, incoming)
42
+ >>> len(result)
43
+ 1
44
+ >>> result[0].parts[0].content
45
+ 'new system'
46
+ """
47
+ incoming_system_parts: list[SystemPromptPart] = []
48
+ for msg in incoming:
49
+ if isinstance(msg, ModelResponse):
50
+ continue
51
+ for part in msg.parts:
52
+ if isinstance(part, SystemPromptPart):
53
+ incoming_system_parts.append(part)
54
+
55
+ if not incoming_system_parts:
56
+ return base
57
+
58
+ system_msg = ModelRequest(parts=incoming_system_parts)
59
+ result: list[ModelMessage] = []
60
+ for msg in base:
61
+ if isinstance(msg, ModelRequest):
62
+ non_system_parts = [p for p in msg.parts if not isinstance(p, SystemPromptPart)]
63
+ if non_system_parts:
64
+ result.append(ModelRequest(parts=non_system_parts))
65
+ else:
66
+ result.append(msg)
67
+
68
+ return [system_msg] + result
69
+
70
+
71
+ def validate_tool_call_pairs(messages: list[ModelMessage]) -> bool:
72
+ """Validate that all tool calls have corresponding tool results.
73
+
74
+ Iterates through messages in reverse order to verify that every ToolCallPart
75
+ has a matching ToolReturnPart or RetryPromptPart with the same tool_call_id.
76
+
77
+ The first time a tool call is found without a matching result, the function
78
+ returns False immediately.
79
+
80
+ Args:
81
+ messages: List of ModelMessage to validate.
82
+
83
+ Returns:
84
+ True if all tool calls have matching results, False otherwise.
85
+ """
86
+ seen_result_ids: set[str] = set()
87
+
88
+ for message in reversed(messages):
89
+ if isinstance(message, ModelRequest):
90
+ for req_part in message.parts:
91
+ if isinstance(req_part, (ToolReturnPart, RetryPromptPart)):
92
+ seen_result_ids.add(req_part.tool_call_id)
93
+ elif isinstance(message, ModelResponse):
94
+ for resp_part in message.parts:
95
+ if isinstance(resp_part, ToolCallPart):
96
+ if resp_part.tool_call_id not in seen_result_ids:
97
+ return False
98
+
99
+ return True
@@ -0,0 +1,43 @@
1
+ from collections.abc import Sequence
2
+ from typing import Literal
3
+
4
+ from pydantic_ai import ModelMessage, ModelRequest
5
+ from pydantic_ai.models import ModelRequestParameters
6
+
7
+ from calfkit.models.types import CompactBaseModel, SerializableModelSettings, ToolCallRequest
8
+
9
+
10
+ class EventEnvelope(CompactBaseModel):
11
+ kind: Literal["tool_call_request", "user_prompt", "ai_response", "tool_result"]
12
+ text: str | None = None
13
+ trace_id: str | None = None
14
+
15
+ # Used to surface the tool call from latest message so tool call workers do not have to dig
16
+ tool_call_request: ToolCallRequest | None = None
17
+
18
+ # Optional inference-time patch in settings and parameters
19
+ patch_model_request_params: ModelRequestParameters | None = None
20
+ patch_model_settings: SerializableModelSettings | None = None
21
+
22
+ # Running message history
23
+ message_history: list[ModelMessage] = []
24
+
25
+ @property
26
+ def latest_message_in_history(self) -> ModelMessage | None:
27
+ return self.message_history[-1] if self.message_history else None
28
+
29
+ # The result message from a node
30
+ incoming_node_messages: Sequence[ModelMessage] = []
31
+
32
+ # thread id / conversation identifier
33
+ thread_id: str | None = None
34
+
35
+ # Allow client to dynamically patch system message at runtime
36
+ # Intentionally kept separate from message_history in order to simplify patch logic
37
+ system_message: ModelRequest | None = None
38
+
39
+ # Where the final response from AI should be published to
40
+ final_response_topic: str
41
+
42
+ # Whether the current message is the final response from the AI to the user
43
+ final_response: bool = False
@@ -0,0 +1,65 @@
1
+ from typing import Any, TypeAlias
2
+
3
+ from pydantic import BaseModel
4
+ from pydantic_ai import ToolCallPart
5
+ from typing_extensions import TypedDict
6
+
7
+ ToolCallRequest: TypeAlias = ToolCallPart
8
+
9
+
10
+ class SerializableModelSettings(TypedDict, total=False):
11
+ """Serializable version of pydantic_ai.ModelSettings.
12
+
13
+ This is a copy of ModelSettings with `timeout` narrowed
14
+ to `float` only to ensure JSON serializability.
15
+ """
16
+
17
+ max_tokens: int
18
+ """The maximum number of tokens to generate before stopping."""
19
+
20
+ temperature: float
21
+ """Amount of randomness injected into the response."""
22
+
23
+ top_p: float
24
+ """Nucleus sampling parameter."""
25
+
26
+ timeout: float
27
+ """Request timeout in seconds (float only, not httpx.Timeout)."""
28
+
29
+ parallel_tool_calls: bool
30
+ """Whether to allow parallel tool calls."""
31
+
32
+ seed: int
33
+ """Random seed for deterministic results."""
34
+
35
+ presence_penalty: float
36
+ """Penalize tokens based on whether they have appeared in the text so far."""
37
+
38
+ frequency_penalty: float
39
+ """Penalize tokens based on their existing frequency in the text so far."""
40
+
41
+ logit_bias: dict[str, int]
42
+ """Modify the likelihood of specified tokens appearing in the completion."""
43
+
44
+ stop_sequences: list[str]
45
+ """Sequences that will cause the model to stop generating."""
46
+
47
+ extra_headers: dict[str, str]
48
+ """Extra headers to send to the model."""
49
+
50
+ extra_body: dict[str, Any]
51
+ """Extra body to send to the model."""
52
+
53
+
54
+ class CompactBaseModel(BaseModel):
55
+ """Base model that excludes unset and None values during serialization."""
56
+
57
+ def model_dump(self, **kwargs: Any) -> dict[str, Any]:
58
+ kwargs.setdefault("exclude_unset", True)
59
+ kwargs.setdefault("exclude_none", True)
60
+ return super().model_dump(**kwargs)
61
+
62
+ def model_dump_json(self, **kwargs: Any) -> str:
63
+ kwargs.setdefault("exclude_unset", True)
64
+ kwargs.setdefault("exclude_none", True)
65
+ return super().model_dump_json(**kwargs)
@@ -0,0 +1,16 @@
1
+ from calfkit.nodes.agent_router_node import AgentRouterNode
2
+ from calfkit.nodes.base_node import BaseNode, publish_to, subscribe_to
3
+ from calfkit.nodes.base_tool_node import BaseToolNode, agent_tool
4
+ from calfkit.nodes.chat_node import ChatNode
5
+ from calfkit.nodes.registrator import Registrator
6
+
7
+ __all__ = [
8
+ "AgentRouterNode",
9
+ "BaseNode",
10
+ "BaseToolNode",
11
+ "ChatNode",
12
+ "Registrator",
13
+ "agent_tool",
14
+ "publish_to",
15
+ "subscribe_to",
16
+ ]
@@ -0,0 +1,194 @@
1
+ from typing import Annotated, Any
2
+
3
+ import uuid_utils
4
+ from faststream import Context
5
+ from faststream.kafka.annotations import (
6
+ KafkaBroker as BrokerAnnotation,
7
+ )
8
+ from pydantic_ai import ModelRequest, ModelResponse, SystemPromptPart
9
+ from pydantic_ai.models import ModelRequestParameters
10
+
11
+ from calfkit.broker.broker import Broker
12
+ from calfkit.messages import patch_system_prompts, validate_tool_call_pairs
13
+ from calfkit.models.event_envelope import EventEnvelope
14
+ from calfkit.models.types import ToolCallRequest
15
+ from calfkit.nodes.base_node import BaseNode, publish_to, subscribe_to
16
+ from calfkit.nodes.base_tool_node import BaseToolNode
17
+ from calfkit.stores.base import MessageHistoryStore
18
+
19
+
20
+ class AgentRouterNode(BaseNode):
21
+ """Logic for the internal routing to operate agents"""
22
+
23
+ _router_sub_topic_name = "agent_router.input"
24
+ _router_pub_topic_name = "agent_router.output"
25
+
26
+ def __init__(
27
+ self,
28
+ chat_node: BaseNode,
29
+ tool_nodes: list[BaseToolNode],
30
+ system_prompt: str | None = None,
31
+ handoff_nodes: list[type[BaseNode]] = [],
32
+ message_history_store: MessageHistoryStore | None = None,
33
+ *args: Any,
34
+ **kwargs: Any,
35
+ ):
36
+ self.chat = chat_node
37
+ self.tools = tool_nodes
38
+ self.handoffs = handoff_nodes
39
+ self.system_prompt = system_prompt
40
+ self.system_message = (
41
+ ModelRequest(parts=[SystemPromptPart(self.system_prompt)])
42
+ if self.system_prompt
43
+ else None
44
+ )
45
+ self.message_history_store = message_history_store
46
+
47
+ self.tools_topic_registry: dict[str, str] = {
48
+ tool.tool_schema().name: tool.subscribed_topic
49
+ for tool in tool_nodes
50
+ if tool.subscribed_topic is not None
51
+ }
52
+
53
+ self.tool_response_topics = [tool.publish_to_topic for tool in self.tools]
54
+
55
+ super().__init__(*args, **kwargs)
56
+
57
+ @subscribe_to(_router_sub_topic_name)
58
+ @publish_to(_router_pub_topic_name)
59
+ async def _router(
60
+ self,
61
+ ctx: EventEnvelope,
62
+ correlation_id: Annotated[str, Context()],
63
+ broker: BrokerAnnotation,
64
+ ) -> EventEnvelope:
65
+ if not ctx.incoming_node_messages:
66
+ raise RuntimeError("There is no response message to process")
67
+
68
+ # One central place where message history is updated
69
+ if self.message_history_store is not None and ctx.thread_id is not None:
70
+ await self.message_history_store.append_many(
71
+ thread_id=ctx.thread_id, messages=ctx.incoming_node_messages
72
+ )
73
+ ctx.message_history = await self.message_history_store.get(thread_id=ctx.thread_id)
74
+ else:
75
+ ctx.message_history.extend(ctx.incoming_node_messages)
76
+
77
+ # Apply system prompts with priority: incoming > self.system_message > existing history
78
+ # First, apply self.system_message as fallback (replaces existing history)
79
+ if ctx.system_message is not None:
80
+ ctx.message_history = patch_system_prompts(ctx.message_history, [ctx.system_message])
81
+ elif self.system_message is not None:
82
+ ctx.message_history = patch_system_prompts(
83
+ ctx.message_history,
84
+ [self.system_message],
85
+ )
86
+
87
+ if isinstance(ctx.latest_message_in_history, ModelResponse):
88
+ if (
89
+ ctx.latest_message_in_history.finish_reason == "tool_call"
90
+ or ctx.latest_message_in_history.tool_calls
91
+ ):
92
+ for tool_call in ctx.latest_message_in_history.tool_calls:
93
+ await self._route_tool(ctx, tool_call, correlation_id, broker)
94
+ else:
95
+ # reply to sender here
96
+ await self._reply_to_sender(ctx, correlation_id, broker)
97
+ elif validate_tool_call_pairs(ctx.message_history):
98
+ await self._call_model(ctx, correlation_id, broker)
99
+ return ctx
100
+
101
+ async def _route_tool(
102
+ self,
103
+ event_envelope: EventEnvelope,
104
+ generated_tool_call: ToolCallRequest,
105
+ correlation_id: str,
106
+ broker: Any,
107
+ ) -> None:
108
+ tool_topic = self.tools_topic_registry.get(generated_tool_call.tool_name)
109
+ if tool_topic is None:
110
+ # TODO: implement a short circuit to respond with an
111
+ # error message for when provided tool does not exist.
112
+ return
113
+ event_envelope = event_envelope.model_copy(
114
+ update={"kind": "tool_call_request", "tool_call_request": generated_tool_call}
115
+ )
116
+ await broker.publish(
117
+ event_envelope,
118
+ topic=tool_topic,
119
+ correlation_id=correlation_id,
120
+ reply_to=self.subscribed_topic,
121
+ )
122
+
123
+ async def _reply_to_sender(
124
+ self, event_envelope: EventEnvelope, correlation_id: str, broker: Any
125
+ ) -> None:
126
+ event_envelope = event_envelope.model_copy(
127
+ update={"kind": "ai_response", "final_response": True}
128
+ )
129
+ await broker.publish(
130
+ event_envelope,
131
+ topic=event_envelope.final_response_topic,
132
+ correlation_id=correlation_id,
133
+ )
134
+
135
+ async def _call_model(
136
+ self,
137
+ event_envelope: EventEnvelope,
138
+ correlation_id: str,
139
+ broker: Any,
140
+ ) -> None:
141
+ patch_model_request_params = event_envelope.patch_model_request_params
142
+ if patch_model_request_params is None:
143
+ patch_model_request_params = ModelRequestParameters(
144
+ function_tools=[tool.tool_schema() for tool in self.tools]
145
+ )
146
+ event_envelope = event_envelope.model_copy(
147
+ update={"patch_model_request_params": patch_model_request_params}
148
+ )
149
+ await broker.publish(
150
+ event_envelope,
151
+ topic=self.chat.subscribed_topic,
152
+ correlation_id=correlation_id,
153
+ reply_to=self.subscribed_topic,
154
+ )
155
+
156
+ async def invoke(
157
+ self,
158
+ user_prompt: str,
159
+ broker: Broker,
160
+ final_response_topic: str,
161
+ thread_id: str | None = None,
162
+ correlation_id: str | None = None,
163
+ ) -> str:
164
+ """Invoke the agent
165
+
166
+ Args:
167
+ user_prompt (str): User prompt to request the model
168
+ broker (Broker): The broker to connect to
169
+ correlation_id (str | None, optional): Optionally provide a correlation ID
170
+ for this request. Defaults to None.
171
+
172
+ Returns:
173
+ str: The correlation ID for this request
174
+ """
175
+ patch_model_request_params = ModelRequestParameters(
176
+ function_tools=[tool.tool_schema() for tool in self.tools]
177
+ )
178
+ if correlation_id is None:
179
+ correlation_id = uuid_utils.uuid7().hex
180
+ new_node_messages = [ModelRequest.user_text_prompt(user_prompt)]
181
+ await broker.publish(
182
+ EventEnvelope(
183
+ kind="user_prompt",
184
+ trace_id=correlation_id,
185
+ patch_model_request_params=patch_model_request_params,
186
+ thread_id=thread_id,
187
+ incoming_node_messages=new_node_messages,
188
+ system_message=self.system_message,
189
+ final_response_topic=final_response_topic,
190
+ ),
191
+ topic=self.subscribed_topic or "",
192
+ correlation_id=correlation_id,
193
+ )
194
+ return correlation_id
@@ -0,0 +1,62 @@
1
+ from abc import ABC
2
+ from collections.abc import Callable
3
+ from functools import cached_property
4
+ from typing import Any
5
+
6
+
7
+ def subscribe_to(topic_name: str) -> Callable[[Any], Any]:
8
+ def decorator(fn: Any) -> Any:
9
+ fn._subscribe_to_topic_name = topic_name
10
+ return fn
11
+
12
+ return decorator
13
+
14
+
15
+ def publish_to(topic_name: str) -> Callable[[Any], Any]:
16
+ def decorator(fn: Any) -> Any:
17
+ fn._publish_to_topic_name = topic_name
18
+ return fn
19
+
20
+ return decorator
21
+
22
+
23
+ class BaseNode(ABC):
24
+ """Effectively a node is the data plane, defining the internal wiring and logic.
25
+ When provided to a NodeRunner, node logic can be deployed."""
26
+
27
+ _handler_registry: dict[Callable[..., Any], dict[str, str]] = {}
28
+
29
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
30
+ self.bound_registry: dict[Callable[..., Any], dict[str, str]] = {
31
+ fn.__get__(self, type(self)): topics_dict
32
+ for fn, topics_dict in self._handler_registry.items()
33
+ }
34
+
35
+ def __init_subclass__(cls) -> None:
36
+ super().__init_subclass__()
37
+
38
+ cls._handler_registry = {}
39
+
40
+ for attr in cls.__dict__.values():
41
+ publish_to_topic_name = getattr(attr, "_publish_to_topic_name", None)
42
+ subscribe_to_topic_name = getattr(attr, "_subscribe_to_topic_name", None)
43
+ if publish_to_topic_name:
44
+ cls._handler_registry[attr] = {"publish_topic": publish_to_topic_name}
45
+ if subscribe_to_topic_name:
46
+ cls._handler_registry[attr] = cls._handler_registry.get(attr, {}) | {
47
+ "subscribe_topic": subscribe_to_topic_name
48
+ }
49
+
50
+ @cached_property
51
+ def subscribed_topic(self) -> str | None:
52
+ for topics_dict in self._handler_registry.values():
53
+ if "subscribe_topic" in topics_dict:
54
+ return topics_dict["subscribe_topic"]
55
+ return None
56
+
57
+ @cached_property
58
+ def publish_to_topic(self) -> str | None:
59
+ for topics_dict in self._handler_registry.values():
60
+ if "publish_topic" in topics_dict:
61
+ return topics_dict["publish_topic"]
62
+ return None
@@ -0,0 +1,55 @@
1
+ import inspect
2
+ from abc import ABC, abstractmethod
3
+ from collections.abc import Awaitable, Callable
4
+ from typing import Any, cast
5
+
6
+ from pydantic_ai import ModelRequest, Tool, ToolDefinition, ToolReturnPart
7
+
8
+ from calfkit.models.event_envelope import EventEnvelope
9
+ from calfkit.nodes.base_node import BaseNode, publish_to, subscribe_to
10
+
11
+
12
+ class BaseToolNode(BaseNode, ABC):
13
+ @classmethod
14
+ @abstractmethod
15
+ def tool_schema(cls) -> ToolDefinition: ...
16
+
17
+
18
+ def agent_tool(func: Callable[..., Any] | Callable[..., Awaitable[Any]]) -> BaseToolNode:
19
+ """Agent tool decorator to turn a function into a deployable node"""
20
+ tool = Tool(func)
21
+
22
+ class ToolNode(BaseToolNode):
23
+ @subscribe_to(f"tool_node.{func.__name__}.request")
24
+ @publish_to(f"tool_node.{func.__name__}.result")
25
+ async def on_enter(self, event_envelope: EventEnvelope) -> EventEnvelope:
26
+ if not event_envelope.tool_call_request:
27
+ raise RuntimeError("No tool call request found")
28
+ tool_cal_req = event_envelope.tool_call_request
29
+ kw_args = tool_cal_req.args_as_dict()
30
+ result = func(**kw_args)
31
+ if inspect.isawaitable(result):
32
+ result = await result
33
+ tool_result = ToolReturnPart(
34
+ tool_name=tool_cal_req.tool_name,
35
+ content=result,
36
+ tool_call_id=tool_cal_req.tool_call_id,
37
+ )
38
+ event_envelope = event_envelope.model_copy(
39
+ update={
40
+ "kind": "tool_result",
41
+ "incoming_node_messages": [ModelRequest(parts=[tool_result])],
42
+ }
43
+ )
44
+ return event_envelope
45
+
46
+ @classmethod
47
+ def tool_schema(cls) -> ToolDefinition:
48
+ return cast(ToolDefinition, tool.tool_def)
49
+
50
+ ToolNode.__name__ = func.__name__
51
+ ToolNode.__qualname__ = func.__qualname__
52
+ ToolNode.__doc__ = func.__doc__
53
+ ToolNode.__module__ = func.__module__
54
+
55
+ return ToolNode()